| /* |
| * Copyright (C) 1995 Linus Torvalds |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of initialization |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/user.h> |
| #include <linux/a.out.h> |
| #include <linux/screen_info.h> |
| #include <linux/ioport.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/initrd.h> |
| #include <linux/highmem.h> |
| #include <linux/bootmem.h> |
| #include <linux/module.h> |
| #include <asm/processor.h> |
| #include <linux/console.h> |
| #include <linux/seq_file.h> |
| #include <linux/crash_dump.h> |
| #include <linux/root_dev.h> |
| #include <linux/pci.h> |
| #include <linux/acpi.h> |
| #include <linux/kallsyms.h> |
| #include <linux/edd.h> |
| #include <linux/mmzone.h> |
| #include <linux/kexec.h> |
| #include <linux/cpufreq.h> |
| #include <linux/dmi.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/ctype.h> |
| |
| #include <asm/mtrr.h> |
| #include <asm/uaccess.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/smp.h> |
| #include <asm/msr.h> |
| #include <asm/desc.h> |
| #include <video/edid.h> |
| #include <asm/e820.h> |
| #include <asm/dma.h> |
| #include <asm/mpspec.h> |
| #include <asm/mmu_context.h> |
| #include <asm/proto.h> |
| #include <asm/setup.h> |
| #include <asm/mach_apic.h> |
| #include <asm/numa.h> |
| #include <asm/sections.h> |
| #include <asm/dmi.h> |
| #include <asm/cacheflush.h> |
| |
| /* |
| * Machine setup.. |
| */ |
| |
| struct cpuinfo_x86 boot_cpu_data __read_mostly; |
| EXPORT_SYMBOL(boot_cpu_data); |
| |
| unsigned long mmu_cr4_features; |
| |
| /* Boot loader ID as an integer, for the benefit of proc_dointvec */ |
| int bootloader_type; |
| |
| unsigned long saved_video_mode; |
| |
| int force_mwait __cpuinitdata; |
| |
| /* |
| * Early DMI memory |
| */ |
| int dmi_alloc_index; |
| char dmi_alloc_data[DMI_MAX_DATA]; |
| |
| /* |
| * Setup options |
| */ |
| struct screen_info screen_info; |
| EXPORT_SYMBOL(screen_info); |
| struct sys_desc_table_struct { |
| unsigned short length; |
| unsigned char table[0]; |
| }; |
| |
| struct edid_info edid_info; |
| EXPORT_SYMBOL_GPL(edid_info); |
| |
| extern int root_mountflags; |
| |
| char __initdata command_line[COMMAND_LINE_SIZE]; |
| |
| struct resource standard_io_resources[] = { |
| { .name = "dma1", .start = 0x00, .end = 0x1f, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "pic1", .start = 0x20, .end = 0x21, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "timer0", .start = 0x40, .end = 0x43, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "timer1", .start = 0x50, .end = 0x53, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "keyboard", .start = 0x60, .end = 0x6f, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "dma page reg", .start = 0x80, .end = 0x8f, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "pic2", .start = 0xa0, .end = 0xa1, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "dma2", .start = 0xc0, .end = 0xdf, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "fpu", .start = 0xf0, .end = 0xff, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO } |
| }; |
| |
| #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM) |
| |
| struct resource data_resource = { |
| .name = "Kernel data", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_RAM, |
| }; |
| struct resource code_resource = { |
| .name = "Kernel code", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_RAM, |
| }; |
| struct resource bss_resource = { |
| .name = "Kernel bss", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_RAM, |
| }; |
| |
| #ifdef CONFIG_PROC_VMCORE |
| /* elfcorehdr= specifies the location of elf core header |
| * stored by the crashed kernel. This option will be passed |
| * by kexec loader to the capture kernel. |
| */ |
| static int __init setup_elfcorehdr(char *arg) |
| { |
| char *end; |
| if (!arg) |
| return -EINVAL; |
| elfcorehdr_addr = memparse(arg, &end); |
| return end > arg ? 0 : -EINVAL; |
| } |
| early_param("elfcorehdr", setup_elfcorehdr); |
| #endif |
| |
| #ifndef CONFIG_NUMA |
| static void __init |
| contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| unsigned long bootmap_size, bootmap; |
| |
| bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT; |
| bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size); |
| if (bootmap == -1L) |
| panic("Cannot find bootmem map of size %ld\n",bootmap_size); |
| bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn); |
| e820_register_active_regions(0, start_pfn, end_pfn); |
| free_bootmem_with_active_regions(0, end_pfn); |
| reserve_bootmem(bootmap, bootmap_size); |
| } |
| #endif |
| |
| #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) |
| struct edd edd; |
| #ifdef CONFIG_EDD_MODULE |
| EXPORT_SYMBOL(edd); |
| #endif |
| /** |
| * copy_edd() - Copy the BIOS EDD information |
| * from boot_params into a safe place. |
| * |
| */ |
| static inline void copy_edd(void) |
| { |
| memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, |
| sizeof(edd.mbr_signature)); |
| memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); |
| edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; |
| edd.edd_info_nr = boot_params.eddbuf_entries; |
| } |
| #else |
| static inline void copy_edd(void) |
| { |
| } |
| #endif |
| |
| #ifdef CONFIG_KEXEC |
| static void __init reserve_crashkernel(void) |
| { |
| unsigned long long free_mem; |
| unsigned long long crash_size, crash_base; |
| int ret; |
| |
| free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT; |
| |
| ret = parse_crashkernel(boot_command_line, free_mem, |
| &crash_size, &crash_base); |
| if (ret == 0 && crash_size) { |
| if (crash_base > 0) { |
| printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " |
| "for crashkernel (System RAM: %ldMB)\n", |
| (unsigned long)(crash_size >> 20), |
| (unsigned long)(crash_base >> 20), |
| (unsigned long)(free_mem >> 20)); |
| crashk_res.start = crash_base; |
| crashk_res.end = crash_base + crash_size - 1; |
| reserve_bootmem(crash_base, crash_size); |
| } else |
| printk(KERN_INFO "crashkernel reservation failed - " |
| "you have to specify a base address\n"); |
| } |
| } |
| #else |
| static inline void __init reserve_crashkernel(void) |
| {} |
| #endif |
| |
| #define EBDA_ADDR_POINTER 0x40E |
| |
| unsigned __initdata ebda_addr; |
| unsigned __initdata ebda_size; |
| |
| static void discover_ebda(void) |
| { |
| /* |
| * there is a real-mode segmented pointer pointing to the |
| * 4K EBDA area at 0x40E |
| */ |
| ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER); |
| ebda_addr <<= 4; |
| |
| ebda_size = *(unsigned short *)__va(ebda_addr); |
| |
| /* Round EBDA up to pages */ |
| if (ebda_size == 0) |
| ebda_size = 1; |
| ebda_size <<= 10; |
| ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE); |
| if (ebda_size > 64*1024) |
| ebda_size = 64*1024; |
| } |
| |
| void __init setup_arch(char **cmdline_p) |
| { |
| printk(KERN_INFO "Command line: %s\n", boot_command_line); |
| |
| ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); |
| screen_info = boot_params.screen_info; |
| edid_info = boot_params.edid_info; |
| saved_video_mode = boot_params.hdr.vid_mode; |
| bootloader_type = boot_params.hdr.type_of_loader; |
| |
| #ifdef CONFIG_BLK_DEV_RAM |
| rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; |
| rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0); |
| rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0); |
| #endif |
| setup_memory_region(); |
| copy_edd(); |
| |
| if (!boot_params.hdr.root_flags) |
| root_mountflags &= ~MS_RDONLY; |
| init_mm.start_code = (unsigned long) &_text; |
| init_mm.end_code = (unsigned long) &_etext; |
| init_mm.end_data = (unsigned long) &_edata; |
| init_mm.brk = (unsigned long) &_end; |
| |
| code_resource.start = virt_to_phys(&_text); |
| code_resource.end = virt_to_phys(&_etext)-1; |
| data_resource.start = virt_to_phys(&_etext); |
| data_resource.end = virt_to_phys(&_edata)-1; |
| bss_resource.start = virt_to_phys(&__bss_start); |
| bss_resource.end = virt_to_phys(&__bss_stop)-1; |
| |
| early_identify_cpu(&boot_cpu_data); |
| |
| strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); |
| *cmdline_p = command_line; |
| |
| parse_early_param(); |
| |
| finish_e820_parsing(); |
| |
| e820_register_active_regions(0, 0, -1UL); |
| /* |
| * partially used pages are not usable - thus |
| * we are rounding upwards: |
| */ |
| end_pfn = e820_end_of_ram(); |
| num_physpages = end_pfn; |
| |
| check_efer(); |
| |
| discover_ebda(); |
| |
| init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT)); |
| |
| dmi_scan_machine(); |
| |
| #ifdef CONFIG_SMP |
| /* setup to use the static apicid table during kernel startup */ |
| x86_cpu_to_apicid_ptr = (void *)&x86_cpu_to_apicid_init; |
| #endif |
| |
| #ifdef CONFIG_ACPI |
| /* |
| * Initialize the ACPI boot-time table parser (gets the RSDP and SDT). |
| * Call this early for SRAT node setup. |
| */ |
| acpi_boot_table_init(); |
| #endif |
| |
| /* How many end-of-memory variables you have, grandma! */ |
| max_low_pfn = end_pfn; |
| max_pfn = end_pfn; |
| high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1; |
| |
| /* Remove active ranges so rediscovery with NUMA-awareness happens */ |
| remove_all_active_ranges(); |
| |
| #ifdef CONFIG_ACPI_NUMA |
| /* |
| * Parse SRAT to discover nodes. |
| */ |
| acpi_numa_init(); |
| #endif |
| |
| #ifdef CONFIG_NUMA |
| numa_initmem_init(0, end_pfn); |
| #else |
| contig_initmem_init(0, end_pfn); |
| #endif |
| |
| /* Reserve direct mapping */ |
| reserve_bootmem_generic(table_start << PAGE_SHIFT, |
| (table_end - table_start) << PAGE_SHIFT); |
| |
| /* reserve kernel */ |
| reserve_bootmem_generic(__pa_symbol(&_text), |
| __pa_symbol(&_end) - __pa_symbol(&_text)); |
| |
| /* |
| * reserve physical page 0 - it's a special BIOS page on many boxes, |
| * enabling clean reboots, SMP operation, laptop functions. |
| */ |
| reserve_bootmem_generic(0, PAGE_SIZE); |
| |
| /* reserve ebda region */ |
| if (ebda_addr) |
| reserve_bootmem_generic(ebda_addr, ebda_size); |
| #ifdef CONFIG_NUMA |
| /* reserve nodemap region */ |
| if (nodemap_addr) |
| reserve_bootmem_generic(nodemap_addr, nodemap_size); |
| #endif |
| |
| #ifdef CONFIG_SMP |
| /* Reserve SMP trampoline */ |
| reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE); |
| #endif |
| |
| #ifdef CONFIG_ACPI_SLEEP |
| /* |
| * Reserve low memory region for sleep support. |
| */ |
| acpi_reserve_bootmem(); |
| #endif |
| /* |
| * Find and reserve possible boot-time SMP configuration: |
| */ |
| find_smp_config(); |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) { |
| unsigned long ramdisk_image = boot_params.hdr.ramdisk_image; |
| unsigned long ramdisk_size = boot_params.hdr.ramdisk_size; |
| unsigned long ramdisk_end = ramdisk_image + ramdisk_size; |
| unsigned long end_of_mem = end_pfn << PAGE_SHIFT; |
| |
| if (ramdisk_end <= end_of_mem) { |
| reserve_bootmem_generic(ramdisk_image, ramdisk_size); |
| initrd_start = ramdisk_image + PAGE_OFFSET; |
| initrd_end = initrd_start+ramdisk_size; |
| } else { |
| printk(KERN_ERR "initrd extends beyond end of memory " |
| "(0x%08lx > 0x%08lx)\ndisabling initrd\n", |
| ramdisk_end, end_of_mem); |
| initrd_start = 0; |
| } |
| } |
| #endif |
| reserve_crashkernel(); |
| paging_init(); |
| |
| #ifdef CONFIG_PCI |
| early_quirks(); |
| #endif |
| |
| /* |
| * set this early, so we dont allocate cpu0 |
| * if MADT list doesnt list BSP first |
| * mpparse.c/MP_processor_info() allocates logical cpu numbers. |
| */ |
| cpu_set(0, cpu_present_map); |
| #ifdef CONFIG_ACPI |
| /* |
| * Read APIC and some other early information from ACPI tables. |
| */ |
| acpi_boot_init(); |
| #endif |
| |
| init_cpu_to_node(); |
| |
| /* |
| * get boot-time SMP configuration: |
| */ |
| if (smp_found_config) |
| get_smp_config(); |
| init_apic_mappings(); |
| |
| /* |
| * We trust e820 completely. No explicit ROM probing in memory. |
| */ |
| e820_reserve_resources(); |
| e820_mark_nosave_regions(); |
| |
| { |
| unsigned i; |
| /* request I/O space for devices used on all i[345]86 PCs */ |
| for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) |
| request_resource(&ioport_resource, &standard_io_resources[i]); |
| } |
| |
| e820_setup_gap(); |
| |
| #ifdef CONFIG_VT |
| #if defined(CONFIG_VGA_CONSOLE) |
| conswitchp = &vga_con; |
| #elif defined(CONFIG_DUMMY_CONSOLE) |
| conswitchp = &dummy_con; |
| #endif |
| #endif |
| } |
| |
| static int __cpuinit get_model_name(struct cpuinfo_x86 *c) |
| { |
| unsigned int *v; |
| |
| if (c->extended_cpuid_level < 0x80000004) |
| return 0; |
| |
| v = (unsigned int *) c->x86_model_id; |
| cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); |
| cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); |
| cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); |
| c->x86_model_id[48] = 0; |
| return 1; |
| } |
| |
| |
| static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c) |
| { |
| unsigned int n, dummy, eax, ebx, ecx, edx; |
| |
| n = c->extended_cpuid_level; |
| |
| if (n >= 0x80000005) { |
| cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); |
| printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n", |
| edx>>24, edx&0xFF, ecx>>24, ecx&0xFF); |
| c->x86_cache_size=(ecx>>24)+(edx>>24); |
| /* On K8 L1 TLB is inclusive, so don't count it */ |
| c->x86_tlbsize = 0; |
| } |
| |
| if (n >= 0x80000006) { |
| cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); |
| ecx = cpuid_ecx(0x80000006); |
| c->x86_cache_size = ecx >> 16; |
| c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); |
| |
| printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n", |
| c->x86_cache_size, ecx & 0xFF); |
| } |
| |
| if (n >= 0x80000007) |
| cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power); |
| if (n >= 0x80000008) { |
| cpuid(0x80000008, &eax, &dummy, &dummy, &dummy); |
| c->x86_virt_bits = (eax >> 8) & 0xff; |
| c->x86_phys_bits = eax & 0xff; |
| } |
| } |
| |
| #ifdef CONFIG_NUMA |
| static int nearby_node(int apicid) |
| { |
| int i; |
| for (i = apicid - 1; i >= 0; i--) { |
| int node = apicid_to_node[i]; |
| if (node != NUMA_NO_NODE && node_online(node)) |
| return node; |
| } |
| for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { |
| int node = apicid_to_node[i]; |
| if (node != NUMA_NO_NODE && node_online(node)) |
| return node; |
| } |
| return first_node(node_online_map); /* Shouldn't happen */ |
| } |
| #endif |
| |
| /* |
| * On a AMD dual core setup the lower bits of the APIC id distingush the cores. |
| * Assumes number of cores is a power of two. |
| */ |
| static void __init amd_detect_cmp(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_SMP |
| unsigned bits; |
| #ifdef CONFIG_NUMA |
| int cpu = smp_processor_id(); |
| int node = 0; |
| unsigned apicid = hard_smp_processor_id(); |
| #endif |
| unsigned ecx = cpuid_ecx(0x80000008); |
| |
| c->x86_max_cores = (ecx & 0xff) + 1; |
| |
| /* CPU telling us the core id bits shift? */ |
| bits = (ecx >> 12) & 0xF; |
| |
| /* Otherwise recompute */ |
| if (bits == 0) { |
| while ((1 << bits) < c->x86_max_cores) |
| bits++; |
| } |
| |
| /* Low order bits define the core id (index of core in socket) */ |
| c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1); |
| /* Convert the APIC ID into the socket ID */ |
| c->phys_proc_id = phys_pkg_id(bits); |
| |
| #ifdef CONFIG_NUMA |
| node = c->phys_proc_id; |
| if (apicid_to_node[apicid] != NUMA_NO_NODE) |
| node = apicid_to_node[apicid]; |
| if (!node_online(node)) { |
| /* Two possibilities here: |
| - The CPU is missing memory and no node was created. |
| In that case try picking one from a nearby CPU |
| - The APIC IDs differ from the HyperTransport node IDs |
| which the K8 northbridge parsing fills in. |
| Assume they are all increased by a constant offset, |
| but in the same order as the HT nodeids. |
| If that doesn't result in a usable node fall back to the |
| path for the previous case. */ |
| int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits); |
| if (ht_nodeid >= 0 && |
| apicid_to_node[ht_nodeid] != NUMA_NO_NODE) |
| node = apicid_to_node[ht_nodeid]; |
| /* Pick a nearby node */ |
| if (!node_online(node)) |
| node = nearby_node(apicid); |
| } |
| numa_set_node(cpu, node); |
| |
| printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node); |
| #endif |
| #endif |
| } |
| |
| #define ENABLE_C1E_MASK 0x18000000 |
| #define CPUID_PROCESSOR_SIGNATURE 1 |
| #define CPUID_XFAM 0x0ff00000 |
| #define CPUID_XFAM_K8 0x00000000 |
| #define CPUID_XFAM_10H 0x00100000 |
| #define CPUID_XFAM_11H 0x00200000 |
| #define CPUID_XMOD 0x000f0000 |
| #define CPUID_XMOD_REV_F 0x00040000 |
| |
| /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */ |
| static __cpuinit int amd_apic_timer_broken(void) |
| { |
| u32 lo, hi; |
| u32 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); |
| switch (eax & CPUID_XFAM) { |
| case CPUID_XFAM_K8: |
| if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F) |
| break; |
| case CPUID_XFAM_10H: |
| case CPUID_XFAM_11H: |
| rdmsr(MSR_K8_ENABLE_C1E, lo, hi); |
| if (lo & ENABLE_C1E_MASK) |
| return 1; |
| break; |
| default: |
| /* err on the side of caution */ |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void __cpuinit init_amd(struct cpuinfo_x86 *c) |
| { |
| unsigned level; |
| |
| #ifdef CONFIG_SMP |
| unsigned long value; |
| |
| /* |
| * Disable TLB flush filter by setting HWCR.FFDIS on K8 |
| * bit 6 of msr C001_0015 |
| * |
| * Errata 63 for SH-B3 steppings |
| * Errata 122 for all steppings (F+ have it disabled by default) |
| */ |
| if (c->x86 == 15) { |
| rdmsrl(MSR_K8_HWCR, value); |
| value |= 1 << 6; |
| wrmsrl(MSR_K8_HWCR, value); |
| } |
| #endif |
| |
| /* Bit 31 in normal CPUID used for nonstandard 3DNow ID; |
| 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */ |
| clear_bit(0*32+31, &c->x86_capability); |
| |
| /* On C+ stepping K8 rep microcode works well for copy/memset */ |
| level = cpuid_eax(1); |
| if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)) |
| set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability); |
| if (c->x86 == 0x10 || c->x86 == 0x11) |
| set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability); |
| |
| /* Enable workaround for FXSAVE leak */ |
| if (c->x86 >= 6) |
| set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability); |
| |
| level = get_model_name(c); |
| if (!level) { |
| switch (c->x86) { |
| case 15: |
| /* Should distinguish Models here, but this is only |
| a fallback anyways. */ |
| strcpy(c->x86_model_id, "Hammer"); |
| break; |
| } |
| } |
| display_cacheinfo(c); |
| |
| /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */ |
| if (c->x86_power & (1<<8)) |
| set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability); |
| |
| /* Multi core CPU? */ |
| if (c->extended_cpuid_level >= 0x80000008) |
| amd_detect_cmp(c); |
| |
| if (c->extended_cpuid_level >= 0x80000006 && |
| (cpuid_edx(0x80000006) & 0xf000)) |
| num_cache_leaves = 4; |
| else |
| num_cache_leaves = 3; |
| |
| if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11) |
| set_bit(X86_FEATURE_K8, &c->x86_capability); |
| |
| /* RDTSC can be speculated around */ |
| clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability); |
| |
| /* Family 10 doesn't support C states in MWAIT so don't use it */ |
| if (c->x86 == 0x10 && !force_mwait) |
| clear_bit(X86_FEATURE_MWAIT, &c->x86_capability); |
| |
| if (amd_apic_timer_broken()) |
| disable_apic_timer = 1; |
| } |
| |
| static void __cpuinit detect_ht(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_SMP |
| u32 eax, ebx, ecx, edx; |
| int index_msb, core_bits; |
| |
| cpuid(1, &eax, &ebx, &ecx, &edx); |
| |
| |
| if (!cpu_has(c, X86_FEATURE_HT)) |
| return; |
| if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) |
| goto out; |
| |
| smp_num_siblings = (ebx & 0xff0000) >> 16; |
| |
| if (smp_num_siblings == 1) { |
| printk(KERN_INFO "CPU: Hyper-Threading is disabled\n"); |
| } else if (smp_num_siblings > 1 ) { |
| |
| if (smp_num_siblings > NR_CPUS) { |
| printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings); |
| smp_num_siblings = 1; |
| return; |
| } |
| |
| index_msb = get_count_order(smp_num_siblings); |
| c->phys_proc_id = phys_pkg_id(index_msb); |
| |
| smp_num_siblings = smp_num_siblings / c->x86_max_cores; |
| |
| index_msb = get_count_order(smp_num_siblings) ; |
| |
| core_bits = get_count_order(c->x86_max_cores); |
| |
| c->cpu_core_id = phys_pkg_id(index_msb) & |
| ((1 << core_bits) - 1); |
| } |
| out: |
| if ((c->x86_max_cores * smp_num_siblings) > 1) { |
| printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id); |
| printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id); |
| } |
| |
| #endif |
| } |
| |
| /* |
| * find out the number of processor cores on the die |
| */ |
| static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c) |
| { |
| unsigned int eax, t; |
| |
| if (c->cpuid_level < 4) |
| return 1; |
| |
| cpuid_count(4, 0, &eax, &t, &t, &t); |
| |
| if (eax & 0x1f) |
| return ((eax >> 26) + 1); |
| else |
| return 1; |
| } |
| |
| static void srat_detect_node(void) |
| { |
| #ifdef CONFIG_NUMA |
| unsigned node; |
| int cpu = smp_processor_id(); |
| int apicid = hard_smp_processor_id(); |
| |
| /* Don't do the funky fallback heuristics the AMD version employs |
| for now. */ |
| node = apicid_to_node[apicid]; |
| if (node == NUMA_NO_NODE) |
| node = first_node(node_online_map); |
| numa_set_node(cpu, node); |
| |
| printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node); |
| #endif |
| } |
| |
| static void __cpuinit init_intel(struct cpuinfo_x86 *c) |
| { |
| /* Cache sizes */ |
| unsigned n; |
| |
| init_intel_cacheinfo(c); |
| if (c->cpuid_level > 9 ) { |
| unsigned eax = cpuid_eax(10); |
| /* Check for version and the number of counters */ |
| if ((eax & 0xff) && (((eax>>8) & 0xff) > 1)) |
| set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability); |
| } |
| |
| if (cpu_has_ds) { |
| unsigned int l1, l2; |
| rdmsr(MSR_IA32_MISC_ENABLE, l1, l2); |
| if (!(l1 & (1<<11))) |
| set_bit(X86_FEATURE_BTS, c->x86_capability); |
| if (!(l1 & (1<<12))) |
| set_bit(X86_FEATURE_PEBS, c->x86_capability); |
| } |
| |
| n = c->extended_cpuid_level; |
| if (n >= 0x80000008) { |
| unsigned eax = cpuid_eax(0x80000008); |
| c->x86_virt_bits = (eax >> 8) & 0xff; |
| c->x86_phys_bits = eax & 0xff; |
| /* CPUID workaround for Intel 0F34 CPU */ |
| if (c->x86_vendor == X86_VENDOR_INTEL && |
| c->x86 == 0xF && c->x86_model == 0x3 && |
| c->x86_mask == 0x4) |
| c->x86_phys_bits = 36; |
| } |
| |
| if (c->x86 == 15) |
| c->x86_cache_alignment = c->x86_clflush_size * 2; |
| if ((c->x86 == 0xf && c->x86_model >= 0x03) || |
| (c->x86 == 0x6 && c->x86_model >= 0x0e)) |
| set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability); |
| if (c->x86 == 6) |
| set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability); |
| if (c->x86 == 15) |
| set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability); |
| else |
| clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability); |
| c->x86_max_cores = intel_num_cpu_cores(c); |
| |
| srat_detect_node(); |
| } |
| |
| static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c) |
| { |
| char *v = c->x86_vendor_id; |
| |
| if (!strcmp(v, "AuthenticAMD")) |
| c->x86_vendor = X86_VENDOR_AMD; |
| else if (!strcmp(v, "GenuineIntel")) |
| c->x86_vendor = X86_VENDOR_INTEL; |
| else |
| c->x86_vendor = X86_VENDOR_UNKNOWN; |
| } |
| |
| struct cpu_model_info { |
| int vendor; |
| int family; |
| char *model_names[16]; |
| }; |
| |
| /* Do some early cpuid on the boot CPU to get some parameter that are |
| needed before check_bugs. Everything advanced is in identify_cpu |
| below. */ |
| void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c) |
| { |
| u32 tfms; |
| |
| c->loops_per_jiffy = loops_per_jiffy; |
| c->x86_cache_size = -1; |
| c->x86_vendor = X86_VENDOR_UNKNOWN; |
| c->x86_model = c->x86_mask = 0; /* So far unknown... */ |
| c->x86_vendor_id[0] = '\0'; /* Unset */ |
| c->x86_model_id[0] = '\0'; /* Unset */ |
| c->x86_clflush_size = 64; |
| c->x86_cache_alignment = c->x86_clflush_size; |
| c->x86_max_cores = 1; |
| c->extended_cpuid_level = 0; |
| memset(&c->x86_capability, 0, sizeof c->x86_capability); |
| |
| /* Get vendor name */ |
| cpuid(0x00000000, (unsigned int *)&c->cpuid_level, |
| (unsigned int *)&c->x86_vendor_id[0], |
| (unsigned int *)&c->x86_vendor_id[8], |
| (unsigned int *)&c->x86_vendor_id[4]); |
| |
| get_cpu_vendor(c); |
| |
| /* Initialize the standard set of capabilities */ |
| /* Note that the vendor-specific code below might override */ |
| |
| /* Intel-defined flags: level 0x00000001 */ |
| if (c->cpuid_level >= 0x00000001) { |
| __u32 misc; |
| cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4], |
| &c->x86_capability[0]); |
| c->x86 = (tfms >> 8) & 0xf; |
| c->x86_model = (tfms >> 4) & 0xf; |
| c->x86_mask = tfms & 0xf; |
| if (c->x86 == 0xf) |
| c->x86 += (tfms >> 20) & 0xff; |
| if (c->x86 >= 0x6) |
| c->x86_model += ((tfms >> 16) & 0xF) << 4; |
| if (c->x86_capability[0] & (1<<19)) |
| c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; |
| } else { |
| /* Have CPUID level 0 only - unheard of */ |
| c->x86 = 4; |
| } |
| |
| #ifdef CONFIG_SMP |
| c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff; |
| c->cpu_index = 0; |
| #endif |
| } |
| |
| /* |
| * This does the hard work of actually picking apart the CPU stuff... |
| */ |
| void __cpuinit identify_cpu(struct cpuinfo_x86 *c) |
| { |
| int i; |
| u32 xlvl; |
| |
| early_identify_cpu(c); |
| |
| /* AMD-defined flags: level 0x80000001 */ |
| xlvl = cpuid_eax(0x80000000); |
| c->extended_cpuid_level = xlvl; |
| if ((xlvl & 0xffff0000) == 0x80000000) { |
| if (xlvl >= 0x80000001) { |
| c->x86_capability[1] = cpuid_edx(0x80000001); |
| c->x86_capability[6] = cpuid_ecx(0x80000001); |
| } |
| if (xlvl >= 0x80000004) |
| get_model_name(c); /* Default name */ |
| } |
| |
| /* Transmeta-defined flags: level 0x80860001 */ |
| xlvl = cpuid_eax(0x80860000); |
| if ((xlvl & 0xffff0000) == 0x80860000) { |
| /* Don't set x86_cpuid_level here for now to not confuse. */ |
| if (xlvl >= 0x80860001) |
| c->x86_capability[2] = cpuid_edx(0x80860001); |
| } |
| |
| init_scattered_cpuid_features(c); |
| |
| c->apicid = phys_pkg_id(0); |
| |
| /* |
| * Vendor-specific initialization. In this section we |
| * canonicalize the feature flags, meaning if there are |
| * features a certain CPU supports which CPUID doesn't |
| * tell us, CPUID claiming incorrect flags, or other bugs, |
| * we handle them here. |
| * |
| * At the end of this section, c->x86_capability better |
| * indicate the features this CPU genuinely supports! |
| */ |
| switch (c->x86_vendor) { |
| case X86_VENDOR_AMD: |
| init_amd(c); |
| break; |
| |
| case X86_VENDOR_INTEL: |
| init_intel(c); |
| break; |
| |
| case X86_VENDOR_UNKNOWN: |
| default: |
| display_cacheinfo(c); |
| break; |
| } |
| |
| select_idle_routine(c); |
| detect_ht(c); |
| |
| /* |
| * On SMP, boot_cpu_data holds the common feature set between |
| * all CPUs; so make sure that we indicate which features are |
| * common between the CPUs. The first time this routine gets |
| * executed, c == &boot_cpu_data. |
| */ |
| if (c != &boot_cpu_data) { |
| /* AND the already accumulated flags with these */ |
| for (i = 0 ; i < NCAPINTS ; i++) |
| boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; |
| } |
| |
| #ifdef CONFIG_X86_MCE |
| mcheck_init(c); |
| #endif |
| if (c != &boot_cpu_data) |
| mtrr_ap_init(); |
| #ifdef CONFIG_NUMA |
| numa_add_cpu(smp_processor_id()); |
| #endif |
| } |
| |
| |
| void __cpuinit print_cpu_info(struct cpuinfo_x86 *c) |
| { |
| if (c->x86_model_id[0]) |
| printk("%s", c->x86_model_id); |
| |
| if (c->x86_mask || c->cpuid_level >= 0) |
| printk(" stepping %02x\n", c->x86_mask); |
| else |
| printk("\n"); |
| } |
| |
| /* |
| * Get CPU information for use by the procfs. |
| */ |
| |
| static int show_cpuinfo(struct seq_file *m, void *v) |
| { |
| struct cpuinfo_x86 *c = v; |
| int cpu = 0; |
| |
| /* |
| * These flag bits must match the definitions in <asm/cpufeature.h>. |
| * NULL means this bit is undefined or reserved; either way it doesn't |
| * have meaning as far as Linux is concerned. Note that it's important |
| * to realize there is a difference between this table and CPUID -- if |
| * applications want to get the raw CPUID data, they should access |
| * /dev/cpu/<cpu_nr>/cpuid instead. |
| */ |
| static const char *const x86_cap_flags[] = { |
| /* Intel-defined */ |
| "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce", |
| "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov", |
| "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx", |
| "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe", |
| |
| /* AMD-defined */ |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL, |
| NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL, |
| NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm", |
| "3dnowext", "3dnow", |
| |
| /* Transmeta-defined */ |
| "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| |
| /* Other (Linux-defined) */ |
| "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr", |
| NULL, NULL, NULL, NULL, |
| "constant_tsc", "up", NULL, "arch_perfmon", |
| "pebs", "bts", NULL, "sync_rdtsc", |
| "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| |
| /* Intel-defined (#2) */ |
| "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est", |
| "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL, |
| NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt", |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| |
| /* VIA/Cyrix/Centaur-defined */ |
| NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en", |
| "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| |
| /* AMD-defined (#2) */ |
| "lahf_lm", "cmp_legacy", "svm", "extapic", |
| "cr8_legacy", "abm", "sse4a", "misalignsse", |
| "3dnowprefetch", "osvw", "ibs", "sse5", |
| "skinit", "wdt", NULL, NULL, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| |
| /* Auxiliary (Linux-defined) */ |
| "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| }; |
| static const char *const x86_power_flags[] = { |
| "ts", /* temperature sensor */ |
| "fid", /* frequency id control */ |
| "vid", /* voltage id control */ |
| "ttp", /* thermal trip */ |
| "tm", |
| "stc", |
| "100mhzsteps", |
| "hwpstate", |
| "", /* tsc invariant mapped to constant_tsc */ |
| /* nothing */ |
| }; |
| |
| |
| #ifdef CONFIG_SMP |
| if (!cpu_online(c->cpu_index)) |
| return 0; |
| cpu = c->cpu_index; |
| #endif |
| |
| seq_printf(m,"processor\t: %u\n" |
| "vendor_id\t: %s\n" |
| "cpu family\t: %d\n" |
| "model\t\t: %d\n" |
| "model name\t: %s\n", |
| (unsigned)cpu, |
| c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown", |
| c->x86, |
| (int)c->x86_model, |
| c->x86_model_id[0] ? c->x86_model_id : "unknown"); |
| |
| if (c->x86_mask || c->cpuid_level >= 0) |
| seq_printf(m, "stepping\t: %d\n", c->x86_mask); |
| else |
| seq_printf(m, "stepping\t: unknown\n"); |
| |
| if (cpu_has(c,X86_FEATURE_TSC)) { |
| unsigned int freq = cpufreq_quick_get((unsigned)cpu); |
| if (!freq) |
| freq = cpu_khz; |
| seq_printf(m, "cpu MHz\t\t: %u.%03u\n", |
| freq / 1000, (freq % 1000)); |
| } |
| |
| /* Cache size */ |
| if (c->x86_cache_size >= 0) |
| seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size); |
| |
| #ifdef CONFIG_SMP |
| if (smp_num_siblings * c->x86_max_cores > 1) { |
| seq_printf(m, "physical id\t: %d\n", c->phys_proc_id); |
| seq_printf(m, "siblings\t: %d\n", |
| cpus_weight(per_cpu(cpu_core_map, cpu))); |
| seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id); |
| seq_printf(m, "cpu cores\t: %d\n", c->booted_cores); |
| } |
| #endif |
| |
| seq_printf(m, |
| "fpu\t\t: yes\n" |
| "fpu_exception\t: yes\n" |
| "cpuid level\t: %d\n" |
| "wp\t\t: yes\n" |
| "flags\t\t:", |
| c->cpuid_level); |
| |
| { |
| int i; |
| for ( i = 0 ; i < 32*NCAPINTS ; i++ ) |
| if (cpu_has(c, i) && x86_cap_flags[i] != NULL) |
| seq_printf(m, " %s", x86_cap_flags[i]); |
| } |
| |
| seq_printf(m, "\nbogomips\t: %lu.%02lu\n", |
| c->loops_per_jiffy/(500000/HZ), |
| (c->loops_per_jiffy/(5000/HZ)) % 100); |
| |
| if (c->x86_tlbsize > 0) |
| seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize); |
| seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size); |
| seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment); |
| |
| seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n", |
| c->x86_phys_bits, c->x86_virt_bits); |
| |
| seq_printf(m, "power management:"); |
| { |
| unsigned i; |
| for (i = 0; i < 32; i++) |
| if (c->x86_power & (1 << i)) { |
| if (i < ARRAY_SIZE(x86_power_flags) && |
| x86_power_flags[i]) |
| seq_printf(m, "%s%s", |
| x86_power_flags[i][0]?" ":"", |
| x86_power_flags[i]); |
| else |
| seq_printf(m, " [%d]", i); |
| } |
| } |
| |
| seq_printf(m, "\n\n"); |
| |
| return 0; |
| } |
| |
| static void *c_start(struct seq_file *m, loff_t *pos) |
| { |
| if (*pos == 0) /* just in case, cpu 0 is not the first */ |
| *pos = first_cpu(cpu_possible_map); |
| if ((*pos) < NR_CPUS && cpu_possible(*pos)) |
| return &cpu_data(*pos); |
| return NULL; |
| } |
| |
| static void *c_next(struct seq_file *m, void *v, loff_t *pos) |
| { |
| *pos = next_cpu(*pos, cpu_possible_map); |
| return c_start(m, pos); |
| } |
| |
| static void c_stop(struct seq_file *m, void *v) |
| { |
| } |
| |
| struct seq_operations cpuinfo_op = { |
| .start =c_start, |
| .next = c_next, |
| .stop = c_stop, |
| .show = show_cpuinfo, |
| }; |