blob: 841f7f804bb6566b0afb6fe13af72d97f03a77bb [file] [log] [blame]
/*
* mac80211 <-> driver interface
*
* Copyright 2002-2005, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef MAC80211_H
#define MAC80211_H
#include <linux/kernel.h>
#include <linux/if_ether.h>
#include <linux/skbuff.h>
#include <linux/wireless.h>
#include <linux/device.h>
#include <linux/ieee80211.h>
#include <net/wireless.h>
#include <net/cfg80211.h>
/**
* DOC: Introduction
*
* mac80211 is the Linux stack for 802.11 hardware that implements
* only partial functionality in hard- or firmware. This document
* defines the interface between mac80211 and low-level hardware
* drivers.
*/
/**
* DOC: Calling mac80211 from interrupts
*
* Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
* called in hardware interrupt context. The low-level driver must not call any
* other functions in hardware interrupt context. If there is a need for such
* call, the low-level driver should first ACK the interrupt and perform the
* IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
* tasklet function.
*
* NOTE: If the driver opts to use the _irqsafe() functions, it may not also
* use the non-IRQ-safe functions!
*/
/**
* DOC: Warning
*
* If you're reading this document and not the header file itself, it will
* be incomplete because not all documentation has been converted yet.
*/
/**
* DOC: Frame format
*
* As a general rule, when frames are passed between mac80211 and the driver,
* they start with the IEEE 802.11 header and include the same octets that are
* sent over the air except for the FCS which should be calculated by the
* hardware.
*
* There are, however, various exceptions to this rule for advanced features:
*
* The first exception is for hardware encryption and decryption offload
* where the IV/ICV may or may not be generated in hardware.
*
* Secondly, when the hardware handles fragmentation, the frame handed to
* the driver from mac80211 is the MSDU, not the MPDU.
*
* Finally, for received frames, the driver is able to indicate that it has
* filled a radiotap header and put that in front of the frame; if it does
* not do so then mac80211 may add this under certain circumstances.
*/
/**
* struct ieee80211_ht_bss_info - describing BSS's HT characteristics
*
* This structure describes most essential parameters needed
* to describe 802.11n HT characteristics in a BSS.
*
* @primary_channel: channel number of primery channel
* @bss_cap: 802.11n's general BSS capabilities (e.g. channel width)
* @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection)
*/
struct ieee80211_ht_bss_info {
u8 primary_channel;
u8 bss_cap; /* use IEEE80211_HT_IE_CHA_ */
u8 bss_op_mode; /* use IEEE80211_HT_IE_ */
};
/**
* enum ieee80211_max_queues - maximum number of queues
*
* @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
* @IEEE80211_MAX_AMPDU_QUEUES: Maximum number of queues usable
* for A-MPDU operation.
*/
enum ieee80211_max_queues {
IEEE80211_MAX_QUEUES = 4,
IEEE80211_MAX_AMPDU_QUEUES = 16,
};
/**
* struct ieee80211_tx_queue_params - transmit queue configuration
*
* The information provided in this structure is required for QoS
* transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
*
* @aifs: arbitration interframe space [0..255]
* @cw_min: minimum contention window [a value of the form
* 2^n-1 in the range 1..32767]
* @cw_max: maximum contention window [like @cw_min]
* @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
*/
struct ieee80211_tx_queue_params {
u16 txop;
u16 cw_min;
u16 cw_max;
u8 aifs;
};
/**
* struct ieee80211_tx_queue_stats - transmit queue statistics
*
* @len: number of packets in queue
* @limit: queue length limit
* @count: number of frames sent
*/
struct ieee80211_tx_queue_stats {
unsigned int len;
unsigned int limit;
unsigned int count;
};
struct ieee80211_low_level_stats {
unsigned int dot11ACKFailureCount;
unsigned int dot11RTSFailureCount;
unsigned int dot11FCSErrorCount;
unsigned int dot11RTSSuccessCount;
};
/**
* enum ieee80211_bss_change - BSS change notification flags
*
* These flags are used with the bss_info_changed() callback
* to indicate which BSS parameter changed.
*
* @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
* also implies a change in the AID.
* @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
* @BSS_CHANGED_ERP_PREAMBLE: preamble changed
* @BSS_CHANGED_ERP_SLOT: slot timing changed
* @BSS_CHANGED_HT: 802.11n parameters changed
* @BSS_CHANGED_BASIC_RATES: Basic rateset changed
*/
enum ieee80211_bss_change {
BSS_CHANGED_ASSOC = 1<<0,
BSS_CHANGED_ERP_CTS_PROT = 1<<1,
BSS_CHANGED_ERP_PREAMBLE = 1<<2,
BSS_CHANGED_ERP_SLOT = 1<<3,
BSS_CHANGED_HT = 1<<4,
BSS_CHANGED_BASIC_RATES = 1<<5,
};
/**
* struct ieee80211_bss_ht_conf - BSS's changing HT configuration
* @operation_mode: HT operation mode (like in &struct ieee80211_ht_info)
*/
struct ieee80211_bss_ht_conf {
u16 operation_mode;
};
/**
* struct ieee80211_bss_conf - holds the BSS's changing parameters
*
* This structure keeps information about a BSS (and an association
* to that BSS) that can change during the lifetime of the BSS.
*
* @assoc: association status
* @aid: association ID number, valid only when @assoc is true
* @use_cts_prot: use CTS protection
* @use_short_preamble: use 802.11b short preamble;
* if the hardware cannot handle this it must set the
* IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
* @use_short_slot: use short slot time (only relevant for ERP);
* if the hardware cannot handle this it must set the
* IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
* @dtim_period: num of beacons before the next DTIM, for PSM
* @timestamp: beacon timestamp
* @beacon_int: beacon interval
* @assoc_capability: capabilities taken from assoc resp
* @ht: BSS's HT configuration
* @basic_rates: bitmap of basic rates, each bit stands for an
* index into the rate table configured by the driver in
* the current band.
*/
struct ieee80211_bss_conf {
/* association related data */
bool assoc;
u16 aid;
/* erp related data */
bool use_cts_prot;
bool use_short_preamble;
bool use_short_slot;
u8 dtim_period;
u16 beacon_int;
u16 assoc_capability;
u64 timestamp;
u32 basic_rates;
struct ieee80211_bss_ht_conf ht;
};
/**
* enum mac80211_tx_control_flags - flags to describe transmission information/status
*
* These flags are used with the @flags member of &ieee80211_tx_info.
*
* @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
* @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
* number to this frame, taking care of not overwriting the fragment
* number and increasing the sequence number only when the
* IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
* assign sequence numbers to QoS-data frames but cannot do so correctly
* for non-QoS-data and management frames because beacons need them from
* that counter as well and mac80211 cannot guarantee proper sequencing.
* If this flag is set, the driver should instruct the hardware to
* assign a sequence number to the frame or assign one itself. Cf. IEEE
* 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
* beacons and always be clear for frames without a sequence number field.
* @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
* @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
* station
* @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
* @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
* @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
* @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
* @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
* because the destination STA was in powersave mode.
* @IEEE80211_TX_STAT_ACK: Frame was acknowledged
* @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
* is for the whole aggregation.
* @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
* so consider using block ack request (BAR).
* @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
* set by rate control algorithms to indicate probe rate, will
* be cleared for fragmented frames (except on the last fragment)
* @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
* set this flag in the driver; indicates that the rate control
* algorithm was used and should be notified of TX status
* @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
* used to indicate that a pending frame requires TX processing before
* it can be sent out.
*/
enum mac80211_tx_control_flags {
IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0),
IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1),
IEEE80211_TX_CTL_NO_ACK = BIT(2),
IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3),
IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4),
IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5),
IEEE80211_TX_CTL_AMPDU = BIT(6),
IEEE80211_TX_CTL_INJECTED = BIT(7),
IEEE80211_TX_STAT_TX_FILTERED = BIT(8),
IEEE80211_TX_STAT_ACK = BIT(9),
IEEE80211_TX_STAT_AMPDU = BIT(10),
IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11),
IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12),
IEEE80211_TX_INTFL_RCALGO = BIT(13),
IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14),
};
/**
* enum mac80211_rate_control_flags - per-rate flags set by the
* Rate Control algorithm.
*
* These flags are set by the Rate control algorithm for each rate during tx,
* in the @flags member of struct ieee80211_tx_rate.
*
* @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
* @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
* This is set if the current BSS requires ERP protection.
* @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
* @IEEE80211_TX_RC_MCS: HT rate.
* @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
* Greenfield mode.
* @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
* @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
* adjacent 20 MHz channels, if the current channel type is
* NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
* @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
*/
enum mac80211_rate_control_flags {
IEEE80211_TX_RC_USE_RTS_CTS = BIT(0),
IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1),
IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2),
/* rate index is an MCS rate number instead of an index */
IEEE80211_TX_RC_MCS = BIT(3),
IEEE80211_TX_RC_GREEN_FIELD = BIT(4),
IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5),
IEEE80211_TX_RC_DUP_DATA = BIT(6),
IEEE80211_TX_RC_SHORT_GI = BIT(7),
};
/* there are 40 bytes if you don't need the rateset to be kept */
#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
/* if you do need the rateset, then you have less space */
#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
/* maximum number of rate stages */
#define IEEE80211_TX_MAX_RATES 5
/**
* struct ieee80211_tx_rate - rate selection/status
*
* @idx: rate index to attempt to send with
* @flags: rate control flags (&enum mac80211_rate_control_flags)
* @count: number of tries in this rate before going to the next rate
*
* A value of -1 for @idx indicates an invalid rate and, if used
* in an array of retry rates, that no more rates should be tried.
*
* When used for transmit status reporting, the driver should
* always report the rate along with the flags it used.
*/
struct ieee80211_tx_rate {
s8 idx;
u8 count;
u8 flags;
} __attribute__((packed));
/**
* struct ieee80211_tx_info - skb transmit information
*
* This structure is placed in skb->cb for three uses:
* (1) mac80211 TX control - mac80211 tells the driver what to do
* (2) driver internal use (if applicable)
* (3) TX status information - driver tells mac80211 what happened
*
* The TX control's sta pointer is only valid during the ->tx call,
* it may be NULL.
*
* @flags: transmit info flags, defined above
* @band: the band to transmit on (use for checking for races)
* @antenna_sel_tx: antenna to use, 0 for automatic diversity
* @pad: padding, ignore
* @control: union for control data
* @status: union for status data
* @driver_data: array of driver_data pointers
* @ampdu_ack_len: number of aggregated frames.
* relevant only if IEEE80211_TX_STATUS_AMPDU was set.
* @ampdu_ack_map: block ack bit map for the aggregation.
* relevant only if IEEE80211_TX_STATUS_AMPDU was set.
* @ack_signal: signal strength of the ACK frame
*/
struct ieee80211_tx_info {
/* common information */
u32 flags;
u8 band;
u8 antenna_sel_tx;
/* 2 byte hole */
u8 pad[2];
union {
struct {
union {
/* rate control */
struct {
struct ieee80211_tx_rate rates[
IEEE80211_TX_MAX_RATES];
s8 rts_cts_rate_idx;
};
/* only needed before rate control */
unsigned long jiffies;
};
/* NB: vif can be NULL for injected frames */
struct ieee80211_vif *vif;
struct ieee80211_key_conf *hw_key;
struct ieee80211_sta *sta;
} control;
struct {
struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
u8 ampdu_ack_len;
u64 ampdu_ack_map;
int ack_signal;
/* 8 bytes free */
} status;
struct {
struct ieee80211_tx_rate driver_rates[
IEEE80211_TX_MAX_RATES];
void *rate_driver_data[
IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
};
void *driver_data[
IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
};
};
static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
{
return (struct ieee80211_tx_info *)skb->cb;
}
/**
* ieee80211_tx_info_clear_status - clear TX status
*
* @info: The &struct ieee80211_tx_info to be cleared.
*
* When the driver passes an skb back to mac80211, it must report
* a number of things in TX status. This function clears everything
* in the TX status but the rate control information (it does clear
* the count since you need to fill that in anyway).
*
* NOTE: You can only use this function if you do NOT use
* info->driver_data! Use info->rate_driver_data
* instead if you need only the less space that allows.
*/
static inline void
ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
{
int i;
BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
offsetof(struct ieee80211_tx_info, control.rates));
BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
offsetof(struct ieee80211_tx_info, driver_rates));
BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
/* clear the rate counts */
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
info->status.rates[i].count = 0;
BUILD_BUG_ON(
offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
memset(&info->status.ampdu_ack_len, 0,
sizeof(struct ieee80211_tx_info) -
offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
}
/**
* enum mac80211_rx_flags - receive flags
*
* These flags are used with the @flag member of &struct ieee80211_rx_status.
* @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
* Use together with %RX_FLAG_MMIC_STRIPPED.
* @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
* @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
* @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
* verification has been done by the hardware.
* @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
* If this flag is set, the stack cannot do any replay detection
* hence the driver or hardware will have to do that.
* @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
* the frame.
* @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
* the frame.
* @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
* is valid. This is useful in monitor mode and necessary for beacon frames
* to enable IBSS merging.
* @RX_FLAG_SHORTPRE: Short preamble was used for this frame
* @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
* @RX_FLAG_40MHZ: HT40 (40 MHz) was used
* @RX_FLAG_SHORT_GI: Short guard interval was used
*/
enum mac80211_rx_flags {
RX_FLAG_MMIC_ERROR = 1<<0,
RX_FLAG_DECRYPTED = 1<<1,
RX_FLAG_RADIOTAP = 1<<2,
RX_FLAG_MMIC_STRIPPED = 1<<3,
RX_FLAG_IV_STRIPPED = 1<<4,
RX_FLAG_FAILED_FCS_CRC = 1<<5,
RX_FLAG_FAILED_PLCP_CRC = 1<<6,
RX_FLAG_TSFT = 1<<7,
RX_FLAG_SHORTPRE = 1<<8,
RX_FLAG_HT = 1<<9,
RX_FLAG_40MHZ = 1<<10,
RX_FLAG_SHORT_GI = 1<<11,
};
/**
* struct ieee80211_rx_status - receive status
*
* The low-level driver should provide this information (the subset
* supported by hardware) to the 802.11 code with each received
* frame.
*
* @mactime: value in microseconds of the 64-bit Time Synchronization Function
* (TSF) timer when the first data symbol (MPDU) arrived at the hardware.
* @band: the active band when this frame was received
* @freq: frequency the radio was tuned to when receiving this frame, in MHz
* @signal: signal strength when receiving this frame, either in dBm, in dB or
* unspecified depending on the hardware capabilities flags
* @IEEE80211_HW_SIGNAL_*
* @noise: noise when receiving this frame, in dBm.
* @qual: overall signal quality indication, in percent (0-100).
* @antenna: antenna used
* @rate_idx: index of data rate into band's supported rates or MCS index if
* HT rates are use (RX_FLAG_HT)
* @flag: %RX_FLAG_*
*/
struct ieee80211_rx_status {
u64 mactime;
enum ieee80211_band band;
int freq;
int signal;
int noise;
int qual;
int antenna;
int rate_idx;
int flag;
};
/**
* enum ieee80211_conf_flags - configuration flags
*
* Flags to define PHY configuration options
*
* @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
* @IEEE80211_CONF_PS: Enable 802.11 power save mode
*/
enum ieee80211_conf_flags {
IEEE80211_CONF_RADIOTAP = (1<<0),
IEEE80211_CONF_PS = (1<<1),
};
/**
* enum ieee80211_conf_changed - denotes which configuration changed
*
* @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed
* @IEEE80211_CONF_CHANGE_BEACON_INTERVAL: the beacon interval changed
* @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
* @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
* @IEEE80211_CONF_CHANGE_PS: the PS flag changed
* @IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT: the dynamic PS timeout changed
* @IEEE80211_CONF_CHANGE_POWER: the TX power changed
* @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
* @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
*/
enum ieee80211_conf_changed {
IEEE80211_CONF_CHANGE_RADIO_ENABLED = BIT(0),
IEEE80211_CONF_CHANGE_BEACON_INTERVAL = BIT(1),
IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2),
IEEE80211_CONF_CHANGE_RADIOTAP = BIT(3),
IEEE80211_CONF_CHANGE_PS = BIT(4),
IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT = BIT(5),
IEEE80211_CONF_CHANGE_POWER = BIT(6),
IEEE80211_CONF_CHANGE_CHANNEL = BIT(7),
IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(8),
};
/**
* struct ieee80211_conf - configuration of the device
*
* This struct indicates how the driver shall configure the hardware.
*
* @radio_enabled: when zero, driver is required to switch off the radio.
* @beacon_int: beacon interval (TODO make interface config)
* @listen_interval: listen interval in units of beacon interval
* @flags: configuration flags defined above
* @power_level: requested transmit power (in dBm)
* @dynamic_ps_timeout: dynamic powersave timeout (in ms)
* @channel: the channel to tune to
* @channel_type: the channel (HT) type
* @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
* (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
* but actually means the number of transmissions not the number of retries
* @short_frame_max_tx_count: Maximum number of transmissions for a "short"
* frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
* number of transmissions not the number of retries
*/
struct ieee80211_conf {
int beacon_int;
u32 flags;
int power_level, dynamic_ps_timeout;
u16 listen_interval;
bool radio_enabled;
u8 long_frame_max_tx_count, short_frame_max_tx_count;
struct ieee80211_channel *channel;
enum nl80211_channel_type channel_type;
};
/**
* struct ieee80211_vif - per-interface data
*
* Data in this structure is continually present for driver
* use during the life of a virtual interface.
*
* @type: type of this virtual interface
* @bss_conf: BSS configuration for this interface, either our own
* or the BSS we're associated to
* @drv_priv: data area for driver use, will always be aligned to
* sizeof(void *).
*/
struct ieee80211_vif {
enum nl80211_iftype type;
struct ieee80211_bss_conf bss_conf;
/* must be last */
u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
};
static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
{
#ifdef CONFIG_MAC80211_MESH
return vif->type == NL80211_IFTYPE_MESH_POINT;
#endif
return false;
}
/**
* struct ieee80211_if_init_conf - initial configuration of an interface
*
* @vif: pointer to a driver-use per-interface structure. The pointer
* itself is also used for various functions including
* ieee80211_beacon_get() and ieee80211_get_buffered_bc().
* @type: one of &enum nl80211_iftype constants. Determines the type of
* added/removed interface.
* @mac_addr: pointer to MAC address of the interface. This pointer is valid
* until the interface is removed (i.e. it cannot be used after
* remove_interface() callback was called for this interface).
*
* This structure is used in add_interface() and remove_interface()
* callbacks of &struct ieee80211_hw.
*
* When you allow multiple interfaces to be added to your PHY, take care
* that the hardware can actually handle multiple MAC addresses. However,
* also take care that when there's no interface left with mac_addr != %NULL
* you remove the MAC address from the device to avoid acknowledging packets
* in pure monitor mode.
*/
struct ieee80211_if_init_conf {
enum nl80211_iftype type;
struct ieee80211_vif *vif;
void *mac_addr;
};
/**
* enum ieee80211_if_conf_change - interface config change flags
*
* @IEEE80211_IFCC_BSSID: The BSSID changed.
* @IEEE80211_IFCC_BEACON: The beacon for this interface changed
* (currently AP and MESH only), use ieee80211_beacon_get().
* @IEEE80211_IFCC_BEACON_ENABLED: The enable_beacon value changed.
*/
enum ieee80211_if_conf_change {
IEEE80211_IFCC_BSSID = BIT(0),
IEEE80211_IFCC_BEACON = BIT(1),
IEEE80211_IFCC_BEACON_ENABLED = BIT(2),
};
/**
* struct ieee80211_if_conf - configuration of an interface
*
* @changed: parameters that have changed, see &enum ieee80211_if_conf_change.
* @bssid: BSSID of the network we are associated to/creating.
* @enable_beacon: Indicates whether beacons can be sent.
* This is valid only for AP/IBSS/MESH modes.
*
* This structure is passed to the config_interface() callback of
* &struct ieee80211_hw.
*/
struct ieee80211_if_conf {
u32 changed;
const u8 *bssid;
bool enable_beacon;
};
/**
* enum ieee80211_key_alg - key algorithm
* @ALG_WEP: WEP40 or WEP104
* @ALG_TKIP: TKIP
* @ALG_CCMP: CCMP (AES)
* @ALG_AES_CMAC: AES-128-CMAC
*/
enum ieee80211_key_alg {
ALG_WEP,
ALG_TKIP,
ALG_CCMP,
ALG_AES_CMAC,
};
/**
* enum ieee80211_key_len - key length
* @LEN_WEP40: WEP 5-byte long key
* @LEN_WEP104: WEP 13-byte long key
*/
enum ieee80211_key_len {
LEN_WEP40 = 5,
LEN_WEP104 = 13,
};
/**
* enum ieee80211_key_flags - key flags
*
* These flags are used for communication about keys between the driver
* and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
*
* @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
* that the STA this key will be used with could be using QoS.
* @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
* driver to indicate that it requires IV generation for this
* particular key.
* @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
* the driver for a TKIP key if it requires Michael MIC
* generation in software.
* @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
* that the key is pairwise rather then a shared key.
* @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
* CCMP key if it requires CCMP encryption of management frames (MFP) to
* be done in software.
*/
enum ieee80211_key_flags {
IEEE80211_KEY_FLAG_WMM_STA = 1<<0,
IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1,
IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
IEEE80211_KEY_FLAG_PAIRWISE = 1<<3,
IEEE80211_KEY_FLAG_SW_MGMT = 1<<4,
};
/**
* struct ieee80211_key_conf - key information
*
* This key information is given by mac80211 to the driver by
* the set_key() callback in &struct ieee80211_ops.
*
* @hw_key_idx: To be set by the driver, this is the key index the driver
* wants to be given when a frame is transmitted and needs to be
* encrypted in hardware.
* @alg: The key algorithm.
* @flags: key flags, see &enum ieee80211_key_flags.
* @keyidx: the key index (0-3)
* @keylen: key material length
* @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
* data block:
* - Temporal Encryption Key (128 bits)
* - Temporal Authenticator Tx MIC Key (64 bits)
* - Temporal Authenticator Rx MIC Key (64 bits)
* @icv_len: The ICV length for this key type
* @iv_len: The IV length for this key type
*/
struct ieee80211_key_conf {
enum ieee80211_key_alg alg;
u8 icv_len;
u8 iv_len;
u8 hw_key_idx;
u8 flags;
s8 keyidx;
u8 keylen;
u8 key[0];
};
/**
* enum set_key_cmd - key command
*
* Used with the set_key() callback in &struct ieee80211_ops, this
* indicates whether a key is being removed or added.
*
* @SET_KEY: a key is set
* @DISABLE_KEY: a key must be disabled
*/
enum set_key_cmd {
SET_KEY, DISABLE_KEY,
};
/**
* struct ieee80211_sta - station table entry
*
* A station table entry represents a station we are possibly
* communicating with. Since stations are RCU-managed in
* mac80211, any ieee80211_sta pointer you get access to must
* either be protected by rcu_read_lock() explicitly or implicitly,
* or you must take good care to not use such a pointer after a
* call to your sta_notify callback that removed it.
*
* @addr: MAC address
* @aid: AID we assigned to the station if we're an AP
* @supp_rates: Bitmap of supported rates (per band)
* @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
* @drv_priv: data area for driver use, will always be aligned to
* sizeof(void *), size is determined in hw information.
*/
struct ieee80211_sta {
u32 supp_rates[IEEE80211_NUM_BANDS];
u8 addr[ETH_ALEN];
u16 aid;
struct ieee80211_sta_ht_cap ht_cap;
/* must be last */
u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
};
/**
* enum sta_notify_cmd - sta notify command
*
* Used with the sta_notify() callback in &struct ieee80211_ops, this
* indicates addition and removal of a station to station table,
* or if a associated station made a power state transition.
*
* @STA_NOTIFY_ADD: a station was added to the station table
* @STA_NOTIFY_REMOVE: a station being removed from the station table
* @STA_NOTIFY_SLEEP: a station is now sleeping
* @STA_NOTIFY_AWAKE: a sleeping station woke up
*/
enum sta_notify_cmd {
STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
};
/**
* enum ieee80211_tkip_key_type - get tkip key
*
* Used by drivers which need to get a tkip key for skb. Some drivers need a
* phase 1 key, others need a phase 2 key. A single function allows the driver
* to get the key, this enum indicates what type of key is required.
*
* @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
* @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
*/
enum ieee80211_tkip_key_type {
IEEE80211_TKIP_P1_KEY,
IEEE80211_TKIP_P2_KEY,
};
/**
* enum ieee80211_hw_flags - hardware flags
*
* These flags are used to indicate hardware capabilities to
* the stack. Generally, flags here should have their meaning
* done in a way that the simplest hardware doesn't need setting
* any particular flags. There are some exceptions to this rule,
* however, so you are advised to review these flags carefully.
*
* @IEEE80211_HW_RX_INCLUDES_FCS:
* Indicates that received frames passed to the stack include
* the FCS at the end.
*
* @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
* Some wireless LAN chipsets buffer broadcast/multicast frames
* for power saving stations in the hardware/firmware and others
* rely on the host system for such buffering. This option is used
* to configure the IEEE 802.11 upper layer to buffer broadcast and
* multicast frames when there are power saving stations so that
* the driver can fetch them with ieee80211_get_buffered_bc().
*
* @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
* Hardware is not capable of short slot operation on the 2.4 GHz band.
*
* @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
* Hardware is not capable of receiving frames with short preamble on
* the 2.4 GHz band.
*
* @IEEE80211_HW_SIGNAL_UNSPEC:
* Hardware can provide signal values but we don't know its units. We
* expect values between 0 and @max_signal.
* If possible please provide dB or dBm instead.
*
* @IEEE80211_HW_SIGNAL_DBM:
* Hardware gives signal values in dBm, decibel difference from
* one milliwatt. This is the preferred method since it is standardized
* between different devices. @max_signal does not need to be set.
*
* @IEEE80211_HW_NOISE_DBM:
* Hardware can provide noise (radio interference) values in units dBm,
* decibel difference from one milliwatt.
*
* @IEEE80211_HW_SPECTRUM_MGMT:
* Hardware supports spectrum management defined in 802.11h
* Measurement, Channel Switch, Quieting, TPC
*
* @IEEE80211_HW_AMPDU_AGGREGATION:
* Hardware supports 11n A-MPDU aggregation.
*
* @IEEE80211_HW_SUPPORTS_PS:
* Hardware has power save support (i.e. can go to sleep).
*
* @IEEE80211_HW_PS_NULLFUNC_STACK:
* Hardware requires nullfunc frame handling in stack, implies
* stack support for dynamic PS.
*
* @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
* Hardware has support for dynamic PS.
*
* @IEEE80211_HW_MFP_CAPABLE:
* Hardware supports management frame protection (MFP, IEEE 802.11w).
*
* @IEEE80211_HW_BEACON_FILTER:
* Hardware supports dropping of irrelevant beacon frames to
* avoid waking up cpu.
*/
enum ieee80211_hw_flags {
IEEE80211_HW_RX_INCLUDES_FCS = 1<<1,
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2,
IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3,
IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4,
IEEE80211_HW_SIGNAL_UNSPEC = 1<<5,
IEEE80211_HW_SIGNAL_DBM = 1<<6,
IEEE80211_HW_NOISE_DBM = 1<<7,
IEEE80211_HW_SPECTRUM_MGMT = 1<<8,
IEEE80211_HW_AMPDU_AGGREGATION = 1<<9,
IEEE80211_HW_SUPPORTS_PS = 1<<10,
IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11,
IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12,
IEEE80211_HW_MFP_CAPABLE = 1<<13,
IEEE80211_HW_BEACON_FILTER = 1<<14,
};
/**
* struct ieee80211_hw - hardware information and state
*
* This structure contains the configuration and hardware
* information for an 802.11 PHY.
*
* @wiphy: This points to the &struct wiphy allocated for this
* 802.11 PHY. You must fill in the @perm_addr and @dev
* members of this structure using SET_IEEE80211_DEV()
* and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
* bands (with channels, bitrates) are registered here.
*
* @conf: &struct ieee80211_conf, device configuration, don't use.
*
* @workqueue: single threaded workqueue available for driver use,
* allocated by mac80211 on registration and flushed when an
* interface is removed.
* NOTICE: All work performed on this workqueue must not
* acquire the RTNL lock.
*
* @priv: pointer to private area that was allocated for driver use
* along with this structure.
*
* @flags: hardware flags, see &enum ieee80211_hw_flags.
*
* @extra_tx_headroom: headroom to reserve in each transmit skb
* for use by the driver (e.g. for transmit headers.)
*
* @channel_change_time: time (in microseconds) it takes to change channels.
*
* @max_signal: Maximum value for signal (rssi) in RX information, used
* only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
*
* @max_listen_interval: max listen interval in units of beacon interval
* that HW supports
*
* @queues: number of available hardware transmit queues for
* data packets. WMM/QoS requires at least four, these
* queues need to have configurable access parameters.
*
* @ampdu_queues: number of available hardware transmit queues
* for A-MPDU packets, these have no access parameters
* because they're used only for A-MPDU frames. Note that
* mac80211 will not currently use any of the regular queues
* for aggregation.
*
* @rate_control_algorithm: rate control algorithm for this hardware.
* If unset (NULL), the default algorithm will be used. Must be
* set before calling ieee80211_register_hw().
*
* @vif_data_size: size (in bytes) of the drv_priv data area
* within &struct ieee80211_vif.
* @sta_data_size: size (in bytes) of the drv_priv data area
* within &struct ieee80211_sta.
*
* @max_rates: maximum number of alternate rate retry stages
* @max_rate_tries: maximum number of tries for each stage
*/
struct ieee80211_hw {
struct ieee80211_conf conf;
struct wiphy *wiphy;
struct workqueue_struct *workqueue;
const char *rate_control_algorithm;
void *priv;
u32 flags;
unsigned int extra_tx_headroom;
int channel_change_time;
int vif_data_size;
int sta_data_size;
u16 queues;
u16 ampdu_queues;
u16 max_listen_interval;
s8 max_signal;
u8 max_rates;
u8 max_rate_tries;
};
/**
* wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
*
* @wiphy: the &struct wiphy which we want to query
*
* mac80211 drivers can use this to get to their respective
* &struct ieee80211_hw. Drivers wishing to get to their own private
* structure can then access it via hw->priv. Note that mac802111 drivers should
* not use wiphy_priv() to try to get their private driver structure as this
* is already used internally by mac80211.
*/
struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
/**
* SET_IEEE80211_DEV - set device for 802.11 hardware
*
* @hw: the &struct ieee80211_hw to set the device for
* @dev: the &struct device of this 802.11 device
*/
static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
{
set_wiphy_dev(hw->wiphy, dev);
}
/**
* SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
*
* @hw: the &struct ieee80211_hw to set the MAC address for
* @addr: the address to set
*/
static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
{
memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
}
static inline struct ieee80211_rate *
ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
const struct ieee80211_tx_info *c)
{
if (WARN_ON(c->control.rates[0].idx < 0))
return NULL;
return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
}
static inline struct ieee80211_rate *
ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
const struct ieee80211_tx_info *c)
{
if (c->control.rts_cts_rate_idx < 0)
return NULL;
return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
}
static inline struct ieee80211_rate *
ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
const struct ieee80211_tx_info *c, int idx)
{
if (c->control.rates[idx + 1].idx < 0)
return NULL;
return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
}
/**
* DOC: Hardware crypto acceleration
*
* mac80211 is capable of taking advantage of many hardware
* acceleration designs for encryption and decryption operations.
*
* The set_key() callback in the &struct ieee80211_ops for a given
* device is called to enable hardware acceleration of encryption and
* decryption. The callback takes a @sta parameter that will be NULL
* for default keys or keys used for transmission only, or point to
* the station information for the peer for individual keys.
* Multiple transmission keys with the same key index may be used when
* VLANs are configured for an access point.
*
* When transmitting, the TX control data will use the @hw_key_idx
* selected by the driver by modifying the &struct ieee80211_key_conf
* pointed to by the @key parameter to the set_key() function.
*
* The set_key() call for the %SET_KEY command should return 0 if
* the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
* added; if you return 0 then hw_key_idx must be assigned to the
* hardware key index, you are free to use the full u8 range.
*
* When the cmd is %DISABLE_KEY then it must succeed.
*
* Note that it is permissible to not decrypt a frame even if a key
* for it has been uploaded to hardware, the stack will not make any
* decision based on whether a key has been uploaded or not but rather
* based on the receive flags.
*
* The &struct ieee80211_key_conf structure pointed to by the @key
* parameter is guaranteed to be valid until another call to set_key()
* removes it, but it can only be used as a cookie to differentiate
* keys.
*
* In TKIP some HW need to be provided a phase 1 key, for RX decryption
* acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
* handler.
* The update_tkip_key() call updates the driver with the new phase 1 key.
* This happens everytime the iv16 wraps around (every 65536 packets). The
* set_key() call will happen only once for each key (unless the AP did
* rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
* provided by update_tkip_key only. The trigger that makes mac80211 call this
* handler is software decryption with wrap around of iv16.
*/
/**
* DOC: Powersave support
*
* mac80211 has support for various powersave implementations.
*
* First, it can support hardware that handles all powersaving by
* itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
* hardware flag. In that case, it will be told about the desired
* powersave mode depending on the association status, and the driver
* must take care of sending nullfunc frames when necessary, i.e. when
* entering and leaving powersave mode. The driver is required to look at
* the AID in beacons and signal to the AP that it woke up when it finds
* traffic directed to it. This mode supports dynamic PS by simply
* enabling/disabling PS.
*
* Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
* flag to indicate that it can support dynamic PS mode itself (see below).
*
* Other hardware designs cannot send nullfunc frames by themselves and also
* need software support for parsing the TIM bitmap. This is also supported
* by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
* %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
* required to pass up beacons. Additionally, in this case, mac80211 will
* wake up the hardware when multicast traffic is announced in the beacon.
*
* FIXME: I don't think we can be fast enough in software when we want to
* receive multicast traffic?
*
* Dynamic powersave mode is an extension to normal powersave mode in which
* the hardware stays awake for a user-specified period of time after sending
* a frame so that reply frames need not be buffered and therefore delayed
* to the next wakeup. This can either be supported by hardware, in which case
* the driver needs to look at the @dynamic_ps_timeout hardware configuration
* value, or by the stack if all nullfunc handling is in the stack.
*/
/**
* DOC: Beacon filter support
*
* Some hardware have beacon filter support to reduce host cpu wakeups
* which will reduce system power consumption. It usuallly works so that
* the firmware creates a checksum of the beacon but omits all constantly
* changing elements (TSF, TIM etc). Whenever the checksum changes the
* beacon is forwarded to the host, otherwise it will be just dropped. That
* way the host will only receive beacons where some relevant information
* (for example ERP protection or WMM settings) have changed.
*
* Beacon filter support is informed with %IEEE80211_HW_BEACON_FILTER flag.
* The driver needs to enable beacon filter support whenever power save is
* enabled, that is %IEEE80211_CONF_PS is set. When power save is enabled,
* the stack will not check for beacon miss at all and the driver needs to
* notify about complete loss of beacons with ieee80211_beacon_loss().
*/
/**
* DOC: Frame filtering
*
* mac80211 requires to see many management frames for proper
* operation, and users may want to see many more frames when
* in monitor mode. However, for best CPU usage and power consumption,
* having as few frames as possible percolate through the stack is
* desirable. Hence, the hardware should filter as much as possible.
*
* To achieve this, mac80211 uses filter flags (see below) to tell
* the driver's configure_filter() function which frames should be
* passed to mac80211 and which should be filtered out.
*
* The configure_filter() callback is invoked with the parameters
* @mc_count and @mc_list for the combined multicast address list
* of all virtual interfaces, @changed_flags telling which flags
* were changed and @total_flags with the new flag states.
*
* If your device has no multicast address filters your driver will
* need to check both the %FIF_ALLMULTI flag and the @mc_count
* parameter to see whether multicast frames should be accepted
* or dropped.
*
* All unsupported flags in @total_flags must be cleared.
* Hardware does not support a flag if it is incapable of _passing_
* the frame to the stack. Otherwise the driver must ignore
* the flag, but not clear it.
* You must _only_ clear the flag (announce no support for the
* flag to mac80211) if you are not able to pass the packet type
* to the stack (so the hardware always filters it).
* So for example, you should clear @FIF_CONTROL, if your hardware
* always filters control frames. If your hardware always passes
* control frames to the kernel and is incapable of filtering them,
* you do _not_ clear the @FIF_CONTROL flag.
* This rule applies to all other FIF flags as well.
*/
/**
* enum ieee80211_filter_flags - hardware filter flags
*
* These flags determine what the filter in hardware should be
* programmed to let through and what should not be passed to the
* stack. It is always safe to pass more frames than requested,
* but this has negative impact on power consumption.
*
* @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
* think of the BSS as your network segment and then this corresponds
* to the regular ethernet device promiscuous mode.
*
* @FIF_ALLMULTI: pass all multicast frames, this is used if requested
* by the user or if the hardware is not capable of filtering by
* multicast address.
*
* @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
* %RX_FLAG_FAILED_FCS_CRC for them)
*
* @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
* the %RX_FLAG_FAILED_PLCP_CRC for them
*
* @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
* to the hardware that it should not filter beacons or probe responses
* by BSSID. Filtering them can greatly reduce the amount of processing
* mac80211 needs to do and the amount of CPU wakeups, so you should
* honour this flag if possible.
*
* @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
* only those addressed to this station
*
* @FIF_OTHER_BSS: pass frames destined to other BSSes
*/
enum ieee80211_filter_flags {
FIF_PROMISC_IN_BSS = 1<<0,
FIF_ALLMULTI = 1<<1,
FIF_FCSFAIL = 1<<2,
FIF_PLCPFAIL = 1<<3,
FIF_BCN_PRBRESP_PROMISC = 1<<4,
FIF_CONTROL = 1<<5,
FIF_OTHER_BSS = 1<<6,
};
/**
* enum ieee80211_ampdu_mlme_action - A-MPDU actions
*
* These flags are used with the ampdu_action() callback in
* &struct ieee80211_ops to indicate which action is needed.
* @IEEE80211_AMPDU_RX_START: start Rx aggregation
* @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
* @IEEE80211_AMPDU_TX_START: start Tx aggregation
* @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
* @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
*/
enum ieee80211_ampdu_mlme_action {
IEEE80211_AMPDU_RX_START,
IEEE80211_AMPDU_RX_STOP,
IEEE80211_AMPDU_TX_START,
IEEE80211_AMPDU_TX_STOP,
IEEE80211_AMPDU_TX_OPERATIONAL,
};
/**
* struct ieee80211_ops - callbacks from mac80211 to the driver
*
* This structure contains various callbacks that the driver may
* handle or, in some cases, must handle, for example to configure
* the hardware to a new channel or to transmit a frame.
*
* @tx: Handler that 802.11 module calls for each transmitted frame.
* skb contains the buffer starting from the IEEE 802.11 header.
* The low-level driver should send the frame out based on
* configuration in the TX control data. This handler should,
* preferably, never fail and stop queues appropriately, more
* importantly, however, it must never fail for A-MPDU-queues.
* This function should return NETDEV_TX_OK except in very
* limited cases.
* Must be implemented and atomic.
*
* @start: Called before the first netdevice attached to the hardware
* is enabled. This should turn on the hardware and must turn on
* frame reception (for possibly enabled monitor interfaces.)
* Returns negative error codes, these may be seen in userspace,
* or zero.
* When the device is started it should not have a MAC address
* to avoid acknowledging frames before a non-monitor device
* is added.
* Must be implemented.
*
* @stop: Called after last netdevice attached to the hardware
* is disabled. This should turn off the hardware (at least
* it must turn off frame reception.)
* May be called right after add_interface if that rejects
* an interface.
* Must be implemented.
*
* @add_interface: Called when a netdevice attached to the hardware is
* enabled. Because it is not called for monitor mode devices, @start
* and @stop must be implemented.
* The driver should perform any initialization it needs before
* the device can be enabled. The initial configuration for the
* interface is given in the conf parameter.
* The callback may refuse to add an interface by returning a
* negative error code (which will be seen in userspace.)
* Must be implemented.
*
* @remove_interface: Notifies a driver that an interface is going down.
* The @stop callback is called after this if it is the last interface
* and no monitor interfaces are present.
* When all interfaces are removed, the MAC address in the hardware
* must be cleared so the device no longer acknowledges packets,
* the mac_addr member of the conf structure is, however, set to the
* MAC address of the device going away.
* Hence, this callback must be implemented.
*
* @config: Handler for configuration requests. IEEE 802.11 code calls this
* function to change hardware configuration, e.g., channel.
* This function should never fail but returns a negative error code
* if it does.
*
* @config_interface: Handler for configuration requests related to interfaces
* (e.g. BSSID changes.)
* Returns a negative error code which will be seen in userspace.
*
* @bss_info_changed: Handler for configuration requests related to BSS
* parameters that may vary during BSS's lifespan, and may affect low
* level driver (e.g. assoc/disassoc status, erp parameters).
* This function should not be used if no BSS has been set, unless
* for association indication. The @changed parameter indicates which
* of the bss parameters has changed when a call is made.
*
* @configure_filter: Configure the device's RX filter.
* See the section "Frame filtering" for more information.
* This callback must be implemented and atomic.
*
* @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
* must be set or cleared for a given STA. Must be atomic.
*
* @set_key: See the section "Hardware crypto acceleration"
* This callback can sleep, and is only called between add_interface
* and remove_interface calls, i.e. while the given virtual interface
* is enabled.
* Returns a negative error code if the key can't be added.
*
* @update_tkip_key: See the section "Hardware crypto acceleration"
* This callback will be called in the context of Rx. Called for drivers
* which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
*
* @hw_scan: Ask the hardware to service the scan request, no need to start
* the scan state machine in stack. The scan must honour the channel
* configuration done by the regulatory agent in the wiphy's
* registered bands. The hardware (or the driver) needs to make sure
* that power save is disabled. When the scan finishes,
* ieee80211_scan_completed() must be called; note that it also must
* be called when the scan cannot finish because the hardware is
* turned off! Anything else is a bug! Returns a negative error code
* which will be seen in userspace.
*
* @sw_scan_start: Notifier function that is called just before a software scan
* is started. Can be NULL, if the driver doesn't need this notification.
*
* @sw_scan_complete: Notifier function that is called just after a software scan
* finished. Can be NULL, if the driver doesn't need this notification.
*
* @get_stats: Return low-level statistics.
* Returns zero if statistics are available.
*
* @get_tkip_seq: If your device implements TKIP encryption in hardware this
* callback should be provided to read the TKIP transmit IVs (both IV32
* and IV16) for the given key from hardware.
*
* @set_rts_threshold: Configuration of RTS threshold (if device needs it)
*
* @sta_notify: Notifies low level driver about addition, removal or power
* state transition of an associated station, AP, IBSS/WDS/mesh peer etc.
* Must be atomic.
*
* @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
* bursting) for a hardware TX queue.
* Returns a negative error code on failure.
*
* @get_tx_stats: Get statistics of the current TX queue status. This is used
* to get number of currently queued packets (queue length), maximum queue
* size (limit), and total number of packets sent using each TX queue
* (count). The 'stats' pointer points to an array that has hw->queues +
* hw->ampdu_queues items.
*
* @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
* this is only used for IBSS mode BSSID merging and debugging. Is not a
* required function.
*
* @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
* Currently, this is only used for IBSS mode debugging. Is not a
* required function.
*
* @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
* with other STAs in the IBSS. This is only used in IBSS mode. This
* function is optional if the firmware/hardware takes full care of
* TSF synchronization.
*
* @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
* This is needed only for IBSS mode and the result of this function is
* used to determine whether to reply to Probe Requests.
* Returns non-zero if this device sent the last beacon.
*
* @ampdu_action: Perform a certain A-MPDU action
* The RA/TID combination determines the destination and TID we want
* the ampdu action to be performed for. The action is defined through
* ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
* is the first frame we expect to perform the action on. Notice
* that TX/RX_STOP can pass NULL for this parameter.
* Returns a negative error code on failure.
*/
struct ieee80211_ops {
int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
int (*start)(struct ieee80211_hw *hw);
void (*stop)(struct ieee80211_hw *hw);
int (*add_interface)(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf);
void (*remove_interface)(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf);
int (*config)(struct ieee80211_hw *hw, u32 changed);
int (*config_interface)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_if_conf *conf);
void (*bss_info_changed)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed);
void (*configure_filter)(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
int mc_count, struct dev_addr_list *mc_list);
int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
bool set);
int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key);
void (*update_tkip_key)(struct ieee80211_hw *hw,
struct ieee80211_key_conf *conf, const u8 *address,
u32 iv32, u16 *phase1key);
int (*hw_scan)(struct ieee80211_hw *hw,
struct cfg80211_scan_request *req);
void (*sw_scan_start)(struct ieee80211_hw *hw);
void (*sw_scan_complete)(struct ieee80211_hw *hw);
int (*get_stats)(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats);
void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
u32 *iv32, u16 *iv16);
int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
enum sta_notify_cmd, struct ieee80211_sta *sta);
int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
const struct ieee80211_tx_queue_params *params);
int (*get_tx_stats)(struct ieee80211_hw *hw,
struct ieee80211_tx_queue_stats *stats);
u64 (*get_tsf)(struct ieee80211_hw *hw);
void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
void (*reset_tsf)(struct ieee80211_hw *hw);
int (*tx_last_beacon)(struct ieee80211_hw *hw);
int (*ampdu_action)(struct ieee80211_hw *hw,
enum ieee80211_ampdu_mlme_action action,
struct ieee80211_sta *sta, u16 tid, u16 *ssn);
};
/**
* ieee80211_alloc_hw - Allocate a new hardware device
*
* This must be called once for each hardware device. The returned pointer
* must be used to refer to this device when calling other functions.
* mac80211 allocates a private data area for the driver pointed to by
* @priv in &struct ieee80211_hw, the size of this area is given as
* @priv_data_len.
*
* @priv_data_len: length of private data
* @ops: callbacks for this device
*/
struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
const struct ieee80211_ops *ops);
/**
* ieee80211_register_hw - Register hardware device
*
* You must call this function before any other functions in
* mac80211. Note that before a hardware can be registered, you
* need to fill the contained wiphy's information.
*
* @hw: the device to register as returned by ieee80211_alloc_hw()
*/
int ieee80211_register_hw(struct ieee80211_hw *hw);
#ifdef CONFIG_MAC80211_LEDS
extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
#endif
/**
* ieee80211_get_tx_led_name - get name of TX LED
*
* mac80211 creates a transmit LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*/
static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_tx_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_get_rx_led_name - get name of RX LED
*
* mac80211 creates a receive LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*/
static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_rx_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_get_assoc_led_name - get name of association LED
*
* mac80211 creates a association LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*/
static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_assoc_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_get_radio_led_name - get name of radio LED
*
* mac80211 creates a radio change LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*/
static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_radio_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_unregister_hw - Unregister a hardware device
*
* This function instructs mac80211 to free allocated resources
* and unregister netdevices from the networking subsystem.
*
* @hw: the hardware to unregister
*/
void ieee80211_unregister_hw(struct ieee80211_hw *hw);
/**
* ieee80211_free_hw - free hardware descriptor
*
* This function frees everything that was allocated, including the
* private data for the driver. You must call ieee80211_unregister_hw()
* before calling this function.
*
* @hw: the hardware to free
*/
void ieee80211_free_hw(struct ieee80211_hw *hw);
/* trick to avoid symbol clashes with the ieee80211 subsystem */
void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ieee80211_rx_status *status);
/**
* ieee80211_rx - receive frame
*
* Use this function to hand received frames to mac80211. The receive
* buffer in @skb must start with an IEEE 802.11 header or a radiotap
* header if %RX_FLAG_RADIOTAP is set in the @status flags.
*
* This function may not be called in IRQ context. Calls to this function
* for a single hardware must be synchronized against each other. Calls
* to this function and ieee80211_rx_irqsafe() may not be mixed for a
* single hardware.
*
* @hw: the hardware this frame came in on
* @skb: the buffer to receive, owned by mac80211 after this call
* @status: status of this frame; the status pointer need not be valid
* after this function returns
*/
static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ieee80211_rx_status *status)
{
__ieee80211_rx(hw, skb, status);
}
/**
* ieee80211_rx_irqsafe - receive frame
*
* Like ieee80211_rx() but can be called in IRQ context
* (internally defers to a tasklet.)
*
* Calls to this function and ieee80211_rx() may not be mixed for a
* single hardware.
*
* @hw: the hardware this frame came in on
* @skb: the buffer to receive, owned by mac80211 after this call
* @status: status of this frame; the status pointer need not be valid
* after this function returns and is not freed by mac80211,
* it is recommended that it points to a stack area
*/
void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_rx_status *status);
/**
* ieee80211_tx_status - transmit status callback
*
* Call this function for all transmitted frames after they have been
* transmitted. It is permissible to not call this function for
* multicast frames but this can affect statistics.
*
* This function may not be called in IRQ context. Calls to this function
* for a single hardware must be synchronized against each other. Calls
* to this function and ieee80211_tx_status_irqsafe() may not be mixed
* for a single hardware.
*
* @hw: the hardware the frame was transmitted by
* @skb: the frame that was transmitted, owned by mac80211 after this call
*/
void ieee80211_tx_status(struct ieee80211_hw *hw,
struct sk_buff *skb);
/**
* ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
*
* Like ieee80211_tx_status() but can be called in IRQ context
* (internally defers to a tasklet.)
*
* Calls to this function and ieee80211_tx_status() may not be mixed for a
* single hardware.
*
* @hw: the hardware the frame was transmitted by
* @skb: the frame that was transmitted, owned by mac80211 after this call
*/
void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
struct sk_buff *skb);
/**
* ieee80211_beacon_get - beacon generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
*
* If the beacon frames are generated by the host system (i.e., not in
* hardware/firmware), the low-level driver uses this function to receive
* the next beacon frame from the 802.11 code. The low-level is responsible
* for calling this function before beacon data is needed (e.g., based on
* hardware interrupt). Returned skb is used only once and low-level driver
* is responsible for freeing it.
*/
struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
/**
* ieee80211_rts_get - RTS frame generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
* @frame: pointer to the frame that is going to be protected by the RTS.
* @frame_len: the frame length (in octets).
* @frame_txctl: &struct ieee80211_tx_info of the frame.
* @rts: The buffer where to store the RTS frame.
*
* If the RTS frames are generated by the host system (i.e., not in
* hardware/firmware), the low-level driver uses this function to receive
* the next RTS frame from the 802.11 code. The low-level is responsible
* for calling this function before and RTS frame is needed.
*/
void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
const void *frame, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl,
struct ieee80211_rts *rts);
/**
* ieee80211_rts_duration - Get the duration field for an RTS frame
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
* @frame_len: the length of the frame that is going to be protected by the RTS.
* @frame_txctl: &struct ieee80211_tx_info of the frame.
*
* If the RTS is generated in firmware, but the host system must provide
* the duration field, the low-level driver uses this function to receive
* the duration field value in little-endian byteorder.
*/
__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl);
/**
* ieee80211_ctstoself_get - CTS-to-self frame generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
* @frame: pointer to the frame that is going to be protected by the CTS-to-self.
* @frame_len: the frame length (in octets).
* @frame_txctl: &struct ieee80211_tx_info of the frame.
* @cts: The buffer where to store the CTS-to-self frame.
*
* If the CTS-to-self frames are generated by the host system (i.e., not in
* hardware/firmware), the low-level driver uses this function to receive
* the next CTS-to-self frame from the 802.11 code. The low-level is responsible
* for calling this function before and CTS-to-self frame is needed.
*/
void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const void *frame, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl,
struct ieee80211_cts *cts);
/**
* ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
* @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
* @frame_txctl: &struct ieee80211_tx_info of the frame.
*
* If the CTS-to-self is generated in firmware, but the host system must provide
* the duration field, the low-level driver uses this function to receive
* the duration field value in little-endian byteorder.
*/
__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
size_t frame_len,
const struct ieee80211_tx_info *frame_txctl);
/**
* ieee80211_generic_frame_duration - Calculate the duration field for a frame
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
* @frame_len: the length of the frame.
* @rate: the rate at which the frame is going to be transmitted.
*
* Calculate the duration field of some generic frame, given its
* length and transmission rate (in 100kbps).
*/
__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
size_t frame_len,
struct ieee80211_rate *rate);
/**
* ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
*
* Function for accessing buffered broadcast and multicast frames. If
* hardware/firmware does not implement buffering of broadcast/multicast
* frames when power saving is used, 802.11 code buffers them in the host
* memory. The low-level driver uses this function to fetch next buffered
* frame. In most cases, this is used when generating beacon frame. This
* function returns a pointer to the next buffered skb or NULL if no more
* buffered frames are available.
*
* Note: buffered frames are returned only after DTIM beacon frame was
* generated with ieee80211_beacon_get() and the low-level driver must thus
* call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
* NULL if the previous generated beacon was not DTIM, so the low-level driver
* does not need to check for DTIM beacons separately and should be able to
* use common code for all beacons.
*/
struct sk_buff *
ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
/**
* ieee80211_get_hdrlen_from_skb - get header length from data
*
* Given an skb with a raw 802.11 header at the data pointer this function
* returns the 802.11 header length in bytes (not including encryption
* headers). If the data in the sk_buff is too short to contain a valid 802.11
* header the function returns 0.
*
* @skb: the frame
*/
unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
/**
* ieee80211_hdrlen - get header length in bytes from frame control
* @fc: frame control field in little-endian format
*/
unsigned int ieee80211_hdrlen(__le16 fc);
/**
* ieee80211_get_tkip_key - get a TKIP rc4 for skb
*
* This function computes a TKIP rc4 key for an skb. It computes
* a phase 1 key if needed (iv16 wraps around). This function is to
* be used by drivers which can do HW encryption but need to compute
* to phase 1/2 key in SW.
*
* @keyconf: the parameter passed with the set key
* @skb: the skb for which the key is needed
* @type: TBD
* @key: a buffer to which the key will be written
*/
void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
struct sk_buff *skb,
enum ieee80211_tkip_key_type type, u8 *key);
/**
* ieee80211_wake_queue - wake specific queue
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @queue: queue number (counted from zero).
*
* Drivers should use this function instead of netif_wake_queue.
*/
void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
/**
* ieee80211_stop_queue - stop specific queue
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @queue: queue number (counted from zero).
*
* Drivers should use this function instead of netif_stop_queue.
*/
void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
/**
* ieee80211_queue_stopped - test status of the queue
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @queue: queue number (counted from zero).
*
* Drivers should use this function instead of netif_stop_queue.
*/
int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
/**
* ieee80211_stop_queues - stop all queues
* @hw: pointer as obtained from ieee80211_alloc_hw().
*
* Drivers should use this function instead of netif_stop_queue.
*/
void ieee80211_stop_queues(struct ieee80211_hw *hw);
/**
* ieee80211_wake_queues - wake all queues
* @hw: pointer as obtained from ieee80211_alloc_hw().
*
* Drivers should use this function instead of netif_wake_queue.
*/
void ieee80211_wake_queues(struct ieee80211_hw *hw);
/**
* ieee80211_scan_completed - completed hardware scan
*
* When hardware scan offload is used (i.e. the hw_scan() callback is
* assigned) this function needs to be called by the driver to notify
* mac80211 that the scan finished.
*
* @hw: the hardware that finished the scan
* @aborted: set to true if scan was aborted
*/
void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
/**
* ieee80211_iterate_active_interfaces - iterate active interfaces
*
* This function iterates over the interfaces associated with a given
* hardware that are currently active and calls the callback for them.
* This function allows the iterator function to sleep, when the iterator
* function is atomic @ieee80211_iterate_active_interfaces_atomic can
* be used.
*
* @hw: the hardware struct of which the interfaces should be iterated over
* @iterator: the iterator function to call
* @data: first argument of the iterator function
*/
void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data);
/**
* ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
*
* This function iterates over the interfaces associated with a given
* hardware that are currently active and calls the callback for them.
* This function requires the iterator callback function to be atomic,
* if that is not desired, use @ieee80211_iterate_active_interfaces instead.
*
* @hw: the hardware struct of which the interfaces should be iterated over
* @iterator: the iterator function to call, cannot sleep
* @data: first argument of the iterator function
*/
void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
void (*iterator)(void *data,
u8 *mac,
struct ieee80211_vif *vif),
void *data);
/**
* ieee80211_start_tx_ba_session - Start a tx Block Ack session.
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @ra: receiver address of the BA session recipient
* @tid: the TID to BA on.
*
* Return: success if addBA request was sent, failure otherwise
*
* Although mac80211/low level driver/user space application can estimate
* the need to start aggregation on a certain RA/TID, the session level
* will be managed by the mac80211.
*/
int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
/**
* ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @ra: receiver address of the BA session recipient.
* @tid: the TID to BA on.
*
* This function must be called by low level driver once it has
* finished with preparations for the BA session.
*/
void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
/**
* ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @ra: receiver address of the BA session recipient.
* @tid: the TID to BA on.
*
* This function must be called by low level driver once it has
* finished with preparations for the BA session.
* This version of the function is IRQ-safe.
*/
void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
u16 tid);
/**
* ieee80211_stop_tx_ba_session - Stop a Block Ack session.
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @ra: receiver address of the BA session recipient
* @tid: the TID to stop BA.
* @initiator: if indicates initiator DELBA frame will be sent.
*
* Return: error if no sta with matching da found, success otherwise
*
* Although mac80211/low level driver/user space application can estimate
* the need to stop aggregation on a certain RA/TID, the session level
* will be managed by the mac80211.
*/
int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
u8 *ra, u16 tid,
enum ieee80211_back_parties initiator);
/**
* ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @ra: receiver address of the BA session recipient.
* @tid: the desired TID to BA on.
*
* This function must be called by low level driver once it has
* finished with preparations for the BA session tear down.
*/
void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
/**
* ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @ra: receiver address of the BA session recipient.
* @tid: the desired TID to BA on.
*
* This function must be called by low level driver once it has
* finished with preparations for the BA session tear down.
* This version of the function is IRQ-safe.
*/
void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
u16 tid);
/**
* ieee80211_find_sta - find a station
*
* @hw: pointer as obtained from ieee80211_alloc_hw()
* @addr: station's address
*
* This function must be called under RCU lock and the
* resulting pointer is only valid under RCU lock as well.
*/
struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
const u8 *addr);
/**
* ieee80211_beacon_loss - inform hardware does not receive beacons
*
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
*
* When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
* IEEE80211_CONF_PS is set, the driver needs to inform whenever the
* hardware is not receiving beacons with this function.
*/
void ieee80211_beacon_loss(struct ieee80211_vif *vif);
/* Rate control API */
/**
* enum rate_control_changed - flags to indicate which parameter changed
*
* @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
* changed, rate control algorithm can update its internal state if needed.
*/
enum rate_control_changed {
IEEE80211_RC_HT_CHANGED = BIT(0)
};
/**
* struct ieee80211_tx_rate_control - rate control information for/from RC algo
*
* @hw: The hardware the algorithm is invoked for.
* @sband: The band this frame is being transmitted on.
* @bss_conf: the current BSS configuration
* @reported_rate: The rate control algorithm can fill this in to indicate
* which rate should be reported to userspace as the current rate and
* used for rate calculations in the mesh network.
* @rts: whether RTS will be used for this frame because it is longer than the
* RTS threshold
* @short_preamble: whether mac80211 will request short-preamble transmission
* if the selected rate supports it
* @max_rate_idx: user-requested maximum rate (not MCS for now)
* @skb: the skb that will be transmitted, the control information in it needs
* to be filled in
*/
struct ieee80211_tx_rate_control {
struct ieee80211_hw *hw;
struct ieee80211_supported_band *sband;
struct ieee80211_bss_conf *bss_conf;
struct sk_buff *skb;
struct ieee80211_tx_rate reported_rate;
bool rts, short_preamble;
u8 max_rate_idx;
};
struct rate_control_ops {
struct module *module;
const char *name;
void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
void (*free)(void *priv);
void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta);
void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta,
void *priv_sta, u32 changed);
void (*free_sta)(void *priv, struct ieee80211_sta *sta,
void *priv_sta);
void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta,
struct sk_buff *skb);
void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
struct ieee80211_tx_rate_control *txrc);
void (*add_sta_debugfs)(void *priv, void *priv_sta,
struct dentry *dir);
void (*remove_sta_debugfs)(void *priv, void *priv_sta);
};
static inline int rate_supported(struct ieee80211_sta *sta,
enum ieee80211_band band,
int index)
{
return (sta == NULL || sta->supp_rates[band] & BIT(index));
}
static inline s8
rate_lowest_index(struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta)
{
int i;
for (i = 0; i < sband->n_bitrates; i++)
if (rate_supported(sta, sband->band, i))
return i;
/* warn when we cannot find a rate. */
WARN_ON(1);
return 0;
}
int ieee80211_rate_control_register(struct rate_control_ops *ops);
void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
static inline bool
conf_is_ht20(struct ieee80211_conf *conf)
{
return conf->channel_type == NL80211_CHAN_HT20;
}
static inline bool
conf_is_ht40_minus(struct ieee80211_conf *conf)
{
return conf->channel_type == NL80211_CHAN_HT40MINUS;
}
static inline bool
conf_is_ht40_plus(struct ieee80211_conf *conf)
{
return conf->channel_type == NL80211_CHAN_HT40PLUS;
}
static inline bool
conf_is_ht40(struct ieee80211_conf *conf)
{
return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
}
static inline bool
conf_is_ht(struct ieee80211_conf *conf)
{
return conf->channel_type != NL80211_CHAN_NO_HT;
}
#endif /* MAC80211_H */