| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_mount.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_btree.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_inode.h" |
| #include "xfs_dinode.h" |
| #include "xfs_error.h" |
| #include "xfs_mru_cache.h" |
| #include "xfs_filestream.h" |
| #include "xfs_vnodeops.h" |
| #include "xfs_utils.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_rw.h" |
| |
| #include <linux/kthread.h> |
| #include <linux/freezer.h> |
| |
| /* |
| * Sync all the inodes in the given AG according to the |
| * direction given by the flags. |
| */ |
| STATIC int |
| xfs_sync_inodes_ag( |
| xfs_mount_t *mp, |
| int ag, |
| int flags) |
| { |
| xfs_perag_t *pag = &mp->m_perag[ag]; |
| int nr_found; |
| uint32_t first_index = 0; |
| int error = 0; |
| int last_error = 0; |
| int fflag = XFS_B_ASYNC; |
| |
| if (flags & SYNC_DELWRI) |
| fflag = XFS_B_DELWRI; |
| if (flags & SYNC_WAIT) |
| fflag = 0; /* synchronous overrides all */ |
| |
| do { |
| struct inode *inode; |
| xfs_inode_t *ip = NULL; |
| int lock_flags = XFS_ILOCK_SHARED; |
| |
| /* |
| * use a gang lookup to find the next inode in the tree |
| * as the tree is sparse and a gang lookup walks to find |
| * the number of objects requested. |
| */ |
| read_lock(&pag->pag_ici_lock); |
| nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, |
| (void**)&ip, first_index, 1); |
| |
| if (!nr_found) { |
| read_unlock(&pag->pag_ici_lock); |
| break; |
| } |
| |
| /* |
| * Update the index for the next lookup. Catch overflows |
| * into the next AG range which can occur if we have inodes |
| * in the last block of the AG and we are currently |
| * pointing to the last inode. |
| */ |
| first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); |
| if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) { |
| read_unlock(&pag->pag_ici_lock); |
| break; |
| } |
| |
| /* nothing to sync during shutdown */ |
| if (XFS_FORCED_SHUTDOWN(mp)) { |
| read_unlock(&pag->pag_ici_lock); |
| return 0; |
| } |
| |
| /* |
| * If we can't get a reference on the inode, it must be |
| * in reclaim. Leave it for the reclaim code to flush. |
| */ |
| inode = VFS_I(ip); |
| if (!igrab(inode)) { |
| read_unlock(&pag->pag_ici_lock); |
| continue; |
| } |
| read_unlock(&pag->pag_ici_lock); |
| |
| /* avoid new or bad inodes */ |
| if (is_bad_inode(inode) || |
| xfs_iflags_test(ip, XFS_INEW)) { |
| IRELE(ip); |
| continue; |
| } |
| |
| /* |
| * If we have to flush data or wait for I/O completion |
| * we need to hold the iolock. |
| */ |
| if ((flags & SYNC_DELWRI) && VN_DIRTY(inode)) { |
| xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| lock_flags |= XFS_IOLOCK_SHARED; |
| error = xfs_flush_pages(ip, 0, -1, fflag, FI_NONE); |
| if (flags & SYNC_IOWAIT) |
| xfs_ioend_wait(ip); |
| } |
| xfs_ilock(ip, XFS_ILOCK_SHARED); |
| |
| if ((flags & SYNC_ATTR) && !xfs_inode_clean(ip)) { |
| if (flags & SYNC_WAIT) { |
| xfs_iflock(ip); |
| if (!xfs_inode_clean(ip)) |
| error = xfs_iflush(ip, XFS_IFLUSH_SYNC); |
| else |
| xfs_ifunlock(ip); |
| } else if (xfs_iflock_nowait(ip)) { |
| if (!xfs_inode_clean(ip)) |
| error = xfs_iflush(ip, XFS_IFLUSH_DELWRI); |
| else |
| xfs_ifunlock(ip); |
| } |
| } |
| xfs_iput(ip, lock_flags); |
| |
| if (error) |
| last_error = error; |
| /* |
| * bail out if the filesystem is corrupted. |
| */ |
| if (error == EFSCORRUPTED) |
| return XFS_ERROR(error); |
| |
| } while (nr_found); |
| |
| return last_error; |
| } |
| |
| int |
| xfs_sync_inodes( |
| xfs_mount_t *mp, |
| int flags) |
| { |
| int error; |
| int last_error; |
| int i; |
| int lflags = XFS_LOG_FORCE; |
| |
| if (mp->m_flags & XFS_MOUNT_RDONLY) |
| return 0; |
| error = 0; |
| last_error = 0; |
| |
| if (flags & SYNC_WAIT) |
| lflags |= XFS_LOG_SYNC; |
| |
| for (i = 0; i < mp->m_sb.sb_agcount; i++) { |
| if (!mp->m_perag[i].pag_ici_init) |
| continue; |
| error = xfs_sync_inodes_ag(mp, i, flags); |
| if (error) |
| last_error = error; |
| if (error == EFSCORRUPTED) |
| break; |
| } |
| if (flags & SYNC_DELWRI) |
| xfs_log_force(mp, 0, lflags); |
| |
| return XFS_ERROR(last_error); |
| } |
| |
| STATIC int |
| xfs_commit_dummy_trans( |
| struct xfs_mount *mp, |
| uint log_flags) |
| { |
| struct xfs_inode *ip = mp->m_rootip; |
| struct xfs_trans *tp; |
| int error; |
| |
| /* |
| * Put a dummy transaction in the log to tell recovery |
| * that all others are OK. |
| */ |
| tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1); |
| error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0); |
| if (error) { |
| xfs_trans_cancel(tp, 0); |
| return error; |
| } |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| xfs_trans_ihold(tp, ip); |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| /* XXX(hch): ignoring the error here.. */ |
| error = xfs_trans_commit(tp, 0); |
| |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| |
| xfs_log_force(mp, 0, log_flags); |
| return 0; |
| } |
| |
| int |
| xfs_sync_fsdata( |
| struct xfs_mount *mp, |
| int flags) |
| { |
| struct xfs_buf *bp; |
| struct xfs_buf_log_item *bip; |
| int error = 0; |
| |
| /* |
| * If this is xfssyncd() then only sync the superblock if we can |
| * lock it without sleeping and it is not pinned. |
| */ |
| if (flags & SYNC_BDFLUSH) { |
| ASSERT(!(flags & SYNC_WAIT)); |
| |
| bp = xfs_getsb(mp, XFS_BUF_TRYLOCK); |
| if (!bp) |
| goto out; |
| |
| bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *); |
| if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp)) |
| goto out_brelse; |
| } else { |
| bp = xfs_getsb(mp, 0); |
| |
| /* |
| * If the buffer is pinned then push on the log so we won't |
| * get stuck waiting in the write for someone, maybe |
| * ourselves, to flush the log. |
| * |
| * Even though we just pushed the log above, we did not have |
| * the superblock buffer locked at that point so it can |
| * become pinned in between there and here. |
| */ |
| if (XFS_BUF_ISPINNED(bp)) |
| xfs_log_force(mp, 0, XFS_LOG_FORCE); |
| } |
| |
| |
| if (flags & SYNC_WAIT) |
| XFS_BUF_UNASYNC(bp); |
| else |
| XFS_BUF_ASYNC(bp); |
| |
| return xfs_bwrite(mp, bp); |
| |
| out_brelse: |
| xfs_buf_relse(bp); |
| out: |
| return error; |
| } |
| |
| /* |
| * When remounting a filesystem read-only or freezing the filesystem, we have |
| * two phases to execute. This first phase is syncing the data before we |
| * quiesce the filesystem, and the second is flushing all the inodes out after |
| * we've waited for all the transactions created by the first phase to |
| * complete. The second phase ensures that the inodes are written to their |
| * location on disk rather than just existing in transactions in the log. This |
| * means after a quiesce there is no log replay required to write the inodes to |
| * disk (this is the main difference between a sync and a quiesce). |
| */ |
| /* |
| * First stage of freeze - no writers will make progress now we are here, |
| * so we flush delwri and delalloc buffers here, then wait for all I/O to |
| * complete. Data is frozen at that point. Metadata is not frozen, |
| * transactions can still occur here so don't bother flushing the buftarg |
| * because it'll just get dirty again. |
| */ |
| int |
| xfs_quiesce_data( |
| struct xfs_mount *mp) |
| { |
| int error; |
| |
| /* push non-blocking */ |
| xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH); |
| XFS_QM_DQSYNC(mp, SYNC_BDFLUSH); |
| xfs_filestream_flush(mp); |
| |
| /* push and block */ |
| xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT); |
| XFS_QM_DQSYNC(mp, SYNC_WAIT); |
| |
| /* write superblock and hoover up shutdown errors */ |
| error = xfs_sync_fsdata(mp, 0); |
| |
| /* flush data-only devices */ |
| if (mp->m_rtdev_targp) |
| XFS_bflush(mp->m_rtdev_targp); |
| |
| return error; |
| } |
| |
| STATIC void |
| xfs_quiesce_fs( |
| struct xfs_mount *mp) |
| { |
| int count = 0, pincount; |
| |
| xfs_flush_buftarg(mp->m_ddev_targp, 0); |
| xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC); |
| |
| /* |
| * This loop must run at least twice. The first instance of the loop |
| * will flush most meta data but that will generate more meta data |
| * (typically directory updates). Which then must be flushed and |
| * logged before we can write the unmount record. |
| */ |
| do { |
| xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT); |
| pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1); |
| if (!pincount) { |
| delay(50); |
| count++; |
| } |
| } while (count < 2); |
| } |
| |
| /* |
| * Second stage of a quiesce. The data is already synced, now we have to take |
| * care of the metadata. New transactions are already blocked, so we need to |
| * wait for any remaining transactions to drain out before proceding. |
| */ |
| void |
| xfs_quiesce_attr( |
| struct xfs_mount *mp) |
| { |
| int error = 0; |
| |
| /* wait for all modifications to complete */ |
| while (atomic_read(&mp->m_active_trans) > 0) |
| delay(100); |
| |
| /* flush inodes and push all remaining buffers out to disk */ |
| xfs_quiesce_fs(mp); |
| |
| ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0); |
| |
| /* Push the superblock and write an unmount record */ |
| error = xfs_log_sbcount(mp, 1); |
| if (error) |
| xfs_fs_cmn_err(CE_WARN, mp, |
| "xfs_attr_quiesce: failed to log sb changes. " |
| "Frozen image may not be consistent."); |
| xfs_log_unmount_write(mp); |
| xfs_unmountfs_writesb(mp); |
| } |
| |
| /* |
| * Enqueue a work item to be picked up by the vfs xfssyncd thread. |
| * Doing this has two advantages: |
| * - It saves on stack space, which is tight in certain situations |
| * - It can be used (with care) as a mechanism to avoid deadlocks. |
| * Flushing while allocating in a full filesystem requires both. |
| */ |
| STATIC void |
| xfs_syncd_queue_work( |
| struct xfs_mount *mp, |
| void *data, |
| void (*syncer)(struct xfs_mount *, void *)) |
| { |
| struct bhv_vfs_sync_work *work; |
| |
| work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP); |
| INIT_LIST_HEAD(&work->w_list); |
| work->w_syncer = syncer; |
| work->w_data = data; |
| work->w_mount = mp; |
| spin_lock(&mp->m_sync_lock); |
| list_add_tail(&work->w_list, &mp->m_sync_list); |
| spin_unlock(&mp->m_sync_lock); |
| wake_up_process(mp->m_sync_task); |
| } |
| |
| /* |
| * Flush delayed allocate data, attempting to free up reserved space |
| * from existing allocations. At this point a new allocation attempt |
| * has failed with ENOSPC and we are in the process of scratching our |
| * heads, looking about for more room... |
| */ |
| STATIC void |
| xfs_flush_inode_work( |
| struct xfs_mount *mp, |
| void *arg) |
| { |
| struct inode *inode = arg; |
| filemap_flush(inode->i_mapping); |
| iput(inode); |
| } |
| |
| void |
| xfs_flush_inode( |
| xfs_inode_t *ip) |
| { |
| struct inode *inode = VFS_I(ip); |
| |
| igrab(inode); |
| xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work); |
| delay(msecs_to_jiffies(500)); |
| } |
| |
| /* |
| * This is the "bigger hammer" version of xfs_flush_inode_work... |
| * (IOW, "If at first you don't succeed, use a Bigger Hammer"). |
| */ |
| STATIC void |
| xfs_flush_device_work( |
| struct xfs_mount *mp, |
| void *arg) |
| { |
| struct inode *inode = arg; |
| sync_blockdev(mp->m_super->s_bdev); |
| iput(inode); |
| } |
| |
| void |
| xfs_flush_device( |
| xfs_inode_t *ip) |
| { |
| struct inode *inode = VFS_I(ip); |
| |
| igrab(inode); |
| xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work); |
| delay(msecs_to_jiffies(500)); |
| xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC); |
| } |
| |
| /* |
| * Every sync period we need to unpin all items, reclaim inodes, sync |
| * quota and write out the superblock. We might need to cover the log |
| * to indicate it is idle. |
| */ |
| STATIC void |
| xfs_sync_worker( |
| struct xfs_mount *mp, |
| void *unused) |
| { |
| int error; |
| |
| if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { |
| xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); |
| xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC); |
| /* dgc: errors ignored here */ |
| error = XFS_QM_DQSYNC(mp, SYNC_BDFLUSH); |
| error = xfs_sync_fsdata(mp, SYNC_BDFLUSH); |
| if (xfs_log_need_covered(mp)) |
| error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE); |
| } |
| mp->m_sync_seq++; |
| wake_up(&mp->m_wait_single_sync_task); |
| } |
| |
| STATIC int |
| xfssyncd( |
| void *arg) |
| { |
| struct xfs_mount *mp = arg; |
| long timeleft; |
| bhv_vfs_sync_work_t *work, *n; |
| LIST_HEAD (tmp); |
| |
| set_freezable(); |
| timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); |
| for (;;) { |
| timeleft = schedule_timeout_interruptible(timeleft); |
| /* swsusp */ |
| try_to_freeze(); |
| if (kthread_should_stop() && list_empty(&mp->m_sync_list)) |
| break; |
| |
| spin_lock(&mp->m_sync_lock); |
| /* |
| * We can get woken by laptop mode, to do a sync - |
| * that's the (only!) case where the list would be |
| * empty with time remaining. |
| */ |
| if (!timeleft || list_empty(&mp->m_sync_list)) { |
| if (!timeleft) |
| timeleft = xfs_syncd_centisecs * |
| msecs_to_jiffies(10); |
| INIT_LIST_HEAD(&mp->m_sync_work.w_list); |
| list_add_tail(&mp->m_sync_work.w_list, |
| &mp->m_sync_list); |
| } |
| list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list) |
| list_move(&work->w_list, &tmp); |
| spin_unlock(&mp->m_sync_lock); |
| |
| list_for_each_entry_safe(work, n, &tmp, w_list) { |
| (*work->w_syncer)(mp, work->w_data); |
| list_del(&work->w_list); |
| if (work == &mp->m_sync_work) |
| continue; |
| kmem_free(work); |
| } |
| } |
| |
| return 0; |
| } |
| |
| int |
| xfs_syncd_init( |
| struct xfs_mount *mp) |
| { |
| mp->m_sync_work.w_syncer = xfs_sync_worker; |
| mp->m_sync_work.w_mount = mp; |
| mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd"); |
| if (IS_ERR(mp->m_sync_task)) |
| return -PTR_ERR(mp->m_sync_task); |
| return 0; |
| } |
| |
| void |
| xfs_syncd_stop( |
| struct xfs_mount *mp) |
| { |
| kthread_stop(mp->m_sync_task); |
| } |
| |
| int |
| xfs_reclaim_inode( |
| xfs_inode_t *ip, |
| int locked, |
| int sync_mode) |
| { |
| xfs_perag_t *pag = xfs_get_perag(ip->i_mount, ip->i_ino); |
| |
| /* The hash lock here protects a thread in xfs_iget_core from |
| * racing with us on linking the inode back with a vnode. |
| * Once we have the XFS_IRECLAIM flag set it will not touch |
| * us. |
| */ |
| write_lock(&pag->pag_ici_lock); |
| spin_lock(&ip->i_flags_lock); |
| if (__xfs_iflags_test(ip, XFS_IRECLAIM) || |
| !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) { |
| spin_unlock(&ip->i_flags_lock); |
| write_unlock(&pag->pag_ici_lock); |
| if (locked) { |
| xfs_ifunlock(ip); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| } |
| return 1; |
| } |
| __xfs_iflags_set(ip, XFS_IRECLAIM); |
| spin_unlock(&ip->i_flags_lock); |
| write_unlock(&pag->pag_ici_lock); |
| xfs_put_perag(ip->i_mount, pag); |
| |
| /* |
| * If the inode is still dirty, then flush it out. If the inode |
| * is not in the AIL, then it will be OK to flush it delwri as |
| * long as xfs_iflush() does not keep any references to the inode. |
| * We leave that decision up to xfs_iflush() since it has the |
| * knowledge of whether it's OK to simply do a delwri flush of |
| * the inode or whether we need to wait until the inode is |
| * pulled from the AIL. |
| * We get the flush lock regardless, though, just to make sure |
| * we don't free it while it is being flushed. |
| */ |
| if (!locked) { |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| xfs_iflock(ip); |
| } |
| |
| /* |
| * In the case of a forced shutdown we rely on xfs_iflush() to |
| * wait for the inode to be unpinned before returning an error. |
| */ |
| if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) { |
| /* synchronize with xfs_iflush_done */ |
| xfs_iflock(ip); |
| xfs_ifunlock(ip); |
| } |
| |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| xfs_ireclaim(ip); |
| return 0; |
| } |
| |
| /* |
| * We set the inode flag atomically with the radix tree tag. |
| * Once we get tag lookups on the radix tree, this inode flag |
| * can go away. |
| */ |
| void |
| xfs_inode_set_reclaim_tag( |
| xfs_inode_t *ip) |
| { |
| xfs_mount_t *mp = ip->i_mount; |
| xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino); |
| |
| read_lock(&pag->pag_ici_lock); |
| spin_lock(&ip->i_flags_lock); |
| radix_tree_tag_set(&pag->pag_ici_root, |
| XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); |
| __xfs_iflags_set(ip, XFS_IRECLAIMABLE); |
| spin_unlock(&ip->i_flags_lock); |
| read_unlock(&pag->pag_ici_lock); |
| xfs_put_perag(mp, pag); |
| } |
| |
| void |
| __xfs_inode_clear_reclaim_tag( |
| xfs_mount_t *mp, |
| xfs_perag_t *pag, |
| xfs_inode_t *ip) |
| { |
| radix_tree_tag_clear(&pag->pag_ici_root, |
| XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); |
| } |
| |
| void |
| xfs_inode_clear_reclaim_tag( |
| xfs_inode_t *ip) |
| { |
| xfs_mount_t *mp = ip->i_mount; |
| xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino); |
| |
| read_lock(&pag->pag_ici_lock); |
| spin_lock(&ip->i_flags_lock); |
| __xfs_inode_clear_reclaim_tag(mp, pag, ip); |
| spin_unlock(&ip->i_flags_lock); |
| read_unlock(&pag->pag_ici_lock); |
| xfs_put_perag(mp, pag); |
| } |
| |
| |
| STATIC void |
| xfs_reclaim_inodes_ag( |
| xfs_mount_t *mp, |
| int ag, |
| int noblock, |
| int mode) |
| { |
| xfs_inode_t *ip = NULL; |
| xfs_perag_t *pag = &mp->m_perag[ag]; |
| int nr_found; |
| uint32_t first_index; |
| int skipped; |
| |
| restart: |
| first_index = 0; |
| skipped = 0; |
| do { |
| /* |
| * use a gang lookup to find the next inode in the tree |
| * as the tree is sparse and a gang lookup walks to find |
| * the number of objects requested. |
| */ |
| read_lock(&pag->pag_ici_lock); |
| nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, |
| (void**)&ip, first_index, 1, |
| XFS_ICI_RECLAIM_TAG); |
| |
| if (!nr_found) { |
| read_unlock(&pag->pag_ici_lock); |
| break; |
| } |
| |
| /* |
| * Update the index for the next lookup. Catch overflows |
| * into the next AG range which can occur if we have inodes |
| * in the last block of the AG and we are currently |
| * pointing to the last inode. |
| */ |
| first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); |
| if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) { |
| read_unlock(&pag->pag_ici_lock); |
| break; |
| } |
| |
| /* ignore if already under reclaim */ |
| if (xfs_iflags_test(ip, XFS_IRECLAIM)) { |
| read_unlock(&pag->pag_ici_lock); |
| continue; |
| } |
| |
| if (noblock) { |
| if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { |
| read_unlock(&pag->pag_ici_lock); |
| continue; |
| } |
| if (xfs_ipincount(ip) || |
| !xfs_iflock_nowait(ip)) { |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| read_unlock(&pag->pag_ici_lock); |
| continue; |
| } |
| } |
| read_unlock(&pag->pag_ici_lock); |
| |
| /* |
| * hmmm - this is an inode already in reclaim. Do |
| * we even bother catching it here? |
| */ |
| if (xfs_reclaim_inode(ip, noblock, mode)) |
| skipped++; |
| } while (nr_found); |
| |
| if (skipped) { |
| delay(1); |
| goto restart; |
| } |
| return; |
| |
| } |
| |
| int |
| xfs_reclaim_inodes( |
| xfs_mount_t *mp, |
| int noblock, |
| int mode) |
| { |
| int i; |
| |
| for (i = 0; i < mp->m_sb.sb_agcount; i++) { |
| if (!mp->m_perag[i].pag_ici_init) |
| continue; |
| xfs_reclaim_inodes_ag(mp, i, noblock, mode); |
| } |
| return 0; |
| } |
| |
| |