blob: 83a877f3a553ee94611dced9e87d28f2222aecaf [file] [log] [blame]
/*
* Driver for Marvell Discovery (MV643XX) and Marvell Orion ethernet ports
* Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
*
* Based on the 64360 driver from:
* Copyright (C) 2002 Rabeeh Khoury <rabeeh@galileo.co.il>
* Rabeeh Khoury <rabeeh@marvell.com>
*
* Copyright (C) 2003 PMC-Sierra, Inc.,
* written by Manish Lachwani
*
* Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
*
* Copyright (C) 2004-2006 MontaVista Software, Inc.
* Dale Farnsworth <dale@farnsworth.org>
*
* Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
* <sjhill@realitydiluted.com>
*
* Copyright (C) 2007-2008 Marvell Semiconductor
* Lennert Buytenhek <buytenh@marvell.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/in.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/mii.h>
#include <linux/mv643xx_eth.h>
#include <asm/io.h>
#include <asm/types.h>
#include <asm/system.h>
static char mv643xx_eth_driver_name[] = "mv643xx_eth";
static char mv643xx_eth_driver_version[] = "1.1";
#define MV643XX_ETH_CHECKSUM_OFFLOAD_TX
#define MV643XX_ETH_NAPI
#define MV643XX_ETH_TX_FAST_REFILL
#ifdef MV643XX_ETH_CHECKSUM_OFFLOAD_TX
#define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
#else
#define MAX_DESCS_PER_SKB 1
#endif
/*
* Registers shared between all ports.
*/
#define PHY_ADDR 0x0000
#define SMI_REG 0x0004
#define WINDOW_BASE(w) (0x0200 + ((w) << 3))
#define WINDOW_SIZE(w) (0x0204 + ((w) << 3))
#define WINDOW_REMAP_HIGH(w) (0x0280 + ((w) << 2))
#define WINDOW_BAR_ENABLE 0x0290
#define WINDOW_PROTECT(w) (0x0294 + ((w) << 4))
/*
* Per-port registers.
*/
#define PORT_CONFIG(p) (0x0400 + ((p) << 10))
#define UNICAST_PROMISCUOUS_MODE 0x00000001
#define PORT_CONFIG_EXT(p) (0x0404 + ((p) << 10))
#define MAC_ADDR_LOW(p) (0x0414 + ((p) << 10))
#define MAC_ADDR_HIGH(p) (0x0418 + ((p) << 10))
#define SDMA_CONFIG(p) (0x041c + ((p) << 10))
#define PORT_SERIAL_CONTROL(p) (0x043c + ((p) << 10))
#define PORT_STATUS(p) (0x0444 + ((p) << 10))
#define TX_FIFO_EMPTY 0x00000400
#define TXQ_COMMAND(p) (0x0448 + ((p) << 10))
#define TXQ_FIX_PRIO_CONF(p) (0x044c + ((p) << 10))
#define TX_BW_RATE(p) (0x0450 + ((p) << 10))
#define TX_BW_MTU(p) (0x0458 + ((p) << 10))
#define TX_BW_BURST(p) (0x045c + ((p) << 10))
#define INT_CAUSE(p) (0x0460 + ((p) << 10))
#define INT_TX_END 0x07f80000
#define INT_RX 0x0007fbfc
#define INT_EXT 0x00000002
#define INT_CAUSE_EXT(p) (0x0464 + ((p) << 10))
#define INT_EXT_LINK 0x00100000
#define INT_EXT_PHY 0x00010000
#define INT_EXT_TX_ERROR_0 0x00000100
#define INT_EXT_TX_0 0x00000001
#define INT_EXT_TX 0x0000ffff
#define INT_MASK(p) (0x0468 + ((p) << 10))
#define INT_MASK_EXT(p) (0x046c + ((p) << 10))
#define TX_FIFO_URGENT_THRESHOLD(p) (0x0474 + ((p) << 10))
#define TXQ_FIX_PRIO_CONF_MOVED(p) (0x04dc + ((p) << 10))
#define TX_BW_RATE_MOVED(p) (0x04e0 + ((p) << 10))
#define TX_BW_MTU_MOVED(p) (0x04e8 + ((p) << 10))
#define TX_BW_BURST_MOVED(p) (0x04ec + ((p) << 10))
#define RXQ_CURRENT_DESC_PTR(p, q) (0x060c + ((p) << 10) + ((q) << 4))
#define RXQ_COMMAND(p) (0x0680 + ((p) << 10))
#define TXQ_CURRENT_DESC_PTR(p, q) (0x06c0 + ((p) << 10) + ((q) << 2))
#define TXQ_BW_TOKENS(p, q) (0x0700 + ((p) << 10) + ((q) << 4))
#define TXQ_BW_CONF(p, q) (0x0704 + ((p) << 10) + ((q) << 4))
#define TXQ_BW_WRR_CONF(p, q) (0x0708 + ((p) << 10) + ((q) << 4))
#define MIB_COUNTERS(p) (0x1000 + ((p) << 7))
#define SPECIAL_MCAST_TABLE(p) (0x1400 + ((p) << 10))
#define OTHER_MCAST_TABLE(p) (0x1500 + ((p) << 10))
#define UNICAST_TABLE(p) (0x1600 + ((p) << 10))
/*
* SDMA configuration register.
*/
#define RX_BURST_SIZE_4_64BIT (2 << 1)
#define BLM_RX_NO_SWAP (1 << 4)
#define BLM_TX_NO_SWAP (1 << 5)
#define TX_BURST_SIZE_4_64BIT (2 << 22)
#if defined(__BIG_ENDIAN)
#define PORT_SDMA_CONFIG_DEFAULT_VALUE \
RX_BURST_SIZE_4_64BIT | \
TX_BURST_SIZE_4_64BIT
#elif defined(__LITTLE_ENDIAN)
#define PORT_SDMA_CONFIG_DEFAULT_VALUE \
RX_BURST_SIZE_4_64BIT | \
BLM_RX_NO_SWAP | \
BLM_TX_NO_SWAP | \
TX_BURST_SIZE_4_64BIT
#else
#error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined
#endif
/*
* Port serial control register.
*/
#define SET_MII_SPEED_TO_100 (1 << 24)
#define SET_GMII_SPEED_TO_1000 (1 << 23)
#define SET_FULL_DUPLEX_MODE (1 << 21)
#define MAX_RX_PACKET_1522BYTE (1 << 17)
#define MAX_RX_PACKET_9700BYTE (5 << 17)
#define MAX_RX_PACKET_MASK (7 << 17)
#define DISABLE_AUTO_NEG_SPEED_GMII (1 << 13)
#define DO_NOT_FORCE_LINK_FAIL (1 << 10)
#define SERIAL_PORT_CONTROL_RESERVED (1 << 9)
#define DISABLE_AUTO_NEG_FOR_FLOW_CTRL (1 << 3)
#define DISABLE_AUTO_NEG_FOR_DUPLEX (1 << 2)
#define FORCE_LINK_PASS (1 << 1)
#define SERIAL_PORT_ENABLE (1 << 0)
#define DEFAULT_RX_QUEUE_SIZE 400
#define DEFAULT_TX_QUEUE_SIZE 800
/*
* RX/TX descriptors.
*/
#if defined(__BIG_ENDIAN)
struct rx_desc {
u16 byte_cnt; /* Descriptor buffer byte count */
u16 buf_size; /* Buffer size */
u32 cmd_sts; /* Descriptor command status */
u32 next_desc_ptr; /* Next descriptor pointer */
u32 buf_ptr; /* Descriptor buffer pointer */
};
struct tx_desc {
u16 byte_cnt; /* buffer byte count */
u16 l4i_chk; /* CPU provided TCP checksum */
u32 cmd_sts; /* Command/status field */
u32 next_desc_ptr; /* Pointer to next descriptor */
u32 buf_ptr; /* pointer to buffer for this descriptor*/
};
#elif defined(__LITTLE_ENDIAN)
struct rx_desc {
u32 cmd_sts; /* Descriptor command status */
u16 buf_size; /* Buffer size */
u16 byte_cnt; /* Descriptor buffer byte count */
u32 buf_ptr; /* Descriptor buffer pointer */
u32 next_desc_ptr; /* Next descriptor pointer */
};
struct tx_desc {
u32 cmd_sts; /* Command/status field */
u16 l4i_chk; /* CPU provided TCP checksum */
u16 byte_cnt; /* buffer byte count */
u32 buf_ptr; /* pointer to buffer for this descriptor*/
u32 next_desc_ptr; /* Pointer to next descriptor */
};
#else
#error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined
#endif
/* RX & TX descriptor command */
#define BUFFER_OWNED_BY_DMA 0x80000000
/* RX & TX descriptor status */
#define ERROR_SUMMARY 0x00000001
/* RX descriptor status */
#define LAYER_4_CHECKSUM_OK 0x40000000
#define RX_ENABLE_INTERRUPT 0x20000000
#define RX_FIRST_DESC 0x08000000
#define RX_LAST_DESC 0x04000000
/* TX descriptor command */
#define TX_ENABLE_INTERRUPT 0x00800000
#define GEN_CRC 0x00400000
#define TX_FIRST_DESC 0x00200000
#define TX_LAST_DESC 0x00100000
#define ZERO_PADDING 0x00080000
#define GEN_IP_V4_CHECKSUM 0x00040000
#define GEN_TCP_UDP_CHECKSUM 0x00020000
#define UDP_FRAME 0x00010000
#define TX_IHL_SHIFT 11
/* global *******************************************************************/
struct mv643xx_eth_shared_private {
/*
* Ethernet controller base address.
*/
void __iomem *base;
/*
* Protects access to SMI_REG, which is shared between ports.
*/
spinlock_t phy_lock;
/*
* Per-port MBUS window access register value.
*/
u32 win_protect;
/*
* Hardware-specific parameters.
*/
unsigned int t_clk;
int extended_rx_coal_limit;
int tx_bw_control_moved;
};
/* per-port *****************************************************************/
struct mib_counters {
u64 good_octets_received;
u32 bad_octets_received;
u32 internal_mac_transmit_err;
u32 good_frames_received;
u32 bad_frames_received;
u32 broadcast_frames_received;
u32 multicast_frames_received;
u32 frames_64_octets;
u32 frames_65_to_127_octets;
u32 frames_128_to_255_octets;
u32 frames_256_to_511_octets;
u32 frames_512_to_1023_octets;
u32 frames_1024_to_max_octets;
u64 good_octets_sent;
u32 good_frames_sent;
u32 excessive_collision;
u32 multicast_frames_sent;
u32 broadcast_frames_sent;
u32 unrec_mac_control_received;
u32 fc_sent;
u32 good_fc_received;
u32 bad_fc_received;
u32 undersize_received;
u32 fragments_received;
u32 oversize_received;
u32 jabber_received;
u32 mac_receive_error;
u32 bad_crc_event;
u32 collision;
u32 late_collision;
};
struct rx_queue {
int index;
int rx_ring_size;
int rx_desc_count;
int rx_curr_desc;
int rx_used_desc;
struct rx_desc *rx_desc_area;
dma_addr_t rx_desc_dma;
int rx_desc_area_size;
struct sk_buff **rx_skb;
struct timer_list rx_oom;
};
struct tx_queue {
int index;
int tx_ring_size;
int tx_desc_count;
int tx_curr_desc;
int tx_used_desc;
struct tx_desc *tx_desc_area;
dma_addr_t tx_desc_dma;
int tx_desc_area_size;
struct sk_buff **tx_skb;
};
struct mv643xx_eth_private {
struct mv643xx_eth_shared_private *shared;
int port_num;
struct net_device *dev;
struct mv643xx_eth_shared_private *shared_smi;
int phy_addr;
spinlock_t lock;
struct mib_counters mib_counters;
struct work_struct tx_timeout_task;
struct mii_if_info mii;
/*
* RX state.
*/
int default_rx_ring_size;
unsigned long rx_desc_sram_addr;
int rx_desc_sram_size;
u8 rxq_mask;
int rxq_primary;
struct napi_struct napi;
struct rx_queue rxq[8];
/*
* TX state.
*/
int default_tx_ring_size;
unsigned long tx_desc_sram_addr;
int tx_desc_sram_size;
u8 txq_mask;
int txq_primary;
struct tx_queue txq[8];
#ifdef MV643XX_ETH_TX_FAST_REFILL
int tx_clean_threshold;
#endif
};
/* port register accessors **************************************************/
static inline u32 rdl(struct mv643xx_eth_private *mp, int offset)
{
return readl(mp->shared->base + offset);
}
static inline void wrl(struct mv643xx_eth_private *mp, int offset, u32 data)
{
writel(data, mp->shared->base + offset);
}
/* rxq/txq helper functions *************************************************/
static struct mv643xx_eth_private *rxq_to_mp(struct rx_queue *rxq)
{
return container_of(rxq, struct mv643xx_eth_private, rxq[rxq->index]);
}
static struct mv643xx_eth_private *txq_to_mp(struct tx_queue *txq)
{
return container_of(txq, struct mv643xx_eth_private, txq[txq->index]);
}
static void rxq_enable(struct rx_queue *rxq)
{
struct mv643xx_eth_private *mp = rxq_to_mp(rxq);
wrl(mp, RXQ_COMMAND(mp->port_num), 1 << rxq->index);
}
static void rxq_disable(struct rx_queue *rxq)
{
struct mv643xx_eth_private *mp = rxq_to_mp(rxq);
u8 mask = 1 << rxq->index;
wrl(mp, RXQ_COMMAND(mp->port_num), mask << 8);
while (rdl(mp, RXQ_COMMAND(mp->port_num)) & mask)
udelay(10);
}
static void txq_enable(struct tx_queue *txq)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
wrl(mp, TXQ_COMMAND(mp->port_num), 1 << txq->index);
}
static void txq_disable(struct tx_queue *txq)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
u8 mask = 1 << txq->index;
wrl(mp, TXQ_COMMAND(mp->port_num), mask << 8);
while (rdl(mp, TXQ_COMMAND(mp->port_num)) & mask)
udelay(10);
}
static void __txq_maybe_wake(struct tx_queue *txq)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
/*
* netif_{stop,wake}_queue() flow control only applies to
* the primary queue.
*/
BUG_ON(txq->index != mp->txq_primary);
if (txq->tx_ring_size - txq->tx_desc_count >= MAX_DESCS_PER_SKB)
netif_wake_queue(mp->dev);
}
/* rx ***********************************************************************/
static void txq_reclaim(struct tx_queue *txq, int force);
static void rxq_refill(struct rx_queue *rxq)
{
struct mv643xx_eth_private *mp = rxq_to_mp(rxq);
unsigned long flags;
spin_lock_irqsave(&mp->lock, flags);
while (rxq->rx_desc_count < rxq->rx_ring_size) {
int skb_size;
struct sk_buff *skb;
int unaligned;
int rx;
/*
* Reserve 2+14 bytes for an ethernet header (the
* hardware automatically prepends 2 bytes of dummy
* data to each received packet), 4 bytes for a VLAN
* header, and 4 bytes for the trailing FCS -- 24
* bytes total.
*/
skb_size = mp->dev->mtu + 24;
skb = dev_alloc_skb(skb_size + dma_get_cache_alignment() - 1);
if (skb == NULL)
break;
unaligned = (u32)skb->data & (dma_get_cache_alignment() - 1);
if (unaligned)
skb_reserve(skb, dma_get_cache_alignment() - unaligned);
rxq->rx_desc_count++;
rx = rxq->rx_used_desc;
rxq->rx_used_desc = (rx + 1) % rxq->rx_ring_size;
rxq->rx_desc_area[rx].buf_ptr = dma_map_single(NULL, skb->data,
skb_size, DMA_FROM_DEVICE);
rxq->rx_desc_area[rx].buf_size = skb_size;
rxq->rx_skb[rx] = skb;
wmb();
rxq->rx_desc_area[rx].cmd_sts = BUFFER_OWNED_BY_DMA |
RX_ENABLE_INTERRUPT;
wmb();
/*
* The hardware automatically prepends 2 bytes of
* dummy data to each received packet, so that the
* IP header ends up 16-byte aligned.
*/
skb_reserve(skb, 2);
}
if (rxq->rx_desc_count != rxq->rx_ring_size) {
rxq->rx_oom.expires = jiffies + (HZ / 10);
add_timer(&rxq->rx_oom);
}
spin_unlock_irqrestore(&mp->lock, flags);
}
static inline void rxq_refill_timer_wrapper(unsigned long data)
{
rxq_refill((struct rx_queue *)data);
}
static int rxq_process(struct rx_queue *rxq, int budget)
{
struct mv643xx_eth_private *mp = rxq_to_mp(rxq);
struct net_device_stats *stats = &mp->dev->stats;
int rx;
rx = 0;
while (rx < budget) {
struct rx_desc *rx_desc;
unsigned int cmd_sts;
struct sk_buff *skb;
unsigned long flags;
spin_lock_irqsave(&mp->lock, flags);
rx_desc = &rxq->rx_desc_area[rxq->rx_curr_desc];
cmd_sts = rx_desc->cmd_sts;
if (cmd_sts & BUFFER_OWNED_BY_DMA) {
spin_unlock_irqrestore(&mp->lock, flags);
break;
}
rmb();
skb = rxq->rx_skb[rxq->rx_curr_desc];
rxq->rx_skb[rxq->rx_curr_desc] = NULL;
rxq->rx_curr_desc = (rxq->rx_curr_desc + 1) % rxq->rx_ring_size;
spin_unlock_irqrestore(&mp->lock, flags);
dma_unmap_single(NULL, rx_desc->buf_ptr + 2,
mp->dev->mtu + 24, DMA_FROM_DEVICE);
rxq->rx_desc_count--;
rx++;
/*
* Update statistics.
*
* Note that the descriptor byte count includes 2 dummy
* bytes automatically inserted by the hardware at the
* start of the packet (which we don't count), and a 4
* byte CRC at the end of the packet (which we do count).
*/
stats->rx_packets++;
stats->rx_bytes += rx_desc->byte_cnt - 2;
/*
* In case we received a packet without first / last bits
* on, or the error summary bit is set, the packet needs
* to be dropped.
*/
if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
(RX_FIRST_DESC | RX_LAST_DESC))
|| (cmd_sts & ERROR_SUMMARY)) {
stats->rx_dropped++;
if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
(RX_FIRST_DESC | RX_LAST_DESC)) {
if (net_ratelimit())
dev_printk(KERN_ERR, &mp->dev->dev,
"received packet spanning "
"multiple descriptors\n");
}
if (cmd_sts & ERROR_SUMMARY)
stats->rx_errors++;
dev_kfree_skb_irq(skb);
} else {
/*
* The -4 is for the CRC in the trailer of the
* received packet
*/
skb_put(skb, rx_desc->byte_cnt - 2 - 4);
if (cmd_sts & LAYER_4_CHECKSUM_OK) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum = htons(
(cmd_sts & 0x0007fff8) >> 3);
}
skb->protocol = eth_type_trans(skb, mp->dev);
#ifdef MV643XX_ETH_NAPI
netif_receive_skb(skb);
#else
netif_rx(skb);
#endif
}
mp->dev->last_rx = jiffies;
}
rxq_refill(rxq);
return rx;
}
#ifdef MV643XX_ETH_NAPI
static int mv643xx_eth_poll(struct napi_struct *napi, int budget)
{
struct mv643xx_eth_private *mp;
int rx;
int i;
mp = container_of(napi, struct mv643xx_eth_private, napi);
#ifdef MV643XX_ETH_TX_FAST_REFILL
if (++mp->tx_clean_threshold > 5) {
mp->tx_clean_threshold = 0;
for (i = 0; i < 8; i++)
if (mp->txq_mask & (1 << i))
txq_reclaim(mp->txq + i, 0);
}
#endif
rx = 0;
for (i = 7; rx < budget && i >= 0; i--)
if (mp->rxq_mask & (1 << i))
rx += rxq_process(mp->rxq + i, budget - rx);
if (rx < budget) {
netif_rx_complete(mp->dev, napi);
wrl(mp, INT_CAUSE(mp->port_num), 0);
wrl(mp, INT_CAUSE_EXT(mp->port_num), 0);
wrl(mp, INT_MASK(mp->port_num), INT_TX_END | INT_RX | INT_EXT);
}
return rx;
}
#endif
/* tx ***********************************************************************/
static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
{
int frag;
for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
if (fragp->size <= 8 && fragp->page_offset & 7)
return 1;
}
return 0;
}
static int txq_alloc_desc_index(struct tx_queue *txq)
{
int tx_desc_curr;
BUG_ON(txq->tx_desc_count >= txq->tx_ring_size);
tx_desc_curr = txq->tx_curr_desc;
txq->tx_curr_desc = (tx_desc_curr + 1) % txq->tx_ring_size;
BUG_ON(txq->tx_curr_desc == txq->tx_used_desc);
return tx_desc_curr;
}
static void txq_submit_frag_skb(struct tx_queue *txq, struct sk_buff *skb)
{
int nr_frags = skb_shinfo(skb)->nr_frags;
int frag;
for (frag = 0; frag < nr_frags; frag++) {
skb_frag_t *this_frag;
int tx_index;
struct tx_desc *desc;
this_frag = &skb_shinfo(skb)->frags[frag];
tx_index = txq_alloc_desc_index(txq);
desc = &txq->tx_desc_area[tx_index];
/*
* The last fragment will generate an interrupt
* which will free the skb on TX completion.
*/
if (frag == nr_frags - 1) {
desc->cmd_sts = BUFFER_OWNED_BY_DMA |
ZERO_PADDING | TX_LAST_DESC |
TX_ENABLE_INTERRUPT;
txq->tx_skb[tx_index] = skb;
} else {
desc->cmd_sts = BUFFER_OWNED_BY_DMA;
txq->tx_skb[tx_index] = NULL;
}
desc->l4i_chk = 0;
desc->byte_cnt = this_frag->size;
desc->buf_ptr = dma_map_page(NULL, this_frag->page,
this_frag->page_offset,
this_frag->size,
DMA_TO_DEVICE);
}
}
static inline __be16 sum16_as_be(__sum16 sum)
{
return (__force __be16)sum;
}
static void txq_submit_skb(struct tx_queue *txq, struct sk_buff *skb)
{
int nr_frags = skb_shinfo(skb)->nr_frags;
int tx_index;
struct tx_desc *desc;
u32 cmd_sts;
int length;
cmd_sts = TX_FIRST_DESC | GEN_CRC | BUFFER_OWNED_BY_DMA;
tx_index = txq_alloc_desc_index(txq);
desc = &txq->tx_desc_area[tx_index];
if (nr_frags) {
txq_submit_frag_skb(txq, skb);
length = skb_headlen(skb);
txq->tx_skb[tx_index] = NULL;
} else {
cmd_sts |= ZERO_PADDING | TX_LAST_DESC | TX_ENABLE_INTERRUPT;
length = skb->len;
txq->tx_skb[tx_index] = skb;
}
desc->byte_cnt = length;
desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
if (skb->ip_summed == CHECKSUM_PARTIAL) {
BUG_ON(skb->protocol != htons(ETH_P_IP));
cmd_sts |= GEN_TCP_UDP_CHECKSUM |
GEN_IP_V4_CHECKSUM |
ip_hdr(skb)->ihl << TX_IHL_SHIFT;
switch (ip_hdr(skb)->protocol) {
case IPPROTO_UDP:
cmd_sts |= UDP_FRAME;
desc->l4i_chk = ntohs(sum16_as_be(udp_hdr(skb)->check));
break;
case IPPROTO_TCP:
desc->l4i_chk = ntohs(sum16_as_be(tcp_hdr(skb)->check));
break;
default:
BUG();
}
} else {
/* Errata BTS #50, IHL must be 5 if no HW checksum */
cmd_sts |= 5 << TX_IHL_SHIFT;
desc->l4i_chk = 0;
}
/* ensure all other descriptors are written before first cmd_sts */
wmb();
desc->cmd_sts = cmd_sts;
/* ensure all descriptors are written before poking hardware */
wmb();
txq_enable(txq);
txq->tx_desc_count += nr_frags + 1;
}
static int mv643xx_eth_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
struct net_device_stats *stats = &dev->stats;
struct tx_queue *txq;
unsigned long flags;
if (has_tiny_unaligned_frags(skb) && __skb_linearize(skb)) {
stats->tx_dropped++;
dev_printk(KERN_DEBUG, &dev->dev,
"failed to linearize skb with tiny "
"unaligned fragment\n");
return NETDEV_TX_BUSY;
}
spin_lock_irqsave(&mp->lock, flags);
txq = mp->txq + mp->txq_primary;
if (txq->tx_ring_size - txq->tx_desc_count < MAX_DESCS_PER_SKB) {
spin_unlock_irqrestore(&mp->lock, flags);
if (txq->index == mp->txq_primary && net_ratelimit())
dev_printk(KERN_ERR, &dev->dev,
"primary tx queue full?!\n");
kfree_skb(skb);
return NETDEV_TX_OK;
}
txq_submit_skb(txq, skb);
stats->tx_bytes += skb->len;
stats->tx_packets++;
dev->trans_start = jiffies;
if (txq->index == mp->txq_primary) {
int entries_left;
entries_left = txq->tx_ring_size - txq->tx_desc_count;
if (entries_left < MAX_DESCS_PER_SKB)
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&mp->lock, flags);
return NETDEV_TX_OK;
}
/* tx rate control **********************************************************/
/*
* Set total maximum TX rate (shared by all TX queues for this port)
* to 'rate' bits per second, with a maximum burst of 'burst' bytes.
*/
static void tx_set_rate(struct mv643xx_eth_private *mp, int rate, int burst)
{
int token_rate;
int mtu;
int bucket_size;
token_rate = ((rate / 1000) * 64) / (mp->shared->t_clk / 1000);
if (token_rate > 1023)
token_rate = 1023;
mtu = (mp->dev->mtu + 255) >> 8;
if (mtu > 63)
mtu = 63;
bucket_size = (burst + 255) >> 8;
if (bucket_size > 65535)
bucket_size = 65535;
if (mp->shared->tx_bw_control_moved) {
wrl(mp, TX_BW_RATE_MOVED(mp->port_num), token_rate);
wrl(mp, TX_BW_MTU_MOVED(mp->port_num), mtu);
wrl(mp, TX_BW_BURST_MOVED(mp->port_num), bucket_size);
} else {
wrl(mp, TX_BW_RATE(mp->port_num), token_rate);
wrl(mp, TX_BW_MTU(mp->port_num), mtu);
wrl(mp, TX_BW_BURST(mp->port_num), bucket_size);
}
}
static void txq_set_rate(struct tx_queue *txq, int rate, int burst)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
int token_rate;
int bucket_size;
token_rate = ((rate / 1000) * 64) / (mp->shared->t_clk / 1000);
if (token_rate > 1023)
token_rate = 1023;
bucket_size = (burst + 255) >> 8;
if (bucket_size > 65535)
bucket_size = 65535;
wrl(mp, TXQ_BW_TOKENS(mp->port_num, txq->index), token_rate << 14);
wrl(mp, TXQ_BW_CONF(mp->port_num, txq->index),
(bucket_size << 10) | token_rate);
}
static void txq_set_fixed_prio_mode(struct tx_queue *txq)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
int off;
u32 val;
/*
* Turn on fixed priority mode.
*/
if (mp->shared->tx_bw_control_moved)
off = TXQ_FIX_PRIO_CONF_MOVED(mp->port_num);
else
off = TXQ_FIX_PRIO_CONF(mp->port_num);
val = rdl(mp, off);
val |= 1 << txq->index;
wrl(mp, off, val);
}
static void txq_set_wrr(struct tx_queue *txq, int weight)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
int off;
u32 val;
/*
* Turn off fixed priority mode.
*/
if (mp->shared->tx_bw_control_moved)
off = TXQ_FIX_PRIO_CONF_MOVED(mp->port_num);
else
off = TXQ_FIX_PRIO_CONF(mp->port_num);
val = rdl(mp, off);
val &= ~(1 << txq->index);
wrl(mp, off, val);
/*
* Configure WRR weight for this queue.
*/
off = TXQ_BW_WRR_CONF(mp->port_num, txq->index);
val = rdl(mp, off);
val = (val & ~0xff) | (weight & 0xff);
wrl(mp, off, val);
}
/* mii management interface *************************************************/
#define SMI_BUSY 0x10000000
#define SMI_READ_VALID 0x08000000
#define SMI_OPCODE_READ 0x04000000
#define SMI_OPCODE_WRITE 0x00000000
static void smi_reg_read(struct mv643xx_eth_private *mp, unsigned int addr,
unsigned int reg, unsigned int *value)
{
void __iomem *smi_reg = mp->shared_smi->base + SMI_REG;
unsigned long flags;
int i;
/* the SMI register is a shared resource */
spin_lock_irqsave(&mp->shared_smi->phy_lock, flags);
/* wait for the SMI register to become available */
for (i = 0; readl(smi_reg) & SMI_BUSY; i++) {
if (i == 1000) {
printk("%s: PHY busy timeout\n", mp->dev->name);
goto out;
}
udelay(10);
}
writel(SMI_OPCODE_READ | (reg << 21) | (addr << 16), smi_reg);
/* now wait for the data to be valid */
for (i = 0; !(readl(smi_reg) & SMI_READ_VALID); i++) {
if (i == 1000) {
printk("%s: PHY read timeout\n", mp->dev->name);
goto out;
}
udelay(10);
}
*value = readl(smi_reg) & 0xffff;
out:
spin_unlock_irqrestore(&mp->shared_smi->phy_lock, flags);
}
static void smi_reg_write(struct mv643xx_eth_private *mp,
unsigned int addr,
unsigned int reg, unsigned int value)
{
void __iomem *smi_reg = mp->shared_smi->base + SMI_REG;
unsigned long flags;
int i;
/* the SMI register is a shared resource */
spin_lock_irqsave(&mp->shared_smi->phy_lock, flags);
/* wait for the SMI register to become available */
for (i = 0; readl(smi_reg) & SMI_BUSY; i++) {
if (i == 1000) {
printk("%s: PHY busy timeout\n", mp->dev->name);
goto out;
}
udelay(10);
}
writel(SMI_OPCODE_WRITE | (reg << 21) |
(addr << 16) | (value & 0xffff), smi_reg);
out:
spin_unlock_irqrestore(&mp->shared_smi->phy_lock, flags);
}
/* mib counters *************************************************************/
static inline u32 mib_read(struct mv643xx_eth_private *mp, int offset)
{
return rdl(mp, MIB_COUNTERS(mp->port_num) + offset);
}
static void mib_counters_clear(struct mv643xx_eth_private *mp)
{
int i;
for (i = 0; i < 0x80; i += 4)
mib_read(mp, i);
}
static void mib_counters_update(struct mv643xx_eth_private *mp)
{
struct mib_counters *p = &mp->mib_counters;
p->good_octets_received += mib_read(mp, 0x00);
p->good_octets_received += (u64)mib_read(mp, 0x04) << 32;
p->bad_octets_received += mib_read(mp, 0x08);
p->internal_mac_transmit_err += mib_read(mp, 0x0c);
p->good_frames_received += mib_read(mp, 0x10);
p->bad_frames_received += mib_read(mp, 0x14);
p->broadcast_frames_received += mib_read(mp, 0x18);
p->multicast_frames_received += mib_read(mp, 0x1c);
p->frames_64_octets += mib_read(mp, 0x20);
p->frames_65_to_127_octets += mib_read(mp, 0x24);
p->frames_128_to_255_octets += mib_read(mp, 0x28);
p->frames_256_to_511_octets += mib_read(mp, 0x2c);
p->frames_512_to_1023_octets += mib_read(mp, 0x30);
p->frames_1024_to_max_octets += mib_read(mp, 0x34);
p->good_octets_sent += mib_read(mp, 0x38);
p->good_octets_sent += (u64)mib_read(mp, 0x3c) << 32;
p->good_frames_sent += mib_read(mp, 0x40);
p->excessive_collision += mib_read(mp, 0x44);
p->multicast_frames_sent += mib_read(mp, 0x48);
p->broadcast_frames_sent += mib_read(mp, 0x4c);
p->unrec_mac_control_received += mib_read(mp, 0x50);
p->fc_sent += mib_read(mp, 0x54);
p->good_fc_received += mib_read(mp, 0x58);
p->bad_fc_received += mib_read(mp, 0x5c);
p->undersize_received += mib_read(mp, 0x60);
p->fragments_received += mib_read(mp, 0x64);
p->oversize_received += mib_read(mp, 0x68);
p->jabber_received += mib_read(mp, 0x6c);
p->mac_receive_error += mib_read(mp, 0x70);
p->bad_crc_event += mib_read(mp, 0x74);
p->collision += mib_read(mp, 0x78);
p->late_collision += mib_read(mp, 0x7c);
}
/* ethtool ******************************************************************/
struct mv643xx_eth_stats {
char stat_string[ETH_GSTRING_LEN];
int sizeof_stat;
int netdev_off;
int mp_off;
};
#define SSTAT(m) \
{ #m, FIELD_SIZEOF(struct net_device_stats, m), \
offsetof(struct net_device, stats.m), -1 }
#define MIBSTAT(m) \
{ #m, FIELD_SIZEOF(struct mib_counters, m), \
-1, offsetof(struct mv643xx_eth_private, mib_counters.m) }
static const struct mv643xx_eth_stats mv643xx_eth_stats[] = {
SSTAT(rx_packets),
SSTAT(tx_packets),
SSTAT(rx_bytes),
SSTAT(tx_bytes),
SSTAT(rx_errors),
SSTAT(tx_errors),
SSTAT(rx_dropped),
SSTAT(tx_dropped),
MIBSTAT(good_octets_received),
MIBSTAT(bad_octets_received),
MIBSTAT(internal_mac_transmit_err),
MIBSTAT(good_frames_received),
MIBSTAT(bad_frames_received),
MIBSTAT(broadcast_frames_received),
MIBSTAT(multicast_frames_received),
MIBSTAT(frames_64_octets),
MIBSTAT(frames_65_to_127_octets),
MIBSTAT(frames_128_to_255_octets),
MIBSTAT(frames_256_to_511_octets),
MIBSTAT(frames_512_to_1023_octets),
MIBSTAT(frames_1024_to_max_octets),
MIBSTAT(good_octets_sent),
MIBSTAT(good_frames_sent),
MIBSTAT(excessive_collision),
MIBSTAT(multicast_frames_sent),
MIBSTAT(broadcast_frames_sent),
MIBSTAT(unrec_mac_control_received),
MIBSTAT(fc_sent),
MIBSTAT(good_fc_received),
MIBSTAT(bad_fc_received),
MIBSTAT(undersize_received),
MIBSTAT(fragments_received),
MIBSTAT(oversize_received),
MIBSTAT(jabber_received),
MIBSTAT(mac_receive_error),
MIBSTAT(bad_crc_event),
MIBSTAT(collision),
MIBSTAT(late_collision),
};
static int mv643xx_eth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int err;
spin_lock_irq(&mp->lock);
err = mii_ethtool_gset(&mp->mii, cmd);
spin_unlock_irq(&mp->lock);
/*
* The MAC does not support 1000baseT_Half.
*/
cmd->supported &= ~SUPPORTED_1000baseT_Half;
cmd->advertising &= ~ADVERTISED_1000baseT_Half;
return err;
}
static int mv643xx_eth_get_settings_phyless(struct net_device *dev, struct ethtool_cmd *cmd)
{
cmd->supported = SUPPORTED_MII;
cmd->advertising = ADVERTISED_MII;
cmd->speed = SPEED_1000;
cmd->duplex = DUPLEX_FULL;
cmd->port = PORT_MII;
cmd->phy_address = 0;
cmd->transceiver = XCVR_INTERNAL;
cmd->autoneg = AUTONEG_DISABLE;
cmd->maxtxpkt = 1;
cmd->maxrxpkt = 1;
return 0;
}
static int mv643xx_eth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int err;
/*
* The MAC does not support 1000baseT_Half.
*/
cmd->advertising &= ~ADVERTISED_1000baseT_Half;
spin_lock_irq(&mp->lock);
err = mii_ethtool_sset(&mp->mii, cmd);
spin_unlock_irq(&mp->lock);
return err;
}
static int mv643xx_eth_set_settings_phyless(struct net_device *dev, struct ethtool_cmd *cmd)
{
return -EINVAL;
}
static void mv643xx_eth_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *drvinfo)
{
strncpy(drvinfo->driver, mv643xx_eth_driver_name, 32);
strncpy(drvinfo->version, mv643xx_eth_driver_version, 32);
strncpy(drvinfo->fw_version, "N/A", 32);
strncpy(drvinfo->bus_info, "platform", 32);
drvinfo->n_stats = ARRAY_SIZE(mv643xx_eth_stats);
}
static int mv643xx_eth_nway_reset(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
return mii_nway_restart(&mp->mii);
}
static int mv643xx_eth_nway_reset_phyless(struct net_device *dev)
{
return -EINVAL;
}
static u32 mv643xx_eth_get_link(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
return mii_link_ok(&mp->mii);
}
static u32 mv643xx_eth_get_link_phyless(struct net_device *dev)
{
return 1;
}
static void mv643xx_eth_get_strings(struct net_device *dev,
uint32_t stringset, uint8_t *data)
{
int i;
if (stringset == ETH_SS_STATS) {
for (i = 0; i < ARRAY_SIZE(mv643xx_eth_stats); i++) {
memcpy(data + i * ETH_GSTRING_LEN,
mv643xx_eth_stats[i].stat_string,
ETH_GSTRING_LEN);
}
}
}
static void mv643xx_eth_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats,
uint64_t *data)
{
struct mv643xx_eth_private *mp = dev->priv;
int i;
mib_counters_update(mp);
for (i = 0; i < ARRAY_SIZE(mv643xx_eth_stats); i++) {
const struct mv643xx_eth_stats *stat;
void *p;
stat = mv643xx_eth_stats + i;
if (stat->netdev_off >= 0)
p = ((void *)mp->dev) + stat->netdev_off;
else
p = ((void *)mp) + stat->mp_off;
data[i] = (stat->sizeof_stat == 8) ?
*(uint64_t *)p : *(uint32_t *)p;
}
}
static int mv643xx_eth_get_sset_count(struct net_device *dev, int sset)
{
if (sset == ETH_SS_STATS)
return ARRAY_SIZE(mv643xx_eth_stats);
return -EOPNOTSUPP;
}
static const struct ethtool_ops mv643xx_eth_ethtool_ops = {
.get_settings = mv643xx_eth_get_settings,
.set_settings = mv643xx_eth_set_settings,
.get_drvinfo = mv643xx_eth_get_drvinfo,
.nway_reset = mv643xx_eth_nway_reset,
.get_link = mv643xx_eth_get_link,
.set_sg = ethtool_op_set_sg,
.get_strings = mv643xx_eth_get_strings,
.get_ethtool_stats = mv643xx_eth_get_ethtool_stats,
.get_sset_count = mv643xx_eth_get_sset_count,
};
static const struct ethtool_ops mv643xx_eth_ethtool_ops_phyless = {
.get_settings = mv643xx_eth_get_settings_phyless,
.set_settings = mv643xx_eth_set_settings_phyless,
.get_drvinfo = mv643xx_eth_get_drvinfo,
.nway_reset = mv643xx_eth_nway_reset_phyless,
.get_link = mv643xx_eth_get_link_phyless,
.set_sg = ethtool_op_set_sg,
.get_strings = mv643xx_eth_get_strings,
.get_ethtool_stats = mv643xx_eth_get_ethtool_stats,
.get_sset_count = mv643xx_eth_get_sset_count,
};
/* address handling *********************************************************/
static void uc_addr_get(struct mv643xx_eth_private *mp, unsigned char *addr)
{
unsigned int mac_h;
unsigned int mac_l;
mac_h = rdl(mp, MAC_ADDR_HIGH(mp->port_num));
mac_l = rdl(mp, MAC_ADDR_LOW(mp->port_num));
addr[0] = (mac_h >> 24) & 0xff;
addr[1] = (mac_h >> 16) & 0xff;
addr[2] = (mac_h >> 8) & 0xff;
addr[3] = mac_h & 0xff;
addr[4] = (mac_l >> 8) & 0xff;
addr[5] = mac_l & 0xff;
}
static void init_mac_tables(struct mv643xx_eth_private *mp)
{
int i;
for (i = 0; i < 0x100; i += 4) {
wrl(mp, SPECIAL_MCAST_TABLE(mp->port_num) + i, 0);
wrl(mp, OTHER_MCAST_TABLE(mp->port_num) + i, 0);
}
for (i = 0; i < 0x10; i += 4)
wrl(mp, UNICAST_TABLE(mp->port_num) + i, 0);
}
static void set_filter_table_entry(struct mv643xx_eth_private *mp,
int table, unsigned char entry)
{
unsigned int table_reg;
/* Set "accepts frame bit" at specified table entry */
table_reg = rdl(mp, table + (entry & 0xfc));
table_reg |= 0x01 << (8 * (entry & 3));
wrl(mp, table + (entry & 0xfc), table_reg);
}
static void uc_addr_set(struct mv643xx_eth_private *mp, unsigned char *addr)
{
unsigned int mac_h;
unsigned int mac_l;
int table;
mac_l = (addr[4] << 8) | addr[5];
mac_h = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
wrl(mp, MAC_ADDR_LOW(mp->port_num), mac_l);
wrl(mp, MAC_ADDR_HIGH(mp->port_num), mac_h);
table = UNICAST_TABLE(mp->port_num);
set_filter_table_entry(mp, table, addr[5] & 0x0f);
}
static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
/* +2 is for the offset of the HW addr type */
memcpy(dev->dev_addr, addr + 2, 6);
init_mac_tables(mp);
uc_addr_set(mp, dev->dev_addr);
return 0;
}
static int addr_crc(unsigned char *addr)
{
int crc = 0;
int i;
for (i = 0; i < 6; i++) {
int j;
crc = (crc ^ addr[i]) << 8;
for (j = 7; j >= 0; j--) {
if (crc & (0x100 << j))
crc ^= 0x107 << j;
}
}
return crc;
}
static void mv643xx_eth_set_rx_mode(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
u32 port_config;
struct dev_addr_list *addr;
int i;
port_config = rdl(mp, PORT_CONFIG(mp->port_num));
if (dev->flags & IFF_PROMISC)
port_config |= UNICAST_PROMISCUOUS_MODE;
else
port_config &= ~UNICAST_PROMISCUOUS_MODE;
wrl(mp, PORT_CONFIG(mp->port_num), port_config);
if (dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
int port_num = mp->port_num;
u32 accept = 0x01010101;
for (i = 0; i < 0x100; i += 4) {
wrl(mp, SPECIAL_MCAST_TABLE(port_num) + i, accept);
wrl(mp, OTHER_MCAST_TABLE(port_num) + i, accept);
}
return;
}
for (i = 0; i < 0x100; i += 4) {
wrl(mp, SPECIAL_MCAST_TABLE(mp->port_num) + i, 0);
wrl(mp, OTHER_MCAST_TABLE(mp->port_num) + i, 0);
}
for (addr = dev->mc_list; addr != NULL; addr = addr->next) {
u8 *a = addr->da_addr;
int table;
if (addr->da_addrlen != 6)
continue;
if (memcmp(a, "\x01\x00\x5e\x00\x00", 5) == 0) {
table = SPECIAL_MCAST_TABLE(mp->port_num);
set_filter_table_entry(mp, table, a[5]);
} else {
int crc = addr_crc(a);
table = OTHER_MCAST_TABLE(mp->port_num);
set_filter_table_entry(mp, table, crc);
}
}
}
/* rx/tx queue initialisation ***********************************************/
static int rxq_init(struct mv643xx_eth_private *mp, int index)
{
struct rx_queue *rxq = mp->rxq + index;
struct rx_desc *rx_desc;
int size;
int i;
rxq->index = index;
rxq->rx_ring_size = mp->default_rx_ring_size;
rxq->rx_desc_count = 0;
rxq->rx_curr_desc = 0;
rxq->rx_used_desc = 0;
size = rxq->rx_ring_size * sizeof(struct rx_desc);
if (index == mp->rxq_primary && size <= mp->rx_desc_sram_size) {
rxq->rx_desc_area = ioremap(mp->rx_desc_sram_addr,
mp->rx_desc_sram_size);
rxq->rx_desc_dma = mp->rx_desc_sram_addr;
} else {
rxq->rx_desc_area = dma_alloc_coherent(NULL, size,
&rxq->rx_desc_dma,
GFP_KERNEL);
}
if (rxq->rx_desc_area == NULL) {
dev_printk(KERN_ERR, &mp->dev->dev,
"can't allocate rx ring (%d bytes)\n", size);
goto out;
}
memset(rxq->rx_desc_area, 0, size);
rxq->rx_desc_area_size = size;
rxq->rx_skb = kmalloc(rxq->rx_ring_size * sizeof(*rxq->rx_skb),
GFP_KERNEL);
if (rxq->rx_skb == NULL) {
dev_printk(KERN_ERR, &mp->dev->dev,
"can't allocate rx skb ring\n");
goto out_free;
}
rx_desc = (struct rx_desc *)rxq->rx_desc_area;
for (i = 0; i < rxq->rx_ring_size; i++) {
int nexti = (i + 1) % rxq->rx_ring_size;
rx_desc[i].next_desc_ptr = rxq->rx_desc_dma +
nexti * sizeof(struct rx_desc);
}
init_timer(&rxq->rx_oom);
rxq->rx_oom.data = (unsigned long)rxq;
rxq->rx_oom.function = rxq_refill_timer_wrapper;
return 0;
out_free:
if (index == mp->rxq_primary && size <= mp->rx_desc_sram_size)
iounmap(rxq->rx_desc_area);
else
dma_free_coherent(NULL, size,
rxq->rx_desc_area,
rxq->rx_desc_dma);
out:
return -ENOMEM;
}
static void rxq_deinit(struct rx_queue *rxq)
{
struct mv643xx_eth_private *mp = rxq_to_mp(rxq);
int i;
rxq_disable(rxq);
del_timer_sync(&rxq->rx_oom);
for (i = 0; i < rxq->rx_ring_size; i++) {
if (rxq->rx_skb[i]) {
dev_kfree_skb(rxq->rx_skb[i]);
rxq->rx_desc_count--;
}
}
if (rxq->rx_desc_count) {
dev_printk(KERN_ERR, &mp->dev->dev,
"error freeing rx ring -- %d skbs stuck\n",
rxq->rx_desc_count);
}
if (rxq->index == mp->rxq_primary &&
rxq->rx_desc_area_size <= mp->rx_desc_sram_size)
iounmap(rxq->rx_desc_area);
else
dma_free_coherent(NULL, rxq->rx_desc_area_size,
rxq->rx_desc_area, rxq->rx_desc_dma);
kfree(rxq->rx_skb);
}
static int txq_init(struct mv643xx_eth_private *mp, int index)
{
struct tx_queue *txq = mp->txq + index;
struct tx_desc *tx_desc;
int size;
int i;
txq->index = index;
txq->tx_ring_size = mp->default_tx_ring_size;
txq->tx_desc_count = 0;
txq->tx_curr_desc = 0;
txq->tx_used_desc = 0;
size = txq->tx_ring_size * sizeof(struct tx_desc);
if (index == mp->txq_primary && size <= mp->tx_desc_sram_size) {
txq->tx_desc_area = ioremap(mp->tx_desc_sram_addr,
mp->tx_desc_sram_size);
txq->tx_desc_dma = mp->tx_desc_sram_addr;
} else {
txq->tx_desc_area = dma_alloc_coherent(NULL, size,
&txq->tx_desc_dma,
GFP_KERNEL);
}
if (txq->tx_desc_area == NULL) {
dev_printk(KERN_ERR, &mp->dev->dev,
"can't allocate tx ring (%d bytes)\n", size);
goto out;
}
memset(txq->tx_desc_area, 0, size);
txq->tx_desc_area_size = size;
txq->tx_skb = kmalloc(txq->tx_ring_size * sizeof(*txq->tx_skb),
GFP_KERNEL);
if (txq->tx_skb == NULL) {
dev_printk(KERN_ERR, &mp->dev->dev,
"can't allocate tx skb ring\n");
goto out_free;
}
tx_desc = (struct tx_desc *)txq->tx_desc_area;
for (i = 0; i < txq->tx_ring_size; i++) {
int nexti = (i + 1) % txq->tx_ring_size;
tx_desc[i].next_desc_ptr = txq->tx_desc_dma +
nexti * sizeof(struct tx_desc);
}
return 0;
out_free:
if (index == mp->txq_primary && size <= mp->tx_desc_sram_size)
iounmap(txq->tx_desc_area);
else
dma_free_coherent(NULL, size,
txq->tx_desc_area,
txq->tx_desc_dma);
out:
return -ENOMEM;
}
static void txq_reclaim(struct tx_queue *txq, int force)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
unsigned long flags;
spin_lock_irqsave(&mp->lock, flags);
while (txq->tx_desc_count > 0) {
int tx_index;
struct tx_desc *desc;
u32 cmd_sts;
struct sk_buff *skb;
dma_addr_t addr;
int count;
tx_index = txq->tx_used_desc;
desc = &txq->tx_desc_area[tx_index];
cmd_sts = desc->cmd_sts;
if (!force && (cmd_sts & BUFFER_OWNED_BY_DMA))
break;
txq->tx_used_desc = (tx_index + 1) % txq->tx_ring_size;
txq->tx_desc_count--;
addr = desc->buf_ptr;
count = desc->byte_cnt;
skb = txq->tx_skb[tx_index];
txq->tx_skb[tx_index] = NULL;
if (cmd_sts & ERROR_SUMMARY) {
dev_printk(KERN_INFO, &mp->dev->dev, "tx error\n");
mp->dev->stats.tx_errors++;
}
/*
* Drop mp->lock while we free the skb.
*/
spin_unlock_irqrestore(&mp->lock, flags);
if (cmd_sts & TX_FIRST_DESC)
dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
else
dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
if (skb)
dev_kfree_skb_irq(skb);
spin_lock_irqsave(&mp->lock, flags);
}
spin_unlock_irqrestore(&mp->lock, flags);
}
static void txq_deinit(struct tx_queue *txq)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
txq_disable(txq);
txq_reclaim(txq, 1);
BUG_ON(txq->tx_used_desc != txq->tx_curr_desc);
if (txq->index == mp->txq_primary &&
txq->tx_desc_area_size <= mp->tx_desc_sram_size)
iounmap(txq->tx_desc_area);
else
dma_free_coherent(NULL, txq->tx_desc_area_size,
txq->tx_desc_area, txq->tx_desc_dma);
kfree(txq->tx_skb);
}
/* netdev ops and related ***************************************************/
static void update_pscr(struct mv643xx_eth_private *mp, int speed, int duplex)
{
u32 pscr_o;
u32 pscr_n;
pscr_o = rdl(mp, PORT_SERIAL_CONTROL(mp->port_num));
/* clear speed, duplex and rx buffer size fields */
pscr_n = pscr_o & ~(SET_MII_SPEED_TO_100 |
SET_GMII_SPEED_TO_1000 |
SET_FULL_DUPLEX_MODE |
MAX_RX_PACKET_MASK);
if (speed == SPEED_1000) {
pscr_n |= SET_GMII_SPEED_TO_1000 | MAX_RX_PACKET_9700BYTE;
} else {
if (speed == SPEED_100)
pscr_n |= SET_MII_SPEED_TO_100;
pscr_n |= MAX_RX_PACKET_1522BYTE;
}
if (duplex == DUPLEX_FULL)
pscr_n |= SET_FULL_DUPLEX_MODE;
if (pscr_n != pscr_o) {
if ((pscr_o & SERIAL_PORT_ENABLE) == 0)
wrl(mp, PORT_SERIAL_CONTROL(mp->port_num), pscr_n);
else {
int i;
for (i = 0; i < 8; i++)
if (mp->txq_mask & (1 << i))
txq_disable(mp->txq + i);
pscr_o &= ~SERIAL_PORT_ENABLE;
wrl(mp, PORT_SERIAL_CONTROL(mp->port_num), pscr_o);
wrl(mp, PORT_SERIAL_CONTROL(mp->port_num), pscr_n);
wrl(mp, PORT_SERIAL_CONTROL(mp->port_num), pscr_n);
for (i = 0; i < 8; i++)
if (mp->txq_mask & (1 << i))
txq_enable(mp->txq + i);
}
}
}
static irqreturn_t mv643xx_eth_irq(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct mv643xx_eth_private *mp = netdev_priv(dev);
u32 int_cause;
u32 int_cause_ext;
u32 txq_active;
int_cause = rdl(mp, INT_CAUSE(mp->port_num)) &
(INT_TX_END | INT_RX | INT_EXT);
if (int_cause == 0)
return IRQ_NONE;
int_cause_ext = 0;
if (int_cause & INT_EXT) {
int_cause_ext = rdl(mp, INT_CAUSE_EXT(mp->port_num))
& (INT_EXT_LINK | INT_EXT_PHY | INT_EXT_TX);
wrl(mp, INT_CAUSE_EXT(mp->port_num), ~int_cause_ext);
}
if (int_cause_ext & (INT_EXT_PHY | INT_EXT_LINK)) {
if (mp->phy_addr == -1 || mii_link_ok(&mp->mii)) {
int i;
if (mp->phy_addr != -1) {
struct ethtool_cmd cmd;
mii_ethtool_gset(&mp->mii, &cmd);
update_pscr(mp, cmd.speed, cmd.duplex);
}
for (i = 0; i < 8; i++)
if (mp->txq_mask & (1 << i))
txq_enable(mp->txq + i);
if (!netif_carrier_ok(dev)) {
netif_carrier_on(dev);
__txq_maybe_wake(mp->txq + mp->txq_primary);
}
} else if (netif_carrier_ok(dev)) {
netif_stop_queue(dev);
netif_carrier_off(dev);
}
}
/*
* RxBuffer or RxError set for any of the 8 queues?
*/
#ifdef MV643XX_ETH_NAPI
if (int_cause & INT_RX) {
wrl(mp, INT_MASK(mp->port_num), 0x00000000);
rdl(mp, INT_MASK(mp->port_num));
netif_rx_schedule(dev, &mp->napi);
}
#else
if (int_cause & INT_RX) {
int i;
for (i = 7; i >= 0; i--)
if (mp->rxq_mask & (1 << i))
rxq_process(mp->rxq + i, INT_MAX);
}
#endif
txq_active = rdl(mp, TXQ_COMMAND(mp->port_num));
/*
* TxBuffer or TxError set for any of the 8 queues?
*/
if (int_cause_ext & INT_EXT_TX) {
int i;
for (i = 0; i < 8; i++)
if (mp->txq_mask & (1 << i))
txq_reclaim(mp->txq + i, 0);
}
/*
* Any TxEnd interrupts?
*/
if (int_cause & INT_TX_END) {
int i;
wrl(mp, INT_CAUSE(mp->port_num), ~(int_cause & INT_TX_END));
for (i = 0; i < 8; i++) {
struct tx_queue *txq = mp->txq + i;
if (txq->tx_desc_count && !((txq_active >> i) & 1))
txq_enable(txq);
}
}
/*
* Enough space again in the primary TX queue for a full packet?
*/
if (int_cause_ext & INT_EXT_TX) {
struct tx_queue *txq = mp->txq + mp->txq_primary;
__txq_maybe_wake(txq);
}
return IRQ_HANDLED;
}
static void phy_reset(struct mv643xx_eth_private *mp)
{
unsigned int data;
smi_reg_read(mp, mp->phy_addr, 0, &data);
data |= 0x8000;
smi_reg_write(mp, mp->phy_addr, 0, data);
do {
udelay(1);
smi_reg_read(mp, mp->phy_addr, 0, &data);
} while (data & 0x8000);
}
static void port_start(struct mv643xx_eth_private *mp)
{
u32 pscr;
int i;
/*
* Configure basic link parameters.
*/
pscr = rdl(mp, PORT_SERIAL_CONTROL(mp->port_num));
pscr &= ~(SERIAL_PORT_ENABLE | FORCE_LINK_PASS);
wrl(mp, PORT_SERIAL_CONTROL(mp->port_num), pscr);
pscr |= DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
DISABLE_AUTO_NEG_SPEED_GMII |
DISABLE_AUTO_NEG_FOR_DUPLEX |
DO_NOT_FORCE_LINK_FAIL |
SERIAL_PORT_CONTROL_RESERVED;
wrl(mp, PORT_SERIAL_CONTROL(mp->port_num), pscr);
pscr |= SERIAL_PORT_ENABLE;
wrl(mp, PORT_SERIAL_CONTROL(mp->port_num), pscr);
wrl(mp, SDMA_CONFIG(mp->port_num), PORT_SDMA_CONFIG_DEFAULT_VALUE);
/*
* Perform PHY reset, if there is a PHY.
*/
if (mp->phy_addr != -1) {
struct ethtool_cmd cmd;
mv643xx_eth_get_settings(mp->dev, &cmd);
phy_reset(mp);
mv643xx_eth_set_settings(mp->dev, &cmd);
}
/*
* Configure TX path and queues.
*/
tx_set_rate(mp, 1000000000, 16777216);
for (i = 0; i < 8; i++) {
struct tx_queue *txq = mp->txq + i;
int off = TXQ_CURRENT_DESC_PTR(mp->port_num, i);
u32 addr;
if ((mp->txq_mask & (1 << i)) == 0)
continue;
addr = (u32)txq->tx_desc_dma;
addr += txq->tx_curr_desc * sizeof(struct tx_desc);
wrl(mp, off, addr);
txq_set_rate(txq, 1000000000, 16777216);
txq_set_fixed_prio_mode(txq);
}
/*
* Add configured unicast address to address filter table.
*/
uc_addr_set(mp, mp->dev->dev_addr);
/*
* Receive all unmatched unicast, TCP, UDP, BPDU and broadcast
* frames to RX queue #0.
*/
wrl(mp, PORT_CONFIG(mp->port_num), 0x00000000);
/*
* Treat BPDUs as normal multicasts, and disable partition mode.
*/
wrl(mp, PORT_CONFIG_EXT(mp->port_num), 0x00000000);
/*
* Enable the receive queues.
*/
for (i = 0; i < 8; i++) {
struct rx_queue *rxq = mp->rxq + i;
int off = RXQ_CURRENT_DESC_PTR(mp->port_num, i);
u32 addr;
if ((mp->rxq_mask & (1 << i)) == 0)
continue;
addr = (u32)rxq->rx_desc_dma;
addr += rxq->rx_curr_desc * sizeof(struct rx_desc);
wrl(mp, off, addr);
rxq_enable(rxq);
}
}
static void set_rx_coal(struct mv643xx_eth_private *mp, unsigned int delay)
{
unsigned int coal = ((mp->shared->t_clk / 1000000) * delay) / 64;
u32 val;
val = rdl(mp, SDMA_CONFIG(mp->port_num));
if (mp->shared->extended_rx_coal_limit) {
if (coal > 0xffff)
coal = 0xffff;
val &= ~0x023fff80;
val |= (coal & 0x8000) << 10;
val |= (coal & 0x7fff) << 7;
} else {
if (coal > 0x3fff)
coal = 0x3fff;
val &= ~0x003fff00;
val |= (coal & 0x3fff) << 8;
}
wrl(mp, SDMA_CONFIG(mp->port_num), val);
}
static void set_tx_coal(struct mv643xx_eth_private *mp, unsigned int delay)
{
unsigned int coal = ((mp->shared->t_clk / 1000000) * delay) / 64;
if (coal > 0x3fff)
coal = 0x3fff;
wrl(mp, TX_FIFO_URGENT_THRESHOLD(mp->port_num), (coal & 0x3fff) << 4);
}
static int mv643xx_eth_open(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int err;
int i;
wrl(mp, INT_CAUSE(mp->port_num), 0);
wrl(mp, INT_CAUSE_EXT(mp->port_num), 0);
rdl(mp, INT_CAUSE_EXT(mp->port_num));
err = request_irq(dev->irq, mv643xx_eth_irq,
IRQF_SHARED | IRQF_SAMPLE_RANDOM,
dev->name, dev);
if (err) {
dev_printk(KERN_ERR, &dev->dev, "can't assign irq\n");
return -EAGAIN;
}
init_mac_tables(mp);
for (i = 0; i < 8; i++) {
if ((mp->rxq_mask & (1 << i)) == 0)
continue;
err = rxq_init(mp, i);
if (err) {
while (--i >= 0)
if (mp->rxq_mask & (1 << i))
rxq_deinit(mp->rxq + i);
goto out;
}
rxq_refill(mp->rxq + i);
}
for (i = 0; i < 8; i++) {
if ((mp->txq_mask & (1 << i)) == 0)
continue;
err = txq_init(mp, i);
if (err) {
while (--i >= 0)
if (mp->txq_mask & (1 << i))
txq_deinit(mp->txq + i);
goto out_free;
}
}
#ifdef MV643XX_ETH_NAPI
napi_enable(&mp->napi);
#endif
port_start(mp);
set_rx_coal(mp, 0);
set_tx_coal(mp, 0);
wrl(mp, INT_MASK_EXT(mp->port_num),
INT_EXT_LINK | INT_EXT_PHY | INT_EXT_TX);
wrl(mp, INT_MASK(mp->port_num), INT_TX_END | INT_RX | INT_EXT);
return 0;
out_free:
for (i = 0; i < 8; i++)
if (mp->rxq_mask & (1 << i))
rxq_deinit(mp->rxq + i);
out:
free_irq(dev->irq, dev);
return err;
}
static void port_reset(struct mv643xx_eth_private *mp)
{
unsigned int data;
int i;
for (i = 0; i < 8; i++) {
if (mp->rxq_mask & (1 << i))
rxq_disable(mp->rxq + i);
if (mp->txq_mask & (1 << i))
txq_disable(mp->txq + i);
}
while (!(rdl(mp, PORT_STATUS(mp->port_num)) & TX_FIFO_EMPTY))
udelay(10);
/* Reset the Enable bit in the Configuration Register */
data = rdl(mp, PORT_SERIAL_CONTROL(mp->port_num));
data &= ~(SERIAL_PORT_ENABLE |
DO_NOT_FORCE_LINK_FAIL |
FORCE_LINK_PASS);
wrl(mp, PORT_SERIAL_CONTROL(mp->port_num), data);
}
static int mv643xx_eth_stop(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int i;
wrl(mp, INT_MASK(mp->port_num), 0x00000000);
rdl(mp, INT_MASK(mp->port_num));
#ifdef MV643XX_ETH_NAPI
napi_disable(&mp->napi);
#endif
netif_carrier_off(dev);
netif_stop_queue(dev);
free_irq(dev->irq, dev);
port_reset(mp);
mib_counters_update(mp);
for (i = 0; i < 8; i++) {
if (mp->rxq_mask & (1 << i))
rxq_deinit(mp->rxq + i);
if (mp->txq_mask & (1 << i))
txq_deinit(mp->txq + i);
}
return 0;
}
static int mv643xx_eth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
if (mp->phy_addr != -1)
return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
return -EOPNOTSUPP;
}
static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
if (new_mtu < 64 || new_mtu > 9500)
return -EINVAL;
dev->mtu = new_mtu;
tx_set_rate(mp, 1000000000, 16777216);
if (!netif_running(dev))
return 0;
/*
* Stop and then re-open the interface. This will allocate RX
* skbs of the new MTU.
* There is a possible danger that the open will not succeed,
* due to memory being full.
*/
mv643xx_eth_stop(dev);
if (mv643xx_eth_open(dev)) {
dev_printk(KERN_ERR, &dev->dev,
"fatal error on re-opening device after "
"MTU change\n");
}
return 0;
}
static void tx_timeout_task(struct work_struct *ugly)
{
struct mv643xx_eth_private *mp;
mp = container_of(ugly, struct mv643xx_eth_private, tx_timeout_task);
if (netif_running(mp->dev)) {
netif_stop_queue(mp->dev);
port_reset(mp);
port_start(mp);
__txq_maybe_wake(mp->txq + mp->txq_primary);
}
}
static void mv643xx_eth_tx_timeout(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
dev_printk(KERN_INFO, &dev->dev, "tx timeout\n");
schedule_work(&mp->tx_timeout_task);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void mv643xx_eth_netpoll(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
wrl(mp, INT_MASK(mp->port_num), 0x00000000);
rdl(mp, INT_MASK(mp->port_num));
mv643xx_eth_irq(dev->irq, dev);
wrl(mp, INT_MASK(mp->port_num), INT_TX_END | INT_RX | INT_CAUSE_EXT);
}
#endif
static int mv643xx_eth_mdio_read(struct net_device *dev, int addr, int reg)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int val;
smi_reg_read(mp, addr, reg, &val);
return val;
}
static void mv643xx_eth_mdio_write(struct net_device *dev, int addr, int reg, int val)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
smi_reg_write(mp, addr, reg, val);
}
/* platform glue ************************************************************/
static void
mv643xx_eth_conf_mbus_windows(struct mv643xx_eth_shared_private *msp,
struct mbus_dram_target_info *dram)
{
void __iomem *base = msp->base;
u32 win_enable;
u32 win_protect;
int i;
for (i = 0; i < 6; i++) {
writel(0, base + WINDOW_BASE(i));
writel(0, base + WINDOW_SIZE(i));
if (i < 4)
writel(0, base + WINDOW_REMAP_HIGH(i));
}
win_enable = 0x3f;
win_protect = 0;
for (i = 0; i < dram->num_cs; i++) {
struct mbus_dram_window *cs = dram->cs + i;
writel((cs->base & 0xffff0000) |
(cs->mbus_attr << 8) |
dram->mbus_dram_target_id, base + WINDOW_BASE(i));
writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
win_enable &= ~(1 << i);
win_protect |= 3 << (2 * i);
}
writel(win_enable, base + WINDOW_BAR_ENABLE);
msp->win_protect = win_protect;
}
static void infer_hw_params(struct mv643xx_eth_shared_private *msp)
{
/*
* Check whether we have a 14-bit coal limit field in bits
* [21:8], or a 16-bit coal limit in bits [25,21:7] of the
* SDMA config register.
*/
writel(0x02000000, msp->base + SDMA_CONFIG(0));
if (readl(msp->base + SDMA_CONFIG(0)) & 0x02000000)
msp->extended_rx_coal_limit = 1;
else
msp->extended_rx_coal_limit = 0;
/*
* Check whether the TX rate control registers are in the
* old or the new place.
*/
writel(1, msp->base + TX_BW_MTU_MOVED(0));
if (readl(msp->base + TX_BW_MTU_MOVED(0)) & 1)
msp->tx_bw_control_moved = 1;
else
msp->tx_bw_control_moved = 0;
}
static int mv643xx_eth_shared_probe(struct platform_device *pdev)
{
static int mv643xx_eth_version_printed = 0;
struct mv643xx_eth_shared_platform_data *pd = pdev->dev.platform_data;
struct mv643xx_eth_shared_private *msp;
struct resource *res;
int ret;
if (!mv643xx_eth_version_printed++)
printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
ret = -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL)
goto out;
ret = -ENOMEM;
msp = kmalloc(sizeof(*msp), GFP_KERNEL);
if (msp == NULL)
goto out;
memset(msp, 0, sizeof(*msp));
msp->base = ioremap(res->start, res->end - res->start + 1);
if (msp->base == NULL)
goto out_free;
spin_lock_init(&msp->phy_lock);
/*
* (Re-)program MBUS remapping windows if we are asked to.
*/
if (pd != NULL && pd->dram != NULL)
mv643xx_eth_conf_mbus_windows(msp, pd->dram);
/*
* Detect hardware parameters.
*/
msp->t_clk = (pd != NULL && pd->t_clk != 0) ? pd->t_clk : 133000000;
infer_hw_params(msp);
platform_set_drvdata(pdev, msp);
return 0;
out_free:
kfree(msp);
out:
return ret;
}
static int mv643xx_eth_shared_remove(struct platform_device *pdev)
{
struct mv643xx_eth_shared_private *msp = platform_get_drvdata(pdev);
iounmap(msp->base);
kfree(msp);
return 0;
}
static struct platform_driver mv643xx_eth_shared_driver = {
.probe = mv643xx_eth_shared_probe,
.remove = mv643xx_eth_shared_remove,
.driver = {
.name = MV643XX_ETH_SHARED_NAME,
.owner = THIS_MODULE,
},
};
static void phy_addr_set(struct mv643xx_eth_private *mp, int phy_addr)
{
int addr_shift = 5 * mp->port_num;
u32 data;
data = rdl(mp, PHY_ADDR);
data &= ~(0x1f << addr_shift);
data |= (phy_addr & 0x1f) << addr_shift;
wrl(mp, PHY_ADDR, data);
}
static int phy_addr_get(struct mv643xx_eth_private *mp)
{
unsigned int data;
data = rdl(mp, PHY_ADDR);
return (data >> (5 * mp->port_num)) & 0x1f;
}
static void set_params(struct mv643xx_eth_private *mp,
struct mv643xx_eth_platform_data *pd)
{
struct net_device *dev = mp->dev;
if (is_valid_ether_addr(pd->mac_addr))
memcpy(dev->dev_addr, pd->mac_addr, 6);
else
uc_addr_get(mp, dev->dev_addr);
if (pd->phy_addr == -1) {
mp->shared_smi = NULL;
mp->phy_addr = -1;
} else {
mp->shared_smi = mp->shared;
if (pd->shared_smi != NULL)
mp->shared_smi = platform_get_drvdata(pd->shared_smi);
if (pd->force_phy_addr || pd->phy_addr) {
mp->phy_addr = pd->phy_addr & 0x3f;
phy_addr_set(mp, mp->phy_addr);
} else {
mp->phy_addr = phy_addr_get(mp);
}
}
mp->default_rx_ring_size = DEFAULT_RX_QUEUE_SIZE;
if (pd->rx_queue_size)
mp->default_rx_ring_size = pd->rx_queue_size;
mp->rx_desc_sram_addr = pd->rx_sram_addr;
mp->rx_desc_sram_size = pd->rx_sram_size;
if (pd->rx_queue_mask)
mp->rxq_mask = pd->rx_queue_mask;
else
mp->rxq_mask = 0x01;
mp->rxq_primary = fls(mp->rxq_mask) - 1;
mp->default_tx_ring_size = DEFAULT_TX_QUEUE_SIZE;
if (pd->tx_queue_size)
mp->default_tx_ring_size = pd->tx_queue_size;
mp->tx_desc_sram_addr = pd->tx_sram_addr;
mp->tx_desc_sram_size = pd->tx_sram_size;
if (pd->tx_queue_mask)
mp->txq_mask = pd->tx_queue_mask;
else
mp->txq_mask = 0x01;
mp->txq_primary = fls(mp->txq_mask) - 1;
}
static int phy_detect(struct mv643xx_eth_private *mp)
{
unsigned int data;
unsigned int data2;
smi_reg_read(mp, mp->phy_addr, 0, &data);
smi_reg_write(mp, mp->phy_addr, 0, data ^ 0x1000);
smi_reg_read(mp, mp->phy_addr, 0, &data2);
if (((data ^ data2) & 0x1000) == 0)
return -ENODEV;
smi_reg_write(mp, mp->phy_addr, 0, data);
return 0;
}
static int phy_init(struct mv643xx_eth_private *mp,
struct mv643xx_eth_platform_data *pd)
{
struct ethtool_cmd cmd;
int err;
err = phy_detect(mp);
if (err) {
dev_printk(KERN_INFO, &mp->dev->dev,
"no PHY detected at addr %d\n", mp->phy_addr);
return err;
}
phy_reset(mp);
mp->mii.phy_id = mp->phy_addr;
mp->mii.phy_id_mask = 0x3f;
mp->mii.reg_num_mask = 0x1f;
mp->mii.dev = mp->dev;
mp->mii.mdio_read = mv643xx_eth_mdio_read;
mp->mii.mdio_write = mv643xx_eth_mdio_write;
mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
memset(&cmd, 0, sizeof(cmd));
cmd.port = PORT_MII;
cmd.transceiver = XCVR_INTERNAL;
cmd.phy_address = mp->phy_addr;
if (pd->speed == 0) {
cmd.autoneg = AUTONEG_ENABLE;
cmd.speed = SPEED_100;
cmd.advertising = ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full;
if (mp->mii.supports_gmii)
cmd.advertising |= ADVERTISED_1000baseT_Full;
} else {
cmd.autoneg = AUTONEG_DISABLE;
cmd.speed = pd->speed;
cmd.duplex = pd->duplex;
}
update_pscr(mp, cmd.speed, cmd.duplex);
mv643xx_eth_set_settings(mp->dev, &cmd);
return 0;
}
static int mv643xx_eth_probe(struct platform_device *pdev)
{
struct mv643xx_eth_platform_data *pd;
struct mv643xx_eth_private *mp;
struct net_device *dev;
struct resource *res;
DECLARE_MAC_BUF(mac);
int err;
pd = pdev->dev.platform_data;
if (pd == NULL) {
dev_printk(KERN_ERR, &pdev->dev,
"no mv643xx_eth_platform_data\n");
return -ENODEV;
}
if (pd->shared == NULL) {
dev_printk(KERN_ERR, &pdev->dev,
"no mv643xx_eth_platform_data->shared\n");
return -ENODEV;
}
dev = alloc_etherdev(sizeof(struct mv643xx_eth_private));
if (!dev)
return -ENOMEM;
mp = netdev_priv(dev);
platform_set_drvdata(pdev, mp);
mp->shared = platform_get_drvdata(pd->shared);
mp->port_num = pd->port_number;
mp->dev = dev;
#ifdef MV643XX_ETH_NAPI
netif_napi_add(dev, &mp->napi, mv643xx_eth_poll, 64);
#endif
set_params(mp, pd);
spin_lock_init(&mp->lock);
mib_counters_clear(mp);
INIT_WORK(&mp->tx_timeout_task, tx_timeout_task);
if (mp->phy_addr != -1) {
err = phy_init(mp, pd);
if (err)
goto out;
SET_ETHTOOL_OPS(dev, &mv643xx_eth_ethtool_ops);
} else {
SET_ETHTOOL_OPS(dev, &mv643xx_eth_ethtool_ops_phyless);
}
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
BUG_ON(!res);
dev->irq = res->start;
dev->hard_start_xmit = mv643xx_eth_xmit;
dev->open = mv643xx_eth_open;
dev->stop = mv643xx_eth_stop;
dev->set_multicast_list = mv643xx_eth_set_rx_mode;
dev->set_mac_address = mv643xx_eth_set_mac_address;
dev->do_ioctl = mv643xx_eth_ioctl;
dev->change_mtu = mv643xx_eth_change_mtu;
dev->tx_timeout = mv643xx_eth_tx_timeout;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = mv643xx_eth_netpoll;
#endif
dev->watchdog_timeo = 2 * HZ;
dev->base_addr = 0;
#ifdef MV643XX_ETH_CHECKSUM_OFFLOAD_TX
/*
* Zero copy can only work if we use Discovery II memory. Else, we will
* have to map the buffers to ISA memory which is only 16 MB
*/
dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
#endif
SET_NETDEV_DEV(dev, &pdev->dev);
if (mp->shared->win_protect)
wrl(mp, WINDOW_PROTECT(mp->port_num), mp->shared->win_protect);
err = register_netdev(dev);
if (err)
goto out;
dev_printk(KERN_NOTICE, &dev->dev, "port %d with MAC address %s\n",
mp->port_num, print_mac(mac, dev->dev_addr));
if (dev->features & NETIF_F_SG)
dev_printk(KERN_NOTICE, &dev->dev, "scatter/gather enabled\n");
if (dev->features & NETIF_F_IP_CSUM)
dev_printk(KERN_NOTICE, &dev->dev, "tx checksum offload\n");
#ifdef MV643XX_ETH_NAPI
dev_printk(KERN_NOTICE, &dev->dev, "napi enabled\n");
#endif
if (mp->tx_desc_sram_size > 0)
dev_printk(KERN_NOTICE, &dev->dev, "configured with sram\n");
return 0;
out:
free_netdev(dev);
return err;
}
static int mv643xx_eth_remove(struct platform_device *pdev)
{
struct mv643xx_eth_private *mp = platform_get_drvdata(pdev);
unregister_netdev(mp->dev);
flush_scheduled_work();
free_netdev(mp->dev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static void mv643xx_eth_shutdown(struct platform_device *pdev)
{
struct mv643xx_eth_private *mp = platform_get_drvdata(pdev);
/* Mask all interrupts on ethernet port */
wrl(mp, INT_MASK(mp->port_num), 0);
rdl(mp, INT_MASK(mp->port_num));
if (netif_running(mp->dev))
port_reset(mp);
}
static struct platform_driver mv643xx_eth_driver = {
.probe = mv643xx_eth_probe,
.remove = mv643xx_eth_remove,
.shutdown = mv643xx_eth_shutdown,
.driver = {
.name = MV643XX_ETH_NAME,
.owner = THIS_MODULE,
},
};
static int __init mv643xx_eth_init_module(void)
{
int rc;
rc = platform_driver_register(&mv643xx_eth_shared_driver);
if (!rc) {
rc = platform_driver_register(&mv643xx_eth_driver);
if (rc)
platform_driver_unregister(&mv643xx_eth_shared_driver);
}
return rc;
}
module_init(mv643xx_eth_init_module);
static void __exit mv643xx_eth_cleanup_module(void)
{
platform_driver_unregister(&mv643xx_eth_driver);
platform_driver_unregister(&mv643xx_eth_shared_driver);
}
module_exit(mv643xx_eth_cleanup_module);
MODULE_AUTHOR("Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, "
"Manish Lachwani, Dale Farnsworth and Lennert Buytenhek");
MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" MV643XX_ETH_SHARED_NAME);
MODULE_ALIAS("platform:" MV643XX_ETH_NAME);