| /* sun4m_smp.c: Sparc SUN4M SMP support. |
| * |
| * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) |
| */ |
| |
| #include <asm/head.h> |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/threads.h> |
| #include <linux/smp.h> |
| #include <linux/smp_lock.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/profile.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| |
| #include <asm/ptrace.h> |
| #include <asm/atomic.h> |
| |
| #include <asm/delay.h> |
| #include <asm/irq.h> |
| #include <asm/page.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/oplib.h> |
| #include <asm/cpudata.h> |
| |
| #define IRQ_RESCHEDULE 13 |
| #define IRQ_STOP_CPU 14 |
| #define IRQ_CROSS_CALL 15 |
| |
| extern ctxd_t *srmmu_ctx_table_phys; |
| |
| extern void calibrate_delay(void); |
| |
| extern volatile int smp_processors_ready; |
| extern int smp_num_cpus; |
| extern volatile unsigned long cpu_callin_map[NR_CPUS]; |
| extern unsigned char boot_cpu_id; |
| extern int smp_activated; |
| extern volatile int __cpu_number_map[NR_CPUS]; |
| extern volatile int __cpu_logical_map[NR_CPUS]; |
| extern volatile unsigned long ipi_count; |
| extern volatile int smp_process_available; |
| extern volatile int smp_commenced; |
| extern int __smp4m_processor_id(void); |
| |
| /*#define SMP_DEBUG*/ |
| |
| #ifdef SMP_DEBUG |
| #define SMP_PRINTK(x) printk x |
| #else |
| #define SMP_PRINTK(x) |
| #endif |
| |
| static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val) |
| { |
| __asm__ __volatile__("swap [%1], %0\n\t" : |
| "=&r" (val), "=&r" (ptr) : |
| "0" (val), "1" (ptr)); |
| return val; |
| } |
| |
| static void smp_setup_percpu_timer(void); |
| extern void cpu_probe(void); |
| |
| void __init smp4m_callin(void) |
| { |
| int cpuid = hard_smp_processor_id(); |
| |
| local_flush_cache_all(); |
| local_flush_tlb_all(); |
| |
| set_irq_udt(boot_cpu_id); |
| |
| /* Get our local ticker going. */ |
| smp_setup_percpu_timer(); |
| |
| calibrate_delay(); |
| smp_store_cpu_info(cpuid); |
| |
| local_flush_cache_all(); |
| local_flush_tlb_all(); |
| |
| /* |
| * Unblock the master CPU _only_ when the scheduler state |
| * of all secondary CPUs will be up-to-date, so after |
| * the SMP initialization the master will be just allowed |
| * to call the scheduler code. |
| */ |
| /* Allow master to continue. */ |
| swap((unsigned long *)&cpu_callin_map[cpuid], 1); |
| |
| local_flush_cache_all(); |
| local_flush_tlb_all(); |
| |
| cpu_probe(); |
| |
| /* Fix idle thread fields. */ |
| __asm__ __volatile__("ld [%0], %%g6\n\t" |
| : : "r" (¤t_set[cpuid]) |
| : "memory" /* paranoid */); |
| |
| /* Attach to the address space of init_task. */ |
| atomic_inc(&init_mm.mm_count); |
| current->active_mm = &init_mm; |
| |
| while(!smp_commenced) |
| barrier(); |
| |
| local_flush_cache_all(); |
| local_flush_tlb_all(); |
| |
| local_irq_enable(); |
| } |
| |
| extern void init_IRQ(void); |
| extern void cpu_panic(void); |
| |
| /* |
| * Cycle through the processors asking the PROM to start each one. |
| */ |
| |
| extern struct linux_prom_registers smp_penguin_ctable; |
| extern unsigned long trapbase_cpu1[]; |
| extern unsigned long trapbase_cpu2[]; |
| extern unsigned long trapbase_cpu3[]; |
| |
| void __init smp4m_boot_cpus(void) |
| { |
| int cpucount = 0; |
| int i, mid; |
| |
| printk("Entering SMP Mode...\n"); |
| |
| local_irq_enable(); |
| cpus_clear(cpu_present_map); |
| |
| for (i = 0; !cpu_find_by_instance(i, NULL, &mid); i++) |
| cpu_set(mid, cpu_present_map); |
| |
| for(i=0; i < NR_CPUS; i++) { |
| __cpu_number_map[i] = -1; |
| __cpu_logical_map[i] = -1; |
| } |
| |
| __cpu_number_map[boot_cpu_id] = 0; |
| __cpu_logical_map[0] = boot_cpu_id; |
| current_thread_info()->cpu = boot_cpu_id; |
| |
| smp_store_cpu_info(boot_cpu_id); |
| set_irq_udt(boot_cpu_id); |
| smp_setup_percpu_timer(); |
| local_flush_cache_all(); |
| if(cpu_find_by_instance(1, NULL, NULL)) |
| return; /* Not an MP box. */ |
| for(i = 0; i < NR_CPUS; i++) { |
| if(i == boot_cpu_id) |
| continue; |
| |
| if (cpu_isset(i, cpu_present_map)) { |
| extern unsigned long sun4m_cpu_startup; |
| unsigned long *entry = &sun4m_cpu_startup; |
| struct task_struct *p; |
| int timeout; |
| |
| /* Cook up an idler for this guy. */ |
| p = fork_idle(i); |
| cpucount++; |
| current_set[i] = task_thread_info(p); |
| /* See trampoline.S for details... */ |
| entry += ((i-1) * 3); |
| |
| /* |
| * Initialize the contexts table |
| * Since the call to prom_startcpu() trashes the structure, |
| * we need to re-initialize it for each cpu |
| */ |
| smp_penguin_ctable.which_io = 0; |
| smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys; |
| smp_penguin_ctable.reg_size = 0; |
| |
| /* whirrr, whirrr, whirrrrrrrrr... */ |
| printk("Starting CPU %d at %p\n", i, entry); |
| local_flush_cache_all(); |
| prom_startcpu(cpu_data(i).prom_node, |
| &smp_penguin_ctable, 0, (char *)entry); |
| |
| /* wheee... it's going... */ |
| for(timeout = 0; timeout < 10000; timeout++) { |
| if(cpu_callin_map[i]) |
| break; |
| udelay(200); |
| } |
| if(cpu_callin_map[i]) { |
| /* Another "Red Snapper". */ |
| __cpu_number_map[i] = i; |
| __cpu_logical_map[i] = i; |
| } else { |
| cpucount--; |
| printk("Processor %d is stuck.\n", i); |
| } |
| } |
| if(!(cpu_callin_map[i])) { |
| cpu_clear(i, cpu_present_map); |
| __cpu_number_map[i] = -1; |
| } |
| } |
| local_flush_cache_all(); |
| if(cpucount == 0) { |
| printk("Error: only one Processor found.\n"); |
| cpu_present_map = cpumask_of_cpu(smp_processor_id()); |
| } else { |
| unsigned long bogosum = 0; |
| for(i = 0; i < NR_CPUS; i++) { |
| if (cpu_isset(i, cpu_present_map)) |
| bogosum += cpu_data(i).udelay_val; |
| } |
| printk("Total of %d Processors activated (%lu.%02lu BogoMIPS).\n", |
| cpucount + 1, |
| bogosum/(500000/HZ), |
| (bogosum/(5000/HZ))%100); |
| smp_activated = 1; |
| smp_num_cpus = cpucount + 1; |
| } |
| |
| /* Free unneeded trap tables */ |
| if (!cpu_isset(i, cpu_present_map)) { |
| ClearPageReserved(virt_to_page(trapbase_cpu1)); |
| init_page_count(virt_to_page(trapbase_cpu1)); |
| free_page((unsigned long)trapbase_cpu1); |
| totalram_pages++; |
| num_physpages++; |
| } |
| if (!cpu_isset(2, cpu_present_map)) { |
| ClearPageReserved(virt_to_page(trapbase_cpu2)); |
| init_page_count(virt_to_page(trapbase_cpu2)); |
| free_page((unsigned long)trapbase_cpu2); |
| totalram_pages++; |
| num_physpages++; |
| } |
| if (!cpu_isset(3, cpu_present_map)) { |
| ClearPageReserved(virt_to_page(trapbase_cpu3)); |
| init_page_count(virt_to_page(trapbase_cpu3)); |
| free_page((unsigned long)trapbase_cpu3); |
| totalram_pages++; |
| num_physpages++; |
| } |
| |
| /* Ok, they are spinning and ready to go. */ |
| smp_processors_ready = 1; |
| } |
| |
| /* At each hardware IRQ, we get this called to forward IRQ reception |
| * to the next processor. The caller must disable the IRQ level being |
| * serviced globally so that there are no double interrupts received. |
| * |
| * XXX See sparc64 irq.c. |
| */ |
| void smp4m_irq_rotate(int cpu) |
| { |
| } |
| |
| /* Cross calls, in order to work efficiently and atomically do all |
| * the message passing work themselves, only stopcpu and reschedule |
| * messages come through here. |
| */ |
| void smp4m_message_pass(int target, int msg, unsigned long data, int wait) |
| { |
| static unsigned long smp_cpu_in_msg[NR_CPUS]; |
| cpumask_t mask; |
| int me = smp_processor_id(); |
| int irq, i; |
| |
| if(msg == MSG_RESCHEDULE) { |
| irq = IRQ_RESCHEDULE; |
| |
| if(smp_cpu_in_msg[me]) |
| return; |
| } else if(msg == MSG_STOP_CPU) { |
| irq = IRQ_STOP_CPU; |
| } else { |
| goto barf; |
| } |
| |
| smp_cpu_in_msg[me]++; |
| if(target == MSG_ALL_BUT_SELF || target == MSG_ALL) { |
| mask = cpu_present_map; |
| if(target == MSG_ALL_BUT_SELF) |
| cpu_clear(me, mask); |
| for(i = 0; i < 4; i++) { |
| if (cpu_isset(i, mask)) |
| set_cpu_int(i, irq); |
| } |
| } else { |
| set_cpu_int(target, irq); |
| } |
| smp_cpu_in_msg[me]--; |
| |
| return; |
| barf: |
| printk("Yeeee, trying to send SMP msg(%d) on cpu %d\n", msg, me); |
| panic("Bogon SMP message pass."); |
| } |
| |
| static struct smp_funcall { |
| smpfunc_t func; |
| unsigned long arg1; |
| unsigned long arg2; |
| unsigned long arg3; |
| unsigned long arg4; |
| unsigned long arg5; |
| unsigned long processors_in[NR_CPUS]; /* Set when ipi entered. */ |
| unsigned long processors_out[NR_CPUS]; /* Set when ipi exited. */ |
| } ccall_info; |
| |
| static DEFINE_SPINLOCK(cross_call_lock); |
| |
| /* Cross calls must be serialized, at least currently. */ |
| void smp4m_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2, |
| unsigned long arg3, unsigned long arg4, unsigned long arg5) |
| { |
| if(smp_processors_ready) { |
| register int ncpus = smp_num_cpus; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cross_call_lock, flags); |
| |
| /* Init function glue. */ |
| ccall_info.func = func; |
| ccall_info.arg1 = arg1; |
| ccall_info.arg2 = arg2; |
| ccall_info.arg3 = arg3; |
| ccall_info.arg4 = arg4; |
| ccall_info.arg5 = arg5; |
| |
| /* Init receive/complete mapping, plus fire the IPI's off. */ |
| { |
| cpumask_t mask = cpu_present_map; |
| register int i; |
| |
| cpu_clear(smp_processor_id(), mask); |
| for(i = 0; i < ncpus; i++) { |
| if (cpu_isset(i, mask)) { |
| ccall_info.processors_in[i] = 0; |
| ccall_info.processors_out[i] = 0; |
| set_cpu_int(i, IRQ_CROSS_CALL); |
| } else { |
| ccall_info.processors_in[i] = 1; |
| ccall_info.processors_out[i] = 1; |
| } |
| } |
| } |
| |
| { |
| register int i; |
| |
| i = 0; |
| do { |
| while(!ccall_info.processors_in[i]) |
| barrier(); |
| } while(++i < ncpus); |
| |
| i = 0; |
| do { |
| while(!ccall_info.processors_out[i]) |
| barrier(); |
| } while(++i < ncpus); |
| } |
| |
| spin_unlock_irqrestore(&cross_call_lock, flags); |
| } |
| } |
| |
| /* Running cross calls. */ |
| void smp4m_cross_call_irq(void) |
| { |
| int i = smp_processor_id(); |
| |
| ccall_info.processors_in[i] = 1; |
| ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, |
| ccall_info.arg4, ccall_info.arg5); |
| ccall_info.processors_out[i] = 1; |
| } |
| |
| void smp4m_percpu_timer_interrupt(struct pt_regs *regs) |
| { |
| int cpu = smp_processor_id(); |
| |
| clear_profile_irq(cpu); |
| |
| profile_tick(CPU_PROFILING, regs); |
| |
| if(!--prof_counter(cpu)) { |
| int user = user_mode(regs); |
| |
| irq_enter(); |
| update_process_times(user); |
| irq_exit(); |
| |
| prof_counter(cpu) = prof_multiplier(cpu); |
| } |
| } |
| |
| extern unsigned int lvl14_resolution; |
| |
| static void __init smp_setup_percpu_timer(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| prof_counter(cpu) = prof_multiplier(cpu) = 1; |
| load_profile_irq(cpu, lvl14_resolution); |
| |
| if(cpu == boot_cpu_id) |
| enable_pil_irq(14); |
| } |
| |
| void __init smp4m_blackbox_id(unsigned *addr) |
| { |
| int rd = *addr & 0x3e000000; |
| int rs1 = rd >> 11; |
| |
| addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ |
| addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */ |
| addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */ |
| } |
| |
| void __init smp4m_blackbox_current(unsigned *addr) |
| { |
| int rd = *addr & 0x3e000000; |
| int rs1 = rd >> 11; |
| |
| addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ |
| addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */ |
| addr[4] = 0x8008200c | rd | rs1; /* and reg, 3, reg */ |
| } |
| |
| void __init sun4m_init_smp(void) |
| { |
| BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4m_blackbox_id); |
| BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current); |
| BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(smp_message_pass, smp4m_message_pass, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM); |
| } |