| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2004-2008 Cavium Networks |
| */ |
| #include <linux/irq.h> |
| #include <linux/interrupt.h> |
| #include <linux/hardirq.h> |
| |
| #include <asm/octeon/octeon.h> |
| |
| DEFINE_RWLOCK(octeon_irq_ciu0_rwlock); |
| DEFINE_RWLOCK(octeon_irq_ciu1_rwlock); |
| DEFINE_SPINLOCK(octeon_irq_msi_lock); |
| |
| static void octeon_irq_core_ack(unsigned int irq) |
| { |
| unsigned int bit = irq - OCTEON_IRQ_SW0; |
| /* |
| * We don't need to disable IRQs to make these atomic since |
| * they are already disabled earlier in the low level |
| * interrupt code. |
| */ |
| clear_c0_status(0x100 << bit); |
| /* The two user interrupts must be cleared manually. */ |
| if (bit < 2) |
| clear_c0_cause(0x100 << bit); |
| } |
| |
| static void octeon_irq_core_eoi(unsigned int irq) |
| { |
| struct irq_desc *desc = irq_desc + irq; |
| unsigned int bit = irq - OCTEON_IRQ_SW0; |
| /* |
| * If an IRQ is being processed while we are disabling it the |
| * handler will attempt to unmask the interrupt after it has |
| * been disabled. |
| */ |
| if (desc->status & IRQ_DISABLED) |
| return; |
| |
| /* There is a race here. We should fix it. */ |
| |
| /* |
| * We don't need to disable IRQs to make these atomic since |
| * they are already disabled earlier in the low level |
| * interrupt code. |
| */ |
| set_c0_status(0x100 << bit); |
| } |
| |
| static void octeon_irq_core_enable(unsigned int irq) |
| { |
| unsigned long flags; |
| unsigned int bit = irq - OCTEON_IRQ_SW0; |
| |
| /* |
| * We need to disable interrupts to make sure our updates are |
| * atomic. |
| */ |
| local_irq_save(flags); |
| set_c0_status(0x100 << bit); |
| local_irq_restore(flags); |
| } |
| |
| static void octeon_irq_core_disable_local(unsigned int irq) |
| { |
| unsigned long flags; |
| unsigned int bit = irq - OCTEON_IRQ_SW0; |
| /* |
| * We need to disable interrupts to make sure our updates are |
| * atomic. |
| */ |
| local_irq_save(flags); |
| clear_c0_status(0x100 << bit); |
| local_irq_restore(flags); |
| } |
| |
| static void octeon_irq_core_disable(unsigned int irq) |
| { |
| #ifdef CONFIG_SMP |
| on_each_cpu((void (*)(void *)) octeon_irq_core_disable_local, |
| (void *) (long) irq, 1); |
| #else |
| octeon_irq_core_disable_local(irq); |
| #endif |
| } |
| |
| static struct irq_chip octeon_irq_chip_core = { |
| .name = "Core", |
| .enable = octeon_irq_core_enable, |
| .disable = octeon_irq_core_disable, |
| .ack = octeon_irq_core_ack, |
| .eoi = octeon_irq_core_eoi, |
| }; |
| |
| |
| static void octeon_irq_ciu0_ack(unsigned int irq) |
| { |
| /* |
| * In order to avoid any locking accessing the CIU, we |
| * acknowledge CIU interrupts by disabling all of them. This |
| * way we can use a per core register and avoid any out of |
| * core locking requirements. This has the side affect that |
| * CIU interrupts can't be processed recursively. |
| * |
| * We don't need to disable IRQs to make these atomic since |
| * they are already disabled earlier in the low level |
| * interrupt code. |
| */ |
| clear_c0_status(0x100 << 2); |
| } |
| |
| static void octeon_irq_ciu0_eoi(unsigned int irq) |
| { |
| /* |
| * Enable all CIU interrupts again. We don't need to disable |
| * IRQs to make these atomic since they are already disabled |
| * earlier in the low level interrupt code. |
| */ |
| set_c0_status(0x100 << 2); |
| } |
| |
| static void octeon_irq_ciu0_enable(unsigned int irq) |
| { |
| int coreid = cvmx_get_core_num(); |
| unsigned long flags; |
| uint64_t en0; |
| int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */ |
| |
| /* |
| * A read lock is used here to make sure only one core is ever |
| * updating the CIU enable bits at a time. During an enable |
| * the cores don't interfere with each other. During a disable |
| * the write lock stops any enables that might cause a |
| * problem. |
| */ |
| read_lock_irqsave(&octeon_irq_ciu0_rwlock, flags); |
| en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)); |
| en0 |= 1ull << bit; |
| cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0); |
| cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)); |
| read_unlock_irqrestore(&octeon_irq_ciu0_rwlock, flags); |
| } |
| |
| static void octeon_irq_ciu0_disable(unsigned int irq) |
| { |
| int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */ |
| unsigned long flags; |
| uint64_t en0; |
| #ifdef CONFIG_SMP |
| int cpu; |
| write_lock_irqsave(&octeon_irq_ciu0_rwlock, flags); |
| for_each_online_cpu(cpu) { |
| int coreid = cpu_logical_map(cpu); |
| en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)); |
| en0 &= ~(1ull << bit); |
| cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0); |
| } |
| /* |
| * We need to do a read after the last update to make sure all |
| * of them are done. |
| */ |
| cvmx_read_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2)); |
| write_unlock_irqrestore(&octeon_irq_ciu0_rwlock, flags); |
| #else |
| int coreid = cvmx_get_core_num(); |
| local_irq_save(flags); |
| en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)); |
| en0 &= ~(1ull << bit); |
| cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0); |
| cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)); |
| local_irq_restore(flags); |
| #endif |
| } |
| |
| #ifdef CONFIG_SMP |
| static int octeon_irq_ciu0_set_affinity(unsigned int irq, const struct cpumask *dest) |
| { |
| int cpu; |
| int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */ |
| |
| write_lock(&octeon_irq_ciu0_rwlock); |
| for_each_online_cpu(cpu) { |
| int coreid = cpu_logical_map(cpu); |
| uint64_t en0 = |
| cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)); |
| if (cpumask_test_cpu(cpu, dest)) |
| en0 |= 1ull << bit; |
| else |
| en0 &= ~(1ull << bit); |
| cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0); |
| } |
| /* |
| * We need to do a read after the last update to make sure all |
| * of them are done. |
| */ |
| cvmx_read_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2)); |
| write_unlock(&octeon_irq_ciu0_rwlock); |
| |
| return 0; |
| } |
| #endif |
| |
| static struct irq_chip octeon_irq_chip_ciu0 = { |
| .name = "CIU0", |
| .enable = octeon_irq_ciu0_enable, |
| .disable = octeon_irq_ciu0_disable, |
| .ack = octeon_irq_ciu0_ack, |
| .eoi = octeon_irq_ciu0_eoi, |
| #ifdef CONFIG_SMP |
| .set_affinity = octeon_irq_ciu0_set_affinity, |
| #endif |
| }; |
| |
| |
| static void octeon_irq_ciu1_ack(unsigned int irq) |
| { |
| /* |
| * In order to avoid any locking accessing the CIU, we |
| * acknowledge CIU interrupts by disabling all of them. This |
| * way we can use a per core register and avoid any out of |
| * core locking requirements. This has the side affect that |
| * CIU interrupts can't be processed recursively. We don't |
| * need to disable IRQs to make these atomic since they are |
| * already disabled earlier in the low level interrupt code. |
| */ |
| clear_c0_status(0x100 << 3); |
| } |
| |
| static void octeon_irq_ciu1_eoi(unsigned int irq) |
| { |
| /* |
| * Enable all CIU interrupts again. We don't need to disable |
| * IRQs to make these atomic since they are already disabled |
| * earlier in the low level interrupt code. |
| */ |
| set_c0_status(0x100 << 3); |
| } |
| |
| static void octeon_irq_ciu1_enable(unsigned int irq) |
| { |
| int coreid = cvmx_get_core_num(); |
| unsigned long flags; |
| uint64_t en1; |
| int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */ |
| |
| /* |
| * A read lock is used here to make sure only one core is ever |
| * updating the CIU enable bits at a time. During an enable |
| * the cores don't interfere with each other. During a disable |
| * the write lock stops any enables that might cause a |
| * problem. |
| */ |
| read_lock_irqsave(&octeon_irq_ciu1_rwlock, flags); |
| en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1)); |
| en1 |= 1ull << bit; |
| cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1); |
| cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1)); |
| read_unlock_irqrestore(&octeon_irq_ciu1_rwlock, flags); |
| } |
| |
| static void octeon_irq_ciu1_disable(unsigned int irq) |
| { |
| int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */ |
| unsigned long flags; |
| uint64_t en1; |
| #ifdef CONFIG_SMP |
| int cpu; |
| write_lock_irqsave(&octeon_irq_ciu1_rwlock, flags); |
| for_each_online_cpu(cpu) { |
| int coreid = cpu_logical_map(cpu); |
| en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1)); |
| en1 &= ~(1ull << bit); |
| cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1); |
| } |
| /* |
| * We need to do a read after the last update to make sure all |
| * of them are done. |
| */ |
| cvmx_read_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1)); |
| write_unlock_irqrestore(&octeon_irq_ciu1_rwlock, flags); |
| #else |
| int coreid = cvmx_get_core_num(); |
| local_irq_save(flags); |
| en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1)); |
| en1 &= ~(1ull << bit); |
| cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1); |
| cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1)); |
| local_irq_restore(flags); |
| #endif |
| } |
| |
| #ifdef CONFIG_SMP |
| static int octeon_irq_ciu1_set_affinity(unsigned int irq, const struct cpumask *dest) |
| { |
| int cpu; |
| int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */ |
| |
| write_lock(&octeon_irq_ciu1_rwlock); |
| for_each_online_cpu(cpu) { |
| int coreid = cpu_logical_map(cpu); |
| uint64_t en1 = |
| cvmx_read_csr(CVMX_CIU_INTX_EN1 |
| (coreid * 2 + 1)); |
| if (cpumask_test_cpu(cpu, dest)) |
| en1 |= 1ull << bit; |
| else |
| en1 &= ~(1ull << bit); |
| cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1); |
| } |
| /* |
| * We need to do a read after the last update to make sure all |
| * of them are done. |
| */ |
| cvmx_read_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1)); |
| write_unlock(&octeon_irq_ciu1_rwlock); |
| |
| return 0; |
| } |
| #endif |
| |
| static struct irq_chip octeon_irq_chip_ciu1 = { |
| .name = "CIU1", |
| .enable = octeon_irq_ciu1_enable, |
| .disable = octeon_irq_ciu1_disable, |
| .ack = octeon_irq_ciu1_ack, |
| .eoi = octeon_irq_ciu1_eoi, |
| #ifdef CONFIG_SMP |
| .set_affinity = octeon_irq_ciu1_set_affinity, |
| #endif |
| }; |
| |
| #ifdef CONFIG_PCI_MSI |
| |
| static void octeon_irq_msi_ack(unsigned int irq) |
| { |
| if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) { |
| /* These chips have PCI */ |
| cvmx_write_csr(CVMX_NPI_NPI_MSI_RCV, |
| 1ull << (irq - OCTEON_IRQ_MSI_BIT0)); |
| } else { |
| /* |
| * These chips have PCIe. Thankfully the ACK doesn't |
| * need any locking. |
| */ |
| cvmx_write_csr(CVMX_PEXP_NPEI_MSI_RCV0, |
| 1ull << (irq - OCTEON_IRQ_MSI_BIT0)); |
| } |
| } |
| |
| static void octeon_irq_msi_eoi(unsigned int irq) |
| { |
| /* Nothing needed */ |
| } |
| |
| static void octeon_irq_msi_enable(unsigned int irq) |
| { |
| if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) { |
| /* |
| * Octeon PCI doesn't have the ability to mask/unmask |
| * MSI interrupts individually. Instead of |
| * masking/unmasking them in groups of 16, we simple |
| * assume MSI devices are well behaved. MSI |
| * interrupts are always enable and the ACK is assumed |
| * to be enough. |
| */ |
| } else { |
| /* These chips have PCIe. Note that we only support |
| * the first 64 MSI interrupts. Unfortunately all the |
| * MSI enables are in the same register. We use |
| * MSI0's lock to control access to them all. |
| */ |
| uint64_t en; |
| unsigned long flags; |
| spin_lock_irqsave(&octeon_irq_msi_lock, flags); |
| en = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0); |
| en |= 1ull << (irq - OCTEON_IRQ_MSI_BIT0); |
| cvmx_write_csr(CVMX_PEXP_NPEI_MSI_ENB0, en); |
| cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0); |
| spin_unlock_irqrestore(&octeon_irq_msi_lock, flags); |
| } |
| } |
| |
| static void octeon_irq_msi_disable(unsigned int irq) |
| { |
| if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) { |
| /* See comment in enable */ |
| } else { |
| /* |
| * These chips have PCIe. Note that we only support |
| * the first 64 MSI interrupts. Unfortunately all the |
| * MSI enables are in the same register. We use |
| * MSI0's lock to control access to them all. |
| */ |
| uint64_t en; |
| unsigned long flags; |
| spin_lock_irqsave(&octeon_irq_msi_lock, flags); |
| en = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0); |
| en &= ~(1ull << (irq - OCTEON_IRQ_MSI_BIT0)); |
| cvmx_write_csr(CVMX_PEXP_NPEI_MSI_ENB0, en); |
| cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0); |
| spin_unlock_irqrestore(&octeon_irq_msi_lock, flags); |
| } |
| } |
| |
| static struct irq_chip octeon_irq_chip_msi = { |
| .name = "MSI", |
| .enable = octeon_irq_msi_enable, |
| .disable = octeon_irq_msi_disable, |
| .ack = octeon_irq_msi_ack, |
| .eoi = octeon_irq_msi_eoi, |
| }; |
| #endif |
| |
| void __init arch_init_irq(void) |
| { |
| int irq; |
| |
| #ifdef CONFIG_SMP |
| /* Set the default affinity to the boot cpu. */ |
| cpumask_clear(irq_default_affinity); |
| cpumask_set_cpu(smp_processor_id(), irq_default_affinity); |
| #endif |
| |
| if (NR_IRQS < OCTEON_IRQ_LAST) |
| pr_err("octeon_irq_init: NR_IRQS is set too low\n"); |
| |
| /* 0 - 15 reserved for i8259 master and slave controller. */ |
| |
| /* 17 - 23 Mips internal */ |
| for (irq = OCTEON_IRQ_SW0; irq <= OCTEON_IRQ_TIMER; irq++) { |
| set_irq_chip_and_handler(irq, &octeon_irq_chip_core, |
| handle_percpu_irq); |
| } |
| |
| /* 24 - 87 CIU_INT_SUM0 */ |
| for (irq = OCTEON_IRQ_WORKQ0; irq <= OCTEON_IRQ_BOOTDMA; irq++) { |
| set_irq_chip_and_handler(irq, &octeon_irq_chip_ciu0, |
| handle_percpu_irq); |
| } |
| |
| /* 88 - 151 CIU_INT_SUM1 */ |
| for (irq = OCTEON_IRQ_WDOG0; irq <= OCTEON_IRQ_RESERVED151; irq++) { |
| set_irq_chip_and_handler(irq, &octeon_irq_chip_ciu1, |
| handle_percpu_irq); |
| } |
| |
| #ifdef CONFIG_PCI_MSI |
| /* 152 - 215 PCI/PCIe MSI interrupts */ |
| for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_BIT63; irq++) { |
| set_irq_chip_and_handler(irq, &octeon_irq_chip_msi, |
| handle_percpu_irq); |
| } |
| #endif |
| set_c0_status(0x300 << 2); |
| } |
| |
| asmlinkage void plat_irq_dispatch(void) |
| { |
| const unsigned long core_id = cvmx_get_core_num(); |
| const uint64_t ciu_sum0_address = CVMX_CIU_INTX_SUM0(core_id * 2); |
| const uint64_t ciu_en0_address = CVMX_CIU_INTX_EN0(core_id * 2); |
| const uint64_t ciu_sum1_address = CVMX_CIU_INT_SUM1; |
| const uint64_t ciu_en1_address = CVMX_CIU_INTX_EN1(core_id * 2 + 1); |
| unsigned long cop0_cause; |
| unsigned long cop0_status; |
| uint64_t ciu_en; |
| uint64_t ciu_sum; |
| |
| while (1) { |
| cop0_cause = read_c0_cause(); |
| cop0_status = read_c0_status(); |
| cop0_cause &= cop0_status; |
| cop0_cause &= ST0_IM; |
| |
| if (unlikely(cop0_cause & STATUSF_IP2)) { |
| ciu_sum = cvmx_read_csr(ciu_sum0_address); |
| ciu_en = cvmx_read_csr(ciu_en0_address); |
| ciu_sum &= ciu_en; |
| if (likely(ciu_sum)) |
| do_IRQ(fls64(ciu_sum) + OCTEON_IRQ_WORKQ0 - 1); |
| else |
| spurious_interrupt(); |
| } else if (unlikely(cop0_cause & STATUSF_IP3)) { |
| ciu_sum = cvmx_read_csr(ciu_sum1_address); |
| ciu_en = cvmx_read_csr(ciu_en1_address); |
| ciu_sum &= ciu_en; |
| if (likely(ciu_sum)) |
| do_IRQ(fls64(ciu_sum) + OCTEON_IRQ_WDOG0 - 1); |
| else |
| spurious_interrupt(); |
| } else if (likely(cop0_cause)) { |
| do_IRQ(fls(cop0_cause) - 9 + MIPS_CPU_IRQ_BASE); |
| } else { |
| break; |
| } |
| } |
| } |