| /* |
| * drivers/mtd/nand/rtc_from4.c |
| * |
| * Copyright (C) 2004 Red Hat, Inc. |
| * |
| * Derived from drivers/mtd/nand/spia.c |
| * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) |
| * |
| * $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Overview: |
| * This is a device driver for the AG-AND flash device found on the |
| * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4), |
| * which utilizes the Renesas HN29V1G91T-30 part. |
| * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/rslib.h> |
| #include <linux/module.h> |
| #include <linux/mtd/compatmac.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/partitions.h> |
| #include <asm/io.h> |
| |
| /* |
| * MTD structure for Renesas board |
| */ |
| static struct mtd_info *rtc_from4_mtd = NULL; |
| |
| #define RTC_FROM4_MAX_CHIPS 2 |
| |
| /* HS77x9 processor register defines */ |
| #define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60)) |
| #define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62)) |
| #define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64)) |
| #define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66)) |
| #define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68)) |
| #define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C)) |
| #define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80)) |
| |
| /* |
| * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor) |
| */ |
| /* Address where flash is mapped */ |
| #define RTC_FROM4_FIO_BASE 0x14000000 |
| |
| /* CLE and ALE are tied to address lines 5 & 4, respectively */ |
| #define RTC_FROM4_CLE (1 << 5) |
| #define RTC_FROM4_ALE (1 << 4) |
| |
| /* address lines A24-A22 used for chip selection */ |
| #define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000) |
| #define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000) |
| #define RTC_FROM4_NAND_ADDR_FPGA (0x01000000) |
| /* mask address lines A24-A22 used for chip selection */ |
| #define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA) |
| |
| /* FPGA status register for checking device ready (bit zero) */ |
| #define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002) |
| #define RTC_FROM4_DEVICE_READY 0x0001 |
| |
| /* FPGA Reed-Solomon ECC Control register */ |
| |
| #define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050) |
| #define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7) |
| #define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6) |
| #define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5) |
| |
| /* FPGA Reed-Solomon ECC code base */ |
| #define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060) |
| #define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080) |
| |
| /* FPGA Reed-Solomon ECC check register */ |
| #define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070) |
| #define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7) |
| |
| #define ERR_STAT_ECC_AVAILABLE 0x20 |
| |
| /* Undefine for software ECC */ |
| #define RTC_FROM4_HWECC 1 |
| |
| /* Define as 1 for no virtual erase blocks (in JFFS2) */ |
| #define RTC_FROM4_NO_VIRTBLOCKS 0 |
| |
| /* |
| * Module stuff |
| */ |
| static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE); |
| |
| static const struct mtd_partition partition_info[] = { |
| { |
| .name = "Renesas flash partition 1", |
| .offset = 0, |
| .size = MTDPART_SIZ_FULL}, |
| }; |
| |
| #define NUM_PARTITIONS 1 |
| |
| /* |
| * hardware specific flash bbt decriptors |
| * Note: this is to allow debugging by disabling |
| * NAND_BBT_CREATE and/or NAND_BBT_WRITE |
| * |
| */ |
| static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; |
| static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; |
| |
| static struct nand_bbt_descr rtc_from4_bbt_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 40, |
| .len = 4, |
| .veroffs = 44, |
| .maxblocks = 4, |
| .pattern = bbt_pattern |
| }; |
| |
| static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 40, |
| .len = 4, |
| .veroffs = 44, |
| .maxblocks = 4, |
| .pattern = mirror_pattern |
| }; |
| |
| #ifdef RTC_FROM4_HWECC |
| |
| /* the Reed Solomon control structure */ |
| static struct rs_control *rs_decoder; |
| |
| /* |
| * hardware specific Out Of Band information |
| */ |
| static struct nand_ecclayout rtc_from4_nand_oobinfo = { |
| .eccbytes = 32, |
| .eccpos = { |
| 0, 1, 2, 3, 4, 5, 6, 7, |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31}, |
| .oobfree = {{32, 32}} |
| }; |
| |
| /* Aargh. I missed the reversed bit order, when I |
| * was talking to Renesas about the FPGA. |
| * |
| * The table is used for bit reordering and inversion |
| * of the ecc byte which we get from the FPGA |
| */ |
| static uint8_t revbits[256] = { |
| 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, |
| 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, |
| 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, |
| 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, |
| 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, |
| 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, |
| 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, |
| 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, |
| 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, |
| 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, |
| 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, |
| 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, |
| 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, |
| 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, |
| 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, |
| 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, |
| 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, |
| 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, |
| 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, |
| 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, |
| 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, |
| 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, |
| 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, |
| 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, |
| 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, |
| 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, |
| 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, |
| 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, |
| 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, |
| 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, |
| 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, |
| 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff, |
| }; |
| |
| #endif |
| |
| /* |
| * rtc_from4_hwcontrol - hardware specific access to control-lines |
| * @mtd: MTD device structure |
| * @cmd: hardware control command |
| * |
| * Address lines (A5 and A4) are used to control Command and Address Latch |
| * Enable on this board, so set the read/write address appropriately. |
| * |
| * Chip Enable is also controlled by the Chip Select (CS5) and |
| * Address lines (A24-A22), so no action is required here. |
| * |
| */ |
| static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd, |
| unsigned int ctrl) |
| { |
| struct nand_chip *chip = (mtd->priv); |
| |
| if (cmd == NAND_CMD_NONE) |
| return; |
| |
| if (ctrl & NAND_CLE) |
| writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE); |
| else |
| writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE); |
| } |
| |
| /* |
| * rtc_from4_nand_select_chip - hardware specific chip select |
| * @mtd: MTD device structure |
| * @chip: Chip to select (0 == slot 3, 1 == slot 4) |
| * |
| * The chip select is based on address lines A24-A22. |
| * This driver uses flash slots 3 and 4 (A23-A22). |
| * |
| */ |
| static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct nand_chip *this = mtd->priv; |
| |
| this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK); |
| this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK); |
| |
| switch (chip) { |
| |
| case 0: /* select slot 3 chip */ |
| this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3); |
| this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3); |
| break; |
| case 1: /* select slot 4 chip */ |
| this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4); |
| this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4); |
| break; |
| |
| } |
| } |
| |
| /* |
| * rtc_from4_nand_device_ready - hardware specific ready/busy check |
| * @mtd: MTD device structure |
| * |
| * This board provides the Ready/Busy state in the status register |
| * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal. |
| * |
| */ |
| static int rtc_from4_nand_device_ready(struct mtd_info *mtd) |
| { |
| unsigned short status; |
| |
| status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR)); |
| |
| return (status & RTC_FROM4_DEVICE_READY); |
| |
| } |
| |
| /* |
| * deplete - code to perform device recovery in case there was a power loss |
| * @mtd: MTD device structure |
| * @chip: Chip to select (0 == slot 3, 1 == slot 4) |
| * |
| * If there was a sudden loss of power during an erase operation, a |
| * "device recovery" operation must be performed when power is restored |
| * to ensure correct operation. This routine performs the required steps |
| * for the requested chip. |
| * |
| * See page 86 of the data sheet for details. |
| * |
| */ |
| static void deplete(struct mtd_info *mtd, int chip) |
| { |
| struct nand_chip *this = mtd->priv; |
| |
| /* wait until device is ready */ |
| while (!this->dev_ready(mtd)) ; |
| |
| this->select_chip(mtd, chip); |
| |
| /* Send the commands for device recovery, phase 1 */ |
| this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000); |
| this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1); |
| |
| /* Send the commands for device recovery, phase 2 */ |
| this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004); |
| this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1); |
| |
| } |
| |
| #ifdef RTC_FROM4_HWECC |
| /* |
| * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function |
| * @mtd: MTD device structure |
| * @mode: I/O mode; read or write |
| * |
| * enable hardware ECC for data read or write |
| * |
| */ |
| static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL); |
| unsigned short status; |
| |
| switch (mode) { |
| case NAND_ECC_READ: |
| status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E; |
| |
| *rs_ecc_ctl = status; |
| break; |
| |
| case NAND_ECC_READSYN: |
| status = 0x00; |
| |
| *rs_ecc_ctl = status; |
| break; |
| |
| case NAND_ECC_WRITE: |
| status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E; |
| |
| *rs_ecc_ctl = status; |
| break; |
| |
| default: |
| BUG(); |
| break; |
| } |
| |
| } |
| |
| /* |
| * rtc_from4_calculate_ecc - hardware specific code to read ECC code |
| * @mtd: MTD device structure |
| * @dat: buffer containing the data to generate ECC codes |
| * @ecc_code ECC codes calculated |
| * |
| * The ECC code is calculated by the FPGA. All we have to do is read the values |
| * from the FPGA registers. |
| * |
| * Note: We read from the inverted registers, since data is inverted before |
| * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code |
| * |
| */ |
| static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) |
| { |
| volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN); |
| unsigned short value; |
| int i; |
| |
| for (i = 0; i < 8; i++) { |
| value = *rs_eccn; |
| ecc_code[i] = (unsigned char)value; |
| rs_eccn++; |
| } |
| ecc_code[7] |= 0x0f; /* set the last four bits (not used) */ |
| } |
| |
| /* |
| * rtc_from4_correct_data - hardware specific code to correct data using ECC code |
| * @mtd: MTD device structure |
| * @buf: buffer containing the data to generate ECC codes |
| * @ecc1 ECC codes read |
| * @ecc2 ECC codes calculated |
| * |
| * The FPGA tells us fast, if there's an error or not. If no, we go back happy |
| * else we read the ecc results from the fpga and call the rs library to decode |
| * and hopefully correct the error. |
| * |
| */ |
| static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2) |
| { |
| int i, j, res; |
| unsigned short status; |
| uint16_t par[6], syn[6]; |
| uint8_t ecc[8]; |
| volatile unsigned short *rs_ecc; |
| |
| status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK)); |
| |
| if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) { |
| return 0; |
| } |
| |
| /* Read the syndrom pattern from the FPGA and correct the bitorder */ |
| rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC); |
| for (i = 0; i < 8; i++) { |
| ecc[i] = revbits[(*rs_ecc) & 0xFF]; |
| rs_ecc++; |
| } |
| |
| /* convert into 6 10bit syndrome fields */ |
| par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)]; |
| par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)]; |
| par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)]; |
| par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)]; |
| par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)]; |
| par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0); |
| |
| /* Convert to computable syndrome */ |
| for (i = 0; i < 6; i++) { |
| syn[i] = par[0]; |
| for (j = 1; j < 6; j++) |
| if (par[j] != rs_decoder->nn) |
| syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)]; |
| |
| /* Convert to index form */ |
| syn[i] = rs_decoder->index_of[syn[i]]; |
| } |
| |
| /* Let the library code do its magic. */ |
| res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL); |
| if (res > 0) { |
| DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res); |
| } |
| return res; |
| } |
| |
| /** |
| * rtc_from4_errstat - perform additional error status checks |
| * @mtd: MTD device structure |
| * @this: NAND chip structure |
| * @state: state or the operation |
| * @status: status code returned from read status |
| * @page: startpage inside the chip, must be called with (page & this->pagemask) |
| * |
| * Perform additional error status checks on erase and write failures |
| * to determine if errors are correctable. For this device, correctable |
| * 1-bit errors on erase and write are considered acceptable. |
| * |
| * note: see pages 34..37 of data sheet for details. |
| * |
| */ |
| static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, |
| int state, int status, int page) |
| { |
| int er_stat = 0; |
| int rtn, retlen; |
| size_t len; |
| uint8_t *buf; |
| int i; |
| |
| this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1); |
| |
| if (state == FL_ERASING) { |
| |
| for (i = 0; i < 4; i++) { |
| if (!(status & 1 << (i + 1))) |
| continue; |
| this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1), |
| -1, -1); |
| rtn = this->read_byte(mtd); |
| this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); |
| |
| /* err_ecc_not_avail */ |
| if (!(rtn & ERR_STAT_ECC_AVAILABLE)) |
| er_stat |= 1 << (i + 1); |
| } |
| |
| } else if (state == FL_WRITING) { |
| |
| unsigned long corrected = mtd->ecc_stats.corrected; |
| |
| /* single bank write logic */ |
| this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1); |
| rtn = this->read_byte(mtd); |
| this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); |
| |
| if (!(rtn & ERR_STAT_ECC_AVAILABLE)) { |
| /* err_ecc_not_avail */ |
| er_stat |= 1 << 1; |
| goto out; |
| } |
| |
| len = mtd->writesize; |
| buf = kmalloc(len, GFP_KERNEL); |
| if (!buf) { |
| printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n"); |
| er_stat = 1; |
| goto out; |
| } |
| |
| /* recovery read */ |
| rtn = nand_do_read(mtd, page, len, &retlen, buf); |
| |
| /* if read failed or > 1-bit error corrected */ |
| if (rtn || (mtd->ecc_stats.corrected - corrected) > 1) { |
| er_stat |= 1 << 1; |
| kfree(buf); |
| } |
| |
| rtn = status; |
| if (er_stat == 0) { /* if ECC is available */ |
| rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */ |
| } |
| |
| return rtn; |
| } |
| #endif |
| |
| /* |
| * Main initialization routine |
| */ |
| static int __init rtc_from4_init(void) |
| { |
| struct nand_chip *this; |
| unsigned short bcr1, bcr2, wcr2; |
| int i; |
| |
| /* Allocate memory for MTD device structure and private data */ |
| rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); |
| if (!rtc_from4_mtd) { |
| printk("Unable to allocate Renesas NAND MTD device structure.\n"); |
| return -ENOMEM; |
| } |
| |
| /* Get pointer to private data */ |
| this = (struct nand_chip *)(&rtc_from4_mtd[1]); |
| |
| /* Initialize structures */ |
| memset(rtc_from4_mtd, 0, sizeof(struct mtd_info)); |
| memset(this, 0, sizeof(struct nand_chip)); |
| |
| /* Link the private data with the MTD structure */ |
| rtc_from4_mtd->priv = this; |
| rtc_from4_mtd->owner = THIS_MODULE; |
| |
| /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */ |
| bcr1 = *SH77X9_BCR1 & ~0x0002; |
| bcr1 |= 0x0002; |
| *SH77X9_BCR1 = bcr1; |
| |
| /* set */ |
| bcr2 = *SH77X9_BCR2 & ~0x0c00; |
| bcr2 |= 0x0800; |
| *SH77X9_BCR2 = bcr2; |
| |
| /* set area 5 wait states */ |
| wcr2 = *SH77X9_WCR2 & ~0x1c00; |
| wcr2 |= 0x1c00; |
| *SH77X9_WCR2 = wcr2; |
| |
| /* Set address of NAND IO lines */ |
| this->IO_ADDR_R = rtc_from4_fio_base; |
| this->IO_ADDR_W = rtc_from4_fio_base; |
| /* Set address of hardware control function */ |
| this->cmd_ctrl = rtc_from4_hwcontrol; |
| /* Set address of chip select function */ |
| this->select_chip = rtc_from4_nand_select_chip; |
| /* command delay time (in us) */ |
| this->chip_delay = 100; |
| /* return the status of the Ready/Busy line */ |
| this->dev_ready = rtc_from4_nand_device_ready; |
| |
| #ifdef RTC_FROM4_HWECC |
| printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n"); |
| |
| this->ecc.mode = NAND_ECC_HW_SYNDROME; |
| this->ecc.size = 512; |
| this->ecc.bytes = 8; |
| /* return the status of extra status and ECC checks */ |
| this->errstat = rtc_from4_errstat; |
| /* set the nand_oobinfo to support FPGA H/W error detection */ |
| this->ecc.layout = &rtc_from4_nand_oobinfo; |
| this->ecc.hwctl = rtc_from4_enable_hwecc; |
| this->ecc.calculate = rtc_from4_calculate_ecc; |
| this->ecc.correct = rtc_from4_correct_data; |
| #else |
| printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n"); |
| |
| this->ecc.mode = NAND_ECC_SOFT; |
| #endif |
| |
| /* set the bad block tables to support debugging */ |
| this->bbt_td = &rtc_from4_bbt_main_descr; |
| this->bbt_md = &rtc_from4_bbt_mirror_descr; |
| |
| /* Scan to find existence of the device */ |
| if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) { |
| kfree(rtc_from4_mtd); |
| return -ENXIO; |
| } |
| |
| /* Perform 'device recovery' for each chip in case there was a power loss. */ |
| for (i = 0; i < this->numchips; i++) { |
| deplete(rtc_from4_mtd, i); |
| } |
| |
| #if RTC_FROM4_NO_VIRTBLOCKS |
| /* use a smaller erase block to minimize wasted space when a block is bad */ |
| /* note: this uses eight times as much RAM as using the default and makes */ |
| /* mounts take four times as long. */ |
| rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS; |
| #endif |
| |
| /* Register the partitions */ |
| add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS); |
| |
| #ifdef RTC_FROM4_HWECC |
| /* We could create the decoder on demand, if memory is a concern. |
| * This way we have it handy, if an error happens |
| * |
| * Symbolsize is 10 (bits) |
| * Primitve polynomial is x^10+x^3+1 |
| * first consecutive root is 0 |
| * primitve element to generate roots = 1 |
| * generator polinomial degree = 6 |
| */ |
| rs_decoder = init_rs(10, 0x409, 0, 1, 6); |
| if (!rs_decoder) { |
| printk(KERN_ERR "Could not create a RS decoder\n"); |
| nand_release(rtc_from4_mtd); |
| kfree(rtc_from4_mtd); |
| return -ENOMEM; |
| } |
| #endif |
| /* Return happy */ |
| return 0; |
| } |
| |
| module_init(rtc_from4_init); |
| |
| /* |
| * Clean up routine |
| */ |
| static void __exit rtc_from4_cleanup(void) |
| { |
| /* Release resource, unregister partitions */ |
| nand_release(rtc_from4_mtd); |
| |
| /* Free the MTD device structure */ |
| kfree(rtc_from4_mtd); |
| |
| #ifdef RTC_FROM4_HWECC |
| /* Free the reed solomon resources */ |
| if (rs_decoder) { |
| free_rs(rs_decoder); |
| } |
| #endif |
| } |
| |
| module_exit(rtc_from4_cleanup); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("d.marlin <dmarlin@redhat.com"); |
| MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4"); |