blob: 675550fe8ee90dfe7f2c704787d7b900107f06d4 [file] [log] [blame]
/*
* Linux network driver for Brocade Converged Network Adapter.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License (GPL) Version 2 as
* published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
/*
* Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
* All rights reserved
* www.brocade.com
*/
#include <linux/bitops.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/in.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/prefetch.h>
#include <linux/module.h>
#include "bnad.h"
#include "bna.h"
#include "cna.h"
static DEFINE_MUTEX(bnad_fwimg_mutex);
/*
* Module params
*/
static uint bnad_msix_disable;
module_param(bnad_msix_disable, uint, 0444);
MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
static uint bnad_ioc_auto_recover = 1;
module_param(bnad_ioc_auto_recover, uint, 0444);
MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
static uint bna_debugfs_enable = 1;
module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
" Range[false:0|true:1]");
/*
* Global variables
*/
static u32 bnad_rxqs_per_cq = 2;
static u32 bna_id;
static struct mutex bnad_list_mutex;
static LIST_HEAD(bnad_list);
static const u8 bnad_bcast_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
/*
* Local MACROS
*/
#define BNAD_GET_MBOX_IRQ(_bnad) \
(((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
((_bnad)->pcidev->irq))
#define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \
do { \
(_res_info)->res_type = BNA_RES_T_MEM; \
(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
(_res_info)->res_u.mem_info.num = (_num); \
(_res_info)->res_u.mem_info.len = (_size); \
} while (0)
static void
bnad_add_to_list(struct bnad *bnad)
{
mutex_lock(&bnad_list_mutex);
list_add_tail(&bnad->list_entry, &bnad_list);
bnad->id = bna_id++;
mutex_unlock(&bnad_list_mutex);
}
static void
bnad_remove_from_list(struct bnad *bnad)
{
mutex_lock(&bnad_list_mutex);
list_del(&bnad->list_entry);
mutex_unlock(&bnad_list_mutex);
}
/*
* Reinitialize completions in CQ, once Rx is taken down
*/
static void
bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
{
struct bna_cq_entry *cmpl;
int i;
for (i = 0; i < ccb->q_depth; i++) {
cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
cmpl->valid = 0;
}
}
/* Tx Datapath functions */
/* Caller should ensure that the entry at unmap_q[index] is valid */
static u32
bnad_tx_buff_unmap(struct bnad *bnad,
struct bnad_tx_unmap *unmap_q,
u32 q_depth, u32 index)
{
struct bnad_tx_unmap *unmap;
struct sk_buff *skb;
int vector, nvecs;
unmap = &unmap_q[index];
nvecs = unmap->nvecs;
skb = unmap->skb;
unmap->skb = NULL;
unmap->nvecs = 0;
dma_unmap_single(&bnad->pcidev->dev,
dma_unmap_addr(&unmap->vectors[0], dma_addr),
skb_headlen(skb), DMA_TO_DEVICE);
dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
nvecs--;
vector = 0;
while (nvecs) {
vector++;
if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
vector = 0;
BNA_QE_INDX_INC(index, q_depth);
unmap = &unmap_q[index];
}
dma_unmap_page(&bnad->pcidev->dev,
dma_unmap_addr(&unmap->vectors[vector], dma_addr),
dma_unmap_len(&unmap->vectors[vector], dma_len),
DMA_TO_DEVICE);
dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
nvecs--;
}
BNA_QE_INDX_INC(index, q_depth);
return index;
}
/*
* Frees all pending Tx Bufs
* At this point no activity is expected on the Q,
* so DMA unmap & freeing is fine.
*/
static void
bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
{
struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
struct sk_buff *skb;
int i;
for (i = 0; i < tcb->q_depth; i++) {
skb = unmap_q[i].skb;
if (!skb)
continue;
bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
dev_kfree_skb_any(skb);
}
}
/*
* bnad_txcmpl_process : Frees the Tx bufs on Tx completion
* Can be called in a) Interrupt context
* b) Sending context
*/
static u32
bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
{
u32 sent_packets = 0, sent_bytes = 0;
u32 wis, unmap_wis, hw_cons, cons, q_depth;
struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
struct bnad_tx_unmap *unmap;
struct sk_buff *skb;
/* Just return if TX is stopped */
if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
return 0;
hw_cons = *(tcb->hw_consumer_index);
cons = tcb->consumer_index;
q_depth = tcb->q_depth;
wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
while (wis) {
unmap = &unmap_q[cons];
skb = unmap->skb;
sent_packets++;
sent_bytes += skb->len;
unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
wis -= unmap_wis;
cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
dev_kfree_skb_any(skb);
}
/* Update consumer pointers. */
tcb->consumer_index = hw_cons;
tcb->txq->tx_packets += sent_packets;
tcb->txq->tx_bytes += sent_bytes;
return sent_packets;
}
static u32
bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
{
struct net_device *netdev = bnad->netdev;
u32 sent = 0;
if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
return 0;
sent = bnad_txcmpl_process(bnad, tcb);
if (sent) {
if (netif_queue_stopped(netdev) &&
netif_carrier_ok(netdev) &&
BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
BNAD_NETIF_WAKE_THRESHOLD) {
if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
netif_wake_queue(netdev);
BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
}
}
}
if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
bna_ib_ack(tcb->i_dbell, sent);
smp_mb__before_clear_bit();
clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
return sent;
}
/* MSIX Tx Completion Handler */
static irqreturn_t
bnad_msix_tx(int irq, void *data)
{
struct bna_tcb *tcb = (struct bna_tcb *)data;
struct bnad *bnad = tcb->bnad;
bnad_tx_complete(bnad, tcb);
return IRQ_HANDLED;
}
static inline void
bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
{
struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
unmap_q->reuse_pi = -1;
unmap_q->alloc_order = -1;
unmap_q->map_size = 0;
unmap_q->type = BNAD_RXBUF_NONE;
}
/* Default is page-based allocation. Multi-buffer support - TBD */
static int
bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
{
struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
int order;
bnad_rxq_alloc_uninit(bnad, rcb);
order = get_order(rcb->rxq->buffer_size);
unmap_q->type = BNAD_RXBUF_PAGE;
if (bna_is_small_rxq(rcb->id)) {
unmap_q->alloc_order = 0;
unmap_q->map_size = rcb->rxq->buffer_size;
} else {
if (rcb->rxq->multi_buffer) {
unmap_q->alloc_order = 0;
unmap_q->map_size = rcb->rxq->buffer_size;
unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
} else {
unmap_q->alloc_order = order;
unmap_q->map_size =
(rcb->rxq->buffer_size > 2048) ?
PAGE_SIZE << order : 2048;
}
}
BUG_ON(((PAGE_SIZE << order) % unmap_q->map_size));
return 0;
}
static inline void
bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
{
if (!unmap->page)
return;
dma_unmap_page(&bnad->pcidev->dev,
dma_unmap_addr(&unmap->vector, dma_addr),
unmap->vector.len, DMA_FROM_DEVICE);
put_page(unmap->page);
unmap->page = NULL;
dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
unmap->vector.len = 0;
}
static inline void
bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
{
if (!unmap->skb)
return;
dma_unmap_single(&bnad->pcidev->dev,
dma_unmap_addr(&unmap->vector, dma_addr),
unmap->vector.len, DMA_FROM_DEVICE);
dev_kfree_skb_any(unmap->skb);
unmap->skb = NULL;
dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
unmap->vector.len = 0;
}
static void
bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
{
struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
int i;
for (i = 0; i < rcb->q_depth; i++) {
struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
bnad_rxq_cleanup_skb(bnad, unmap);
else
bnad_rxq_cleanup_page(bnad, unmap);
}
bnad_rxq_alloc_uninit(bnad, rcb);
}
static u32
bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
{
u32 alloced, prod, q_depth;
struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
struct bnad_rx_unmap *unmap, *prev;
struct bna_rxq_entry *rxent;
struct page *page;
u32 page_offset, alloc_size;
dma_addr_t dma_addr;
prod = rcb->producer_index;
q_depth = rcb->q_depth;
alloc_size = PAGE_SIZE << unmap_q->alloc_order;
alloced = 0;
while (nalloc--) {
unmap = &unmap_q->unmap[prod];
if (unmap_q->reuse_pi < 0) {
page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
unmap_q->alloc_order);
page_offset = 0;
} else {
prev = &unmap_q->unmap[unmap_q->reuse_pi];
page = prev->page;
page_offset = prev->page_offset + unmap_q->map_size;
get_page(page);
}
if (unlikely(!page)) {
BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
rcb->rxq->rxbuf_alloc_failed++;
goto finishing;
}
dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
unmap_q->map_size, DMA_FROM_DEVICE);
unmap->page = page;
unmap->page_offset = page_offset;
dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
unmap->vector.len = unmap_q->map_size;
page_offset += unmap_q->map_size;
if (page_offset < alloc_size)
unmap_q->reuse_pi = prod;
else
unmap_q->reuse_pi = -1;
rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
BNA_QE_INDX_INC(prod, q_depth);
alloced++;
}
finishing:
if (likely(alloced)) {
rcb->producer_index = prod;
smp_mb();
if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
bna_rxq_prod_indx_doorbell(rcb);
}
return alloced;
}
static u32
bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
{
u32 alloced, prod, q_depth, buff_sz;
struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
struct bnad_rx_unmap *unmap;
struct bna_rxq_entry *rxent;
struct sk_buff *skb;
dma_addr_t dma_addr;
buff_sz = rcb->rxq->buffer_size;
prod = rcb->producer_index;
q_depth = rcb->q_depth;
alloced = 0;
while (nalloc--) {
unmap = &unmap_q->unmap[prod];
skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
if (unlikely(!skb)) {
BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
rcb->rxq->rxbuf_alloc_failed++;
goto finishing;
}
dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
buff_sz, DMA_FROM_DEVICE);
unmap->skb = skb;
dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
unmap->vector.len = buff_sz;
rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
BNA_QE_INDX_INC(prod, q_depth);
alloced++;
}
finishing:
if (likely(alloced)) {
rcb->producer_index = prod;
smp_mb();
if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
bna_rxq_prod_indx_doorbell(rcb);
}
return alloced;
}
static inline void
bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
{
struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
u32 to_alloc;
to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
return;
if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
bnad_rxq_refill_skb(bnad, rcb, to_alloc);
else
bnad_rxq_refill_page(bnad, rcb, to_alloc);
}
#define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
BNA_CQ_EF_IPV6 | \
BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
BNA_CQ_EF_L4_CKSUM_OK)
#define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
#define flags_tcp6 (BNA_CQ_EF_IPV6 | \
BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
#define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
#define flags_udp6 (BNA_CQ_EF_IPV6 | \
BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
static void
bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
u32 sop_ci, u32 nvecs)
{
struct bnad_rx_unmap_q *unmap_q;
struct bnad_rx_unmap *unmap;
u32 ci, vec;
unmap_q = rcb->unmap_q;
for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
unmap = &unmap_q->unmap[ci];
BNA_QE_INDX_INC(ci, rcb->q_depth);
if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
bnad_rxq_cleanup_skb(bnad, unmap);
else
bnad_rxq_cleanup_page(bnad, unmap);
}
}
static void
bnad_cq_setup_skb_frags(struct bna_rcb *rcb, struct sk_buff *skb,
u32 sop_ci, u32 nvecs, u32 last_fraglen)
{
struct bnad *bnad;
u32 ci, vec, len, totlen = 0;
struct bnad_rx_unmap_q *unmap_q;
struct bnad_rx_unmap *unmap;
unmap_q = rcb->unmap_q;
bnad = rcb->bnad;
/* prefetch header */
prefetch(page_address(unmap_q->unmap[sop_ci].page) +
unmap_q->unmap[sop_ci].page_offset);
for (vec = 1, ci = sop_ci; vec <= nvecs; vec++) {
unmap = &unmap_q->unmap[ci];
BNA_QE_INDX_INC(ci, rcb->q_depth);
dma_unmap_page(&bnad->pcidev->dev,
dma_unmap_addr(&unmap->vector, dma_addr),
unmap->vector.len, DMA_FROM_DEVICE);
len = (vec == nvecs) ?
last_fraglen : unmap->vector.len;
totlen += len;
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
unmap->page, unmap->page_offset, len);
unmap->page = NULL;
unmap->vector.len = 0;
}
skb->len += totlen;
skb->data_len += totlen;
skb->truesize += totlen;
}
static inline void
bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
struct bnad_rx_unmap *unmap, u32 len)
{
prefetch(skb->data);
dma_unmap_single(&bnad->pcidev->dev,
dma_unmap_addr(&unmap->vector, dma_addr),
unmap->vector.len, DMA_FROM_DEVICE);
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, bnad->netdev);
unmap->skb = NULL;
unmap->vector.len = 0;
}
static u32
bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
{
struct bna_cq_entry *cq, *cmpl, *next_cmpl;
struct bna_rcb *rcb = NULL;
struct bnad_rx_unmap_q *unmap_q;
struct bnad_rx_unmap *unmap = NULL;
struct sk_buff *skb = NULL;
struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
u32 packets = 0, len = 0, totlen = 0;
u32 pi, vec, sop_ci = 0, nvecs = 0;
u32 flags, masked_flags;
prefetch(bnad->netdev);
cq = ccb->sw_q;
cmpl = &cq[ccb->producer_index];
while (packets < budget) {
if (!cmpl->valid)
break;
/* The 'valid' field is set by the adapter, only after writing
* the other fields of completion entry. Hence, do not load
* other fields of completion entry *before* the 'valid' is
* loaded. Adding the rmb() here prevents the compiler and/or
* CPU from reordering the reads which would potentially result
* in reading stale values in completion entry.
*/
rmb();
BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
if (bna_is_small_rxq(cmpl->rxq_id))
rcb = ccb->rcb[1];
else
rcb = ccb->rcb[0];
unmap_q = rcb->unmap_q;
/* start of packet ci */
sop_ci = rcb->consumer_index;
if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
unmap = &unmap_q->unmap[sop_ci];
skb = unmap->skb;
} else {
skb = napi_get_frags(&rx_ctrl->napi);
if (unlikely(!skb))
break;
}
prefetch(skb);
flags = ntohl(cmpl->flags);
len = ntohs(cmpl->length);
totlen = len;
nvecs = 1;
/* Check all the completions for this frame.
* busy-wait doesn't help much, break here.
*/
if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
(flags & BNA_CQ_EF_EOP) == 0) {
pi = ccb->producer_index;
do {
BNA_QE_INDX_INC(pi, ccb->q_depth);
next_cmpl = &cq[pi];
if (!next_cmpl->valid)
break;
/* The 'valid' field is set by the adapter, only
* after writing the other fields of completion
* entry. Hence, do not load other fields of
* completion entry *before* the 'valid' is
* loaded. Adding the rmb() here prevents the
* compiler and/or CPU from reordering the reads
* which would potentially result in reading
* stale values in completion entry.
*/
rmb();
len = ntohs(next_cmpl->length);
flags = ntohl(next_cmpl->flags);
nvecs++;
totlen += len;
} while ((flags & BNA_CQ_EF_EOP) == 0);
if (!next_cmpl->valid)
break;
}
/* TODO: BNA_CQ_EF_LOCAL ? */
if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
BNA_CQ_EF_FCS_ERROR |
BNA_CQ_EF_TOO_LONG))) {
bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
rcb->rxq->rx_packets_with_error++;
goto next;
}
if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
bnad_cq_setup_skb(bnad, skb, unmap, len);
else
bnad_cq_setup_skb_frags(rcb, skb, sop_ci, nvecs, len);
packets++;
rcb->rxq->rx_packets++;
rcb->rxq->rx_bytes += totlen;
ccb->bytes_per_intr += totlen;
masked_flags = flags & flags_cksum_prot_mask;
if (likely
((bnad->netdev->features & NETIF_F_RXCSUM) &&
((masked_flags == flags_tcp4) ||
(masked_flags == flags_udp4) ||
(masked_flags == flags_tcp6) ||
(masked_flags == flags_udp6))))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
if ((flags & BNA_CQ_EF_VLAN) &&
(bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
netif_receive_skb(skb);
else
napi_gro_frags(&rx_ctrl->napi);
next:
BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
for (vec = 0; vec < nvecs; vec++) {
cmpl = &cq[ccb->producer_index];
cmpl->valid = 0;
BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
}
cmpl = &cq[ccb->producer_index];
}
napi_gro_flush(&rx_ctrl->napi, false);
if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
bna_ib_ack_disable_irq(ccb->i_dbell, packets);
bnad_rxq_post(bnad, ccb->rcb[0]);
if (ccb->rcb[1])
bnad_rxq_post(bnad, ccb->rcb[1]);
return packets;
}
static void
bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
{
struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
struct napi_struct *napi = &rx_ctrl->napi;
if (likely(napi_schedule_prep(napi))) {
__napi_schedule(napi);
rx_ctrl->rx_schedule++;
}
}
/* MSIX Rx Path Handler */
static irqreturn_t
bnad_msix_rx(int irq, void *data)
{
struct bna_ccb *ccb = (struct bna_ccb *)data;
if (ccb) {
((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
}
return IRQ_HANDLED;
}
/* Interrupt handlers */
/* Mbox Interrupt Handlers */
static irqreturn_t
bnad_msix_mbox_handler(int irq, void *data)
{
u32 intr_status;
unsigned long flags;
struct bnad *bnad = (struct bnad *)data;
spin_lock_irqsave(&bnad->bna_lock, flags);
if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
spin_unlock_irqrestore(&bnad->bna_lock, flags);
return IRQ_HANDLED;
}
bna_intr_status_get(&bnad->bna, intr_status);
if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
bna_mbox_handler(&bnad->bna, intr_status);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t
bnad_isr(int irq, void *data)
{
int i, j;
u32 intr_status;
unsigned long flags;
struct bnad *bnad = (struct bnad *)data;
struct bnad_rx_info *rx_info;
struct bnad_rx_ctrl *rx_ctrl;
struct bna_tcb *tcb = NULL;
spin_lock_irqsave(&bnad->bna_lock, flags);
if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
spin_unlock_irqrestore(&bnad->bna_lock, flags);
return IRQ_NONE;
}
bna_intr_status_get(&bnad->bna, intr_status);
if (unlikely(!intr_status)) {
spin_unlock_irqrestore(&bnad->bna_lock, flags);
return IRQ_NONE;
}
if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
bna_mbox_handler(&bnad->bna, intr_status);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
if (!BNA_IS_INTX_DATA_INTR(intr_status))
return IRQ_HANDLED;
/* Process data interrupts */
/* Tx processing */
for (i = 0; i < bnad->num_tx; i++) {
for (j = 0; j < bnad->num_txq_per_tx; j++) {
tcb = bnad->tx_info[i].tcb[j];
if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
}
}
/* Rx processing */
for (i = 0; i < bnad->num_rx; i++) {
rx_info = &bnad->rx_info[i];
if (!rx_info->rx)
continue;
for (j = 0; j < bnad->num_rxp_per_rx; j++) {
rx_ctrl = &rx_info->rx_ctrl[j];
if (rx_ctrl->ccb)
bnad_netif_rx_schedule_poll(bnad,
rx_ctrl->ccb);
}
}
return IRQ_HANDLED;
}
/*
* Called in interrupt / callback context
* with bna_lock held, so cfg_flags access is OK
*/
static void
bnad_enable_mbox_irq(struct bnad *bnad)
{
clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
}
/*
* Called with bnad->bna_lock held b'cos of
* bnad->cfg_flags access.
*/
static void
bnad_disable_mbox_irq(struct bnad *bnad)
{
set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
}
static void
bnad_set_netdev_perm_addr(struct bnad *bnad)
{
struct net_device *netdev = bnad->netdev;
memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
if (is_zero_ether_addr(netdev->dev_addr))
memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
}
/* Control Path Handlers */
/* Callbacks */
void
bnad_cb_mbox_intr_enable(struct bnad *bnad)
{
bnad_enable_mbox_irq(bnad);
}
void
bnad_cb_mbox_intr_disable(struct bnad *bnad)
{
bnad_disable_mbox_irq(bnad);
}
void
bnad_cb_ioceth_ready(struct bnad *bnad)
{
bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
complete(&bnad->bnad_completions.ioc_comp);
}
void
bnad_cb_ioceth_failed(struct bnad *bnad)
{
bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
complete(&bnad->bnad_completions.ioc_comp);
}
void
bnad_cb_ioceth_disabled(struct bnad *bnad)
{
bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
complete(&bnad->bnad_completions.ioc_comp);
}
static void
bnad_cb_enet_disabled(void *arg)
{
struct bnad *bnad = (struct bnad *)arg;
netif_carrier_off(bnad->netdev);
complete(&bnad->bnad_completions.enet_comp);
}
void
bnad_cb_ethport_link_status(struct bnad *bnad,
enum bna_link_status link_status)
{
bool link_up = false;
link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
if (link_status == BNA_CEE_UP) {
if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
BNAD_UPDATE_CTR(bnad, cee_toggle);
set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
} else {
if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
BNAD_UPDATE_CTR(bnad, cee_toggle);
clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
}
if (link_up) {
if (!netif_carrier_ok(bnad->netdev)) {
uint tx_id, tcb_id;
printk(KERN_WARNING "bna: %s link up\n",
bnad->netdev->name);
netif_carrier_on(bnad->netdev);
BNAD_UPDATE_CTR(bnad, link_toggle);
for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
tcb_id++) {
struct bna_tcb *tcb =
bnad->tx_info[tx_id].tcb[tcb_id];
u32 txq_id;
if (!tcb)
continue;
txq_id = tcb->id;
if (test_bit(BNAD_TXQ_TX_STARTED,
&tcb->flags)) {
/*
* Force an immediate
* Transmit Schedule */
printk(KERN_INFO "bna: %s %d "
"TXQ_STARTED\n",
bnad->netdev->name,
txq_id);
netif_wake_subqueue(
bnad->netdev,
txq_id);
BNAD_UPDATE_CTR(bnad,
netif_queue_wakeup);
} else {
netif_stop_subqueue(
bnad->netdev,
txq_id);
BNAD_UPDATE_CTR(bnad,
netif_queue_stop);
}
}
}
}
} else {
if (netif_carrier_ok(bnad->netdev)) {
printk(KERN_WARNING "bna: %s link down\n",
bnad->netdev->name);
netif_carrier_off(bnad->netdev);
BNAD_UPDATE_CTR(bnad, link_toggle);
}
}
}
static void
bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
{
struct bnad *bnad = (struct bnad *)arg;
complete(&bnad->bnad_completions.tx_comp);
}
static void
bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
{
struct bnad_tx_info *tx_info =
(struct bnad_tx_info *)tcb->txq->tx->priv;
tcb->priv = tcb;
tx_info->tcb[tcb->id] = tcb;
}
static void
bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
{
struct bnad_tx_info *tx_info =
(struct bnad_tx_info *)tcb->txq->tx->priv;
tx_info->tcb[tcb->id] = NULL;
tcb->priv = NULL;
}
static void
bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
{
struct bnad_rx_info *rx_info =
(struct bnad_rx_info *)ccb->cq->rx->priv;
rx_info->rx_ctrl[ccb->id].ccb = ccb;
ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
}
static void
bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
{
struct bnad_rx_info *rx_info =
(struct bnad_rx_info *)ccb->cq->rx->priv;
rx_info->rx_ctrl[ccb->id].ccb = NULL;
}
static void
bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
{
struct bnad_tx_info *tx_info =
(struct bnad_tx_info *)tx->priv;
struct bna_tcb *tcb;
u32 txq_id;
int i;
for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
tcb = tx_info->tcb[i];
if (!tcb)
continue;
txq_id = tcb->id;
clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
netif_stop_subqueue(bnad->netdev, txq_id);
printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
bnad->netdev->name, txq_id);
}
}
static void
bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
{
struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
struct bna_tcb *tcb;
u32 txq_id;
int i;
for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
tcb = tx_info->tcb[i];
if (!tcb)
continue;
txq_id = tcb->id;
BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
BUG_ON(*(tcb->hw_consumer_index) != 0);
if (netif_carrier_ok(bnad->netdev)) {
printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
bnad->netdev->name, txq_id);
netif_wake_subqueue(bnad->netdev, txq_id);
BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
}
}
/*
* Workaround for first ioceth enable failure & we
* get a 0 MAC address. We try to get the MAC address
* again here.
*/
if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
bnad_set_netdev_perm_addr(bnad);
}
}
/*
* Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
*/
static void
bnad_tx_cleanup(struct delayed_work *work)
{
struct bnad_tx_info *tx_info =
container_of(work, struct bnad_tx_info, tx_cleanup_work);
struct bnad *bnad = NULL;
struct bna_tcb *tcb;
unsigned long flags;
u32 i, pending = 0;
for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
tcb = tx_info->tcb[i];
if (!tcb)
continue;
bnad = tcb->bnad;
if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
pending++;
continue;
}
bnad_txq_cleanup(bnad, tcb);
smp_mb__before_clear_bit();
clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
}
if (pending) {
queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
msecs_to_jiffies(1));
return;
}
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_tx_cleanup_complete(tx_info->tx);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
}
static void
bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
{
struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
struct bna_tcb *tcb;
int i;
for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
tcb = tx_info->tcb[i];
if (!tcb)
continue;
}
queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
}
static void
bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
{
struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
struct bna_ccb *ccb;
struct bnad_rx_ctrl *rx_ctrl;
int i;
for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
rx_ctrl = &rx_info->rx_ctrl[i];
ccb = rx_ctrl->ccb;
if (!ccb)
continue;
clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
if (ccb->rcb[1])
clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
}
}
/*
* Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
*/
static void
bnad_rx_cleanup(void *work)
{
struct bnad_rx_info *rx_info =
container_of(work, struct bnad_rx_info, rx_cleanup_work);
struct bnad_rx_ctrl *rx_ctrl;
struct bnad *bnad = NULL;
unsigned long flags;
u32 i;
for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
rx_ctrl = &rx_info->rx_ctrl[i];
if (!rx_ctrl->ccb)
continue;
bnad = rx_ctrl->ccb->bnad;
/*
* Wait till the poll handler has exited
* and nothing can be scheduled anymore
*/
napi_disable(&rx_ctrl->napi);
bnad_cq_cleanup(bnad, rx_ctrl->ccb);
bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
if (rx_ctrl->ccb->rcb[1])
bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
}
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_rx_cleanup_complete(rx_info->rx);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
}
static void
bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
{
struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
struct bna_ccb *ccb;
struct bnad_rx_ctrl *rx_ctrl;
int i;
for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
rx_ctrl = &rx_info->rx_ctrl[i];
ccb = rx_ctrl->ccb;
if (!ccb)
continue;
clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
if (ccb->rcb[1])
clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
}
queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
}
static void
bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
{
struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
struct bna_ccb *ccb;
struct bna_rcb *rcb;
struct bnad_rx_ctrl *rx_ctrl;
int i, j;
for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
rx_ctrl = &rx_info->rx_ctrl[i];
ccb = rx_ctrl->ccb;
if (!ccb)
continue;
napi_enable(&rx_ctrl->napi);
for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
rcb = ccb->rcb[j];
if (!rcb)
continue;
bnad_rxq_alloc_init(bnad, rcb);
set_bit(BNAD_RXQ_STARTED, &rcb->flags);
set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
bnad_rxq_post(bnad, rcb);
}
}
}
static void
bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
{
struct bnad *bnad = (struct bnad *)arg;
complete(&bnad->bnad_completions.rx_comp);
}
static void
bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
{
bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
complete(&bnad->bnad_completions.mcast_comp);
}
void
bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
struct bna_stats *stats)
{
if (status == BNA_CB_SUCCESS)
BNAD_UPDATE_CTR(bnad, hw_stats_updates);
if (!netif_running(bnad->netdev) ||
!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
return;
mod_timer(&bnad->stats_timer,
jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
}
static void
bnad_cb_enet_mtu_set(struct bnad *bnad)
{
bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
complete(&bnad->bnad_completions.mtu_comp);
}
void
bnad_cb_completion(void *arg, enum bfa_status status)
{
struct bnad_iocmd_comp *iocmd_comp =
(struct bnad_iocmd_comp *)arg;
iocmd_comp->comp_status = (u32) status;
complete(&iocmd_comp->comp);
}
/* Resource allocation, free functions */
static void
bnad_mem_free(struct bnad *bnad,
struct bna_mem_info *mem_info)
{
int i;
dma_addr_t dma_pa;
if (mem_info->mdl == NULL)
return;
for (i = 0; i < mem_info->num; i++) {
if (mem_info->mdl[i].kva != NULL) {
if (mem_info->mem_type == BNA_MEM_T_DMA) {
BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
dma_pa);
dma_free_coherent(&bnad->pcidev->dev,
mem_info->mdl[i].len,
mem_info->mdl[i].kva, dma_pa);
} else
kfree(mem_info->mdl[i].kva);
}
}
kfree(mem_info->mdl);
mem_info->mdl = NULL;
}
static int
bnad_mem_alloc(struct bnad *bnad,
struct bna_mem_info *mem_info)
{
int i;
dma_addr_t dma_pa;
if ((mem_info->num == 0) || (mem_info->len == 0)) {
mem_info->mdl = NULL;
return 0;
}
mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
GFP_KERNEL);
if (mem_info->mdl == NULL)
return -ENOMEM;
if (mem_info->mem_type == BNA_MEM_T_DMA) {
for (i = 0; i < mem_info->num; i++) {
mem_info->mdl[i].len = mem_info->len;
mem_info->mdl[i].kva =
dma_alloc_coherent(&bnad->pcidev->dev,
mem_info->len, &dma_pa,
GFP_KERNEL);
if (mem_info->mdl[i].kva == NULL)
goto err_return;
BNA_SET_DMA_ADDR(dma_pa,
&(mem_info->mdl[i].dma));
}
} else {
for (i = 0; i < mem_info->num; i++) {
mem_info->mdl[i].len = mem_info->len;
mem_info->mdl[i].kva = kzalloc(mem_info->len,
GFP_KERNEL);
if (mem_info->mdl[i].kva == NULL)
goto err_return;
}
}
return 0;
err_return:
bnad_mem_free(bnad, mem_info);
return -ENOMEM;
}
/* Free IRQ for Mailbox */
static void
bnad_mbox_irq_free(struct bnad *bnad)
{
int irq;
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
bnad_disable_mbox_irq(bnad);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
irq = BNAD_GET_MBOX_IRQ(bnad);
free_irq(irq, bnad);
}
/*
* Allocates IRQ for Mailbox, but keep it disabled
* This will be enabled once we get the mbox enable callback
* from bna
*/
static int
bnad_mbox_irq_alloc(struct bnad *bnad)
{
int err = 0;
unsigned long irq_flags, flags;
u32 irq;
irq_handler_t irq_handler;
spin_lock_irqsave(&bnad->bna_lock, flags);
if (bnad->cfg_flags & BNAD_CF_MSIX) {
irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
irq_flags = 0;
} else {
irq_handler = (irq_handler_t)bnad_isr;
irq = bnad->pcidev->irq;
irq_flags = IRQF_SHARED;
}
spin_unlock_irqrestore(&bnad->bna_lock, flags);
sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
/*
* Set the Mbox IRQ disable flag, so that the IRQ handler
* called from request_irq() for SHARED IRQs do not execute
*/
set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
err = request_irq(irq, irq_handler, irq_flags,
bnad->mbox_irq_name, bnad);
return err;
}
static void
bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
{
kfree(intr_info->idl);
intr_info->idl = NULL;
}
/* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
static int
bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
u32 txrx_id, struct bna_intr_info *intr_info)
{
int i, vector_start = 0;
u32 cfg_flags;
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
cfg_flags = bnad->cfg_flags;
spin_unlock_irqrestore(&bnad->bna_lock, flags);
if (cfg_flags & BNAD_CF_MSIX) {
intr_info->intr_type = BNA_INTR_T_MSIX;
intr_info->idl = kcalloc(intr_info->num,
sizeof(struct bna_intr_descr),
GFP_KERNEL);
if (!intr_info->idl)
return -ENOMEM;
switch (src) {
case BNAD_INTR_TX:
vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
break;
case BNAD_INTR_RX:
vector_start = BNAD_MAILBOX_MSIX_VECTORS +
(bnad->num_tx * bnad->num_txq_per_tx) +
txrx_id;
break;
default:
BUG();
}
for (i = 0; i < intr_info->num; i++)
intr_info->idl[i].vector = vector_start + i;
} else {
intr_info->intr_type = BNA_INTR_T_INTX;
intr_info->num = 1;
intr_info->idl = kcalloc(intr_info->num,
sizeof(struct bna_intr_descr),
GFP_KERNEL);
if (!intr_info->idl)
return -ENOMEM;
switch (src) {
case BNAD_INTR_TX:
intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
break;
case BNAD_INTR_RX:
intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
break;
}
}
return 0;
}
/* NOTE: Should be called for MSIX only
* Unregisters Tx MSIX vector(s) from the kernel
*/
static void
bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
int num_txqs)
{
int i;
int vector_num;
for (i = 0; i < num_txqs; i++) {
if (tx_info->tcb[i] == NULL)
continue;
vector_num = tx_info->tcb[i]->intr_vector;
free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
}
}
/* NOTE: Should be called for MSIX only
* Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
*/
static int
bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
u32 tx_id, int num_txqs)
{
int i;
int err;
int vector_num;
for (i = 0; i < num_txqs; i++) {
vector_num = tx_info->tcb[i]->intr_vector;
sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
tx_id + tx_info->tcb[i]->id);
err = request_irq(bnad->msix_table[vector_num].vector,
(irq_handler_t)bnad_msix_tx, 0,
tx_info->tcb[i]->name,
tx_info->tcb[i]);
if (err)
goto err_return;
}
return 0;
err_return:
if (i > 0)
bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
return -1;
}
/* NOTE: Should be called for MSIX only
* Unregisters Rx MSIX vector(s) from the kernel
*/
static void
bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
int num_rxps)
{
int i;
int vector_num;
for (i = 0; i < num_rxps; i++) {
if (rx_info->rx_ctrl[i].ccb == NULL)
continue;
vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
free_irq(bnad->msix_table[vector_num].vector,
rx_info->rx_ctrl[i].ccb);
}
}
/* NOTE: Should be called for MSIX only
* Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
*/
static int
bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
u32 rx_id, int num_rxps)
{
int i;
int err;
int vector_num;
for (i = 0; i < num_rxps; i++) {
vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
bnad->netdev->name,
rx_id + rx_info->rx_ctrl[i].ccb->id);
err = request_irq(bnad->msix_table[vector_num].vector,
(irq_handler_t)bnad_msix_rx, 0,
rx_info->rx_ctrl[i].ccb->name,
rx_info->rx_ctrl[i].ccb);
if (err)
goto err_return;
}
return 0;
err_return:
if (i > 0)
bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
return -1;
}
/* Free Tx object Resources */
static void
bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
{
int i;
for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
if (res_info[i].res_type == BNA_RES_T_MEM)
bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
else if (res_info[i].res_type == BNA_RES_T_INTR)
bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
}
}
/* Allocates memory and interrupt resources for Tx object */
static int
bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
u32 tx_id)
{
int i, err = 0;
for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
if (res_info[i].res_type == BNA_RES_T_MEM)
err = bnad_mem_alloc(bnad,
&res_info[i].res_u.mem_info);
else if (res_info[i].res_type == BNA_RES_T_INTR)
err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
&res_info[i].res_u.intr_info);
if (err)
goto err_return;
}
return 0;
err_return:
bnad_tx_res_free(bnad, res_info);
return err;
}
/* Free Rx object Resources */
static void
bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
{
int i;
for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
if (res_info[i].res_type == BNA_RES_T_MEM)
bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
else if (res_info[i].res_type == BNA_RES_T_INTR)
bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
}
}
/* Allocates memory and interrupt resources for Rx object */
static int
bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
uint rx_id)
{
int i, err = 0;
/* All memory needs to be allocated before setup_ccbs */
for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
if (res_info[i].res_type == BNA_RES_T_MEM)
err = bnad_mem_alloc(bnad,
&res_info[i].res_u.mem_info);
else if (res_info[i].res_type == BNA_RES_T_INTR)
err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
&res_info[i].res_u.intr_info);
if (err)
goto err_return;
}
return 0;
err_return:
bnad_rx_res_free(bnad, res_info);
return err;
}
/* Timer callbacks */
/* a) IOC timer */
static void
bnad_ioc_timeout(unsigned long data)
{
struct bnad *bnad = (struct bnad *)data;
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
}
static void
bnad_ioc_hb_check(unsigned long data)
{
struct bnad *bnad = (struct bnad *)data;
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
}
static void
bnad_iocpf_timeout(unsigned long data)
{
struct bnad *bnad = (struct bnad *)data;
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
}
static void
bnad_iocpf_sem_timeout(unsigned long data)
{
struct bnad *bnad = (struct bnad *)data;
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
}
/*
* All timer routines use bnad->bna_lock to protect against
* the following race, which may occur in case of no locking:
* Time CPU m CPU n
* 0 1 = test_bit
* 1 clear_bit
* 2 del_timer_sync
* 3 mod_timer
*/
/* b) Dynamic Interrupt Moderation Timer */
static void
bnad_dim_timeout(unsigned long data)
{
struct bnad *bnad = (struct bnad *)data;
struct bnad_rx_info *rx_info;
struct bnad_rx_ctrl *rx_ctrl;
int i, j;
unsigned long flags;
if (!netif_carrier_ok(bnad->netdev))
return;
spin_lock_irqsave(&bnad->bna_lock, flags);
for (i = 0; i < bnad->num_rx; i++) {
rx_info = &bnad->rx_info[i];
if (!rx_info->rx)
continue;
for (j = 0; j < bnad->num_rxp_per_rx; j++) {
rx_ctrl = &rx_info->rx_ctrl[j];
if (!rx_ctrl->ccb)
continue;
bna_rx_dim_update(rx_ctrl->ccb);
}
}
/* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
mod_timer(&bnad->dim_timer,
jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
spin_unlock_irqrestore(&bnad->bna_lock, flags);
}
/* c) Statistics Timer */
static void
bnad_stats_timeout(unsigned long data)
{
struct bnad *bnad = (struct bnad *)data;
unsigned long flags;
if (!netif_running(bnad->netdev) ||
!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
return;
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_hw_stats_get(&bnad->bna);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
}
/*
* Set up timer for DIM
* Called with bnad->bna_lock held
*/
void
bnad_dim_timer_start(struct bnad *bnad)
{
if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
!test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
setup_timer(&bnad->dim_timer, bnad_dim_timeout,
(unsigned long)bnad);
set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
mod_timer(&bnad->dim_timer,
jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
}
}
/*
* Set up timer for statistics
* Called with mutex_lock(&bnad->conf_mutex) held
*/
static void
bnad_stats_timer_start(struct bnad *bnad)
{
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
setup_timer(&bnad->stats_timer, bnad_stats_timeout,
(unsigned long)bnad);
mod_timer(&bnad->stats_timer,
jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
}
spin_unlock_irqrestore(&bnad->bna_lock, flags);
}
/*
* Stops the stats timer
* Called with mutex_lock(&bnad->conf_mutex) held
*/
static void
bnad_stats_timer_stop(struct bnad *bnad)
{
int to_del = 0;
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
to_del = 1;
spin_unlock_irqrestore(&bnad->bna_lock, flags);
if (to_del)
del_timer_sync(&bnad->stats_timer);
}
/* Utilities */
static void
bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
{
int i = 1; /* Index 0 has broadcast address */
struct netdev_hw_addr *mc_addr;
netdev_for_each_mc_addr(mc_addr, netdev) {
memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
ETH_ALEN);
i++;
}
}
static int
bnad_napi_poll_rx(struct napi_struct *napi, int budget)
{
struct bnad_rx_ctrl *rx_ctrl =
container_of(napi, struct bnad_rx_ctrl, napi);
struct bnad *bnad = rx_ctrl->bnad;
int rcvd = 0;
rx_ctrl->rx_poll_ctr++;
if (!netif_carrier_ok(bnad->netdev))
goto poll_exit;
rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
if (rcvd >= budget)
return rcvd;
poll_exit:
napi_complete(napi);
rx_ctrl->rx_complete++;
if (rx_ctrl->ccb)
bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
return rcvd;
}
#define BNAD_NAPI_POLL_QUOTA 64
static void
bnad_napi_add(struct bnad *bnad, u32 rx_id)
{
struct bnad_rx_ctrl *rx_ctrl;
int i;
/* Initialize & enable NAPI */
for (i = 0; i < bnad->num_rxp_per_rx; i++) {
rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
netif_napi_add(bnad->netdev, &rx_ctrl->napi,
bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
}
}
static void
bnad_napi_delete(struct bnad *bnad, u32 rx_id)
{
int i;
/* First disable and then clean up */
for (i = 0; i < bnad->num_rxp_per_rx; i++)
netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
}
/* Should be held with conf_lock held */
void
bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
{
struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
unsigned long flags;
if (!tx_info->tx)
return;
init_completion(&bnad->bnad_completions.tx_comp);
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
wait_for_completion(&bnad->bnad_completions.tx_comp);
if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
bnad_tx_msix_unregister(bnad, tx_info,
bnad->num_txq_per_tx);
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_tx_destroy(tx_info->tx);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
tx_info->tx = NULL;
tx_info->tx_id = 0;
bnad_tx_res_free(bnad, res_info);
}
/* Should be held with conf_lock held */
int
bnad_setup_tx(struct bnad *bnad, u32 tx_id)
{
int err;
struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
struct bna_intr_info *intr_info =
&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
static const struct bna_tx_event_cbfn tx_cbfn = {
.tcb_setup_cbfn = bnad_cb_tcb_setup,
.tcb_destroy_cbfn = bnad_cb_tcb_destroy,
.tx_stall_cbfn = bnad_cb_tx_stall,
.tx_resume_cbfn = bnad_cb_tx_resume,
.tx_cleanup_cbfn = bnad_cb_tx_cleanup,
};
struct bna_tx *tx;
unsigned long flags;
tx_info->tx_id = tx_id;
/* Initialize the Tx object configuration */
tx_config->num_txq = bnad->num_txq_per_tx;
tx_config->txq_depth = bnad->txq_depth;
tx_config->tx_type = BNA_TX_T_REGULAR;
tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
/* Get BNA's resource requirement for one tx object */
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_tx_res_req(bnad->num_txq_per_tx,
bnad->txq_depth, res_info);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
/* Fill Unmap Q memory requirements */
BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
bnad->txq_depth));
/* Allocate resources */
err = bnad_tx_res_alloc(bnad, res_info, tx_id);
if (err)
return err;
/* Ask BNA to create one Tx object, supplying required resources */
spin_lock_irqsave(&bnad->bna_lock, flags);
tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
tx_info);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
if (!tx) {
err = -ENOMEM;
goto err_return;
}
tx_info->tx = tx;
INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
(work_func_t)bnad_tx_cleanup);
/* Register ISR for the Tx object */
if (intr_info->intr_type == BNA_INTR_T_MSIX) {
err = bnad_tx_msix_register(bnad, tx_info,
tx_id, bnad->num_txq_per_tx);
if (err)
goto cleanup_tx;
}
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_tx_enable(tx);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
return 0;
cleanup_tx:
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_tx_destroy(tx_info->tx);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
tx_info->tx = NULL;
tx_info->tx_id = 0;
err_return:
bnad_tx_res_free(bnad, res_info);
return err;
}
/* Setup the rx config for bna_rx_create */
/* bnad decides the configuration */
static void
bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
{
memset(rx_config, 0, sizeof(*rx_config));
rx_config->rx_type = BNA_RX_T_REGULAR;
rx_config->num_paths = bnad->num_rxp_per_rx;
rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
if (bnad->num_rxp_per_rx > 1) {
rx_config->rss_status = BNA_STATUS_T_ENABLED;
rx_config->rss_config.hash_type =
(BFI_ENET_RSS_IPV6 |
BFI_ENET_RSS_IPV6_TCP |
BFI_ENET_RSS_IPV4 |
BFI_ENET_RSS_IPV4_TCP);
rx_config->rss_config.hash_mask =
bnad->num_rxp_per_rx - 1;
get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
sizeof(rx_config->rss_config.toeplitz_hash_key));
} else {
rx_config->rss_status = BNA_STATUS_T_DISABLED;
memset(&rx_config->rss_config, 0,
sizeof(rx_config->rss_config));
}
rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
/* BNA_RXP_SINGLE - one data-buffer queue
* BNA_RXP_SLR - one small-buffer and one large-buffer queues
* BNA_RXP_HDS - one header-buffer and one data-buffer queues
*/
/* TODO: configurable param for queue type */
rx_config->rxp_type = BNA_RXP_SLR;
if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
rx_config->frame_size > 4096) {
/* though size_routing_enable is set in SLR,
* small packets may get routed to same rxq.
* set buf_size to 2048 instead of PAGE_SIZE.
*/
rx_config->q0_buf_size = 2048;
/* this should be in multiples of 2 */
rx_config->q0_num_vecs = 4;
rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
} else {
rx_config->q0_buf_size = rx_config->frame_size;
rx_config->q0_num_vecs = 1;
rx_config->q0_depth = bnad->rxq_depth;
}
/* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
if (rx_config->rxp_type == BNA_RXP_SLR) {
rx_config->q1_depth = bnad->rxq_depth;
rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
}
rx_config->vlan_strip_status =
(bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
}
static void
bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
{
struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
int i;
for (i = 0; i < bnad->num_rxp_per_rx; i++)
rx_info->rx_ctrl[i].bnad = bnad;
}
/* Called with mutex_lock(&bnad->conf_mutex) held */
static u32
bnad_reinit_rx(struct bnad *bnad)
{
struct net_device *netdev = bnad->netdev;
u32 err = 0, current_err = 0;
u32 rx_id = 0, count = 0;
unsigned long flags;
/* destroy and create new rx objects */
for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
if (!bnad->rx_info[rx_id].rx)
continue;
bnad_destroy_rx(bnad, rx_id);
}
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_enet_mtu_set(&bnad->bna.enet,
BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
count++;
current_err = bnad_setup_rx(bnad, rx_id);
if (current_err && !err) {
err = current_err;
pr_err("RXQ:%u setup failed\n", rx_id);
}
}
/* restore rx configuration */
if (bnad->rx_info[0].rx && !err) {
bnad_restore_vlans(bnad, 0);
bnad_enable_default_bcast(bnad);
spin_lock_irqsave(&bnad->bna_lock, flags);
bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
bnad_set_rx_mode(netdev);
}
return count;
}
/* Called with bnad_conf_lock() held */
void
bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
{
struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
unsigned long flags;
int to_del = 0;
if (!rx_info->rx)
return;
if (0 == rx_id) {
spin_lock_irqsave(&bnad->bna_lock, flags);
if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
to_del = 1;
}
spin_unlock_irqrestore(&bnad->bna_lock, flags);
if (to_del)
del_timer_sync(&bnad->dim_timer);
}
init_completion(&bnad->bnad_completions.rx_comp);
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
wait_for_completion(&bnad->bnad_completions.rx_comp);
if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
bnad_napi_delete(bnad, rx_id);
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_rx_destroy(rx_info->rx);
rx_info->rx = NULL;
rx_info->rx_id = 0;
spin_unlock_irqrestore(&bnad->bna_lock, flags);
bnad_rx_res_free(bnad, res_info);
}
/* Called with mutex_lock(&bnad->conf_mutex) held */
int
bnad_setup_rx(struct bnad *bnad, u32 rx_id)
{
int err;
struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
struct bna_intr_info *intr_info =
&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
static const struct bna_rx_event_cbfn rx_cbfn = {
.rcb_setup_cbfn = NULL,
.rcb_destroy_cbfn = NULL,
.ccb_setup_cbfn = bnad_cb_ccb_setup,
.ccb_destroy_cbfn = bnad_cb_ccb_destroy,
.rx_stall_cbfn = bnad_cb_rx_stall,
.rx_cleanup_cbfn = bnad_cb_rx_cleanup,
.rx_post_cbfn = bnad_cb_rx_post,
};
struct bna_rx *rx;
unsigned long flags;
rx_info->rx_id = rx_id;
/* Initialize the Rx object configuration */
bnad_init_rx_config(bnad, rx_config);
/* Get BNA's resource requirement for one Rx object */
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_rx_res_req(rx_config, res_info);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
/* Fill Unmap Q memory requirements */
BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
rx_config->num_paths,
(rx_config->q0_depth *
sizeof(struct bnad_rx_unmap)) +
sizeof(struct bnad_rx_unmap_q));
if (rx_config->rxp_type != BNA_RXP_SINGLE) {
BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
rx_config->num_paths,
(rx_config->q1_depth *
sizeof(struct bnad_rx_unmap) +
sizeof(struct bnad_rx_unmap_q)));
}
/* Allocate resource */
err = bnad_rx_res_alloc(bnad, res_info, rx_id);
if (err)
return err;
bnad_rx_ctrl_init(bnad, rx_id);
/* Ask BNA to create one Rx object, supplying required resources */
spin_lock_irqsave(&bnad->bna_lock, flags);
rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
rx_info);
if (!rx) {
err = -ENOMEM;
spin_unlock_irqrestore(&bnad->bna_lock, flags);
goto err_return;
}
rx_info->rx = rx;
spin_unlock_irqrestore(&bnad->bna_lock, flags);
INIT_WORK(&rx_info->rx_cleanup_work,
(work_func_t)(bnad_rx_cleanup));
/*
* Init NAPI, so that state is set to NAPI_STATE_SCHED,
* so that IRQ handler cannot schedule NAPI at this point.
*/
bnad_napi_add(bnad, rx_id);
/* Register ISR for the Rx object */
if (intr_info->intr_type == BNA_INTR_T_MSIX) {
err = bnad_rx_msix_register(bnad, rx_info, rx_id,
rx_config->num_paths);
if (err)
goto err_return;
}
spin_lock_irqsave(&bnad->bna_lock, flags);
if (0 == rx_id) {
/* Set up Dynamic Interrupt Moderation Vector */
if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
/* Enable VLAN filtering only on the default Rx */
bna_rx_vlanfilter_enable(rx);
/* Start the DIM timer */
bnad_dim_timer_start(bnad);
}
bna_rx_enable(rx);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
return 0;
err_return:
bnad_destroy_rx(bnad, rx_id);
return err;
}
/* Called with conf_lock & bnad->bna_lock held */
void
bnad_tx_coalescing_timeo_set(struct bnad *bnad)
{
struct bnad_tx_info *tx_info;
tx_info = &bnad->tx_info[0];
if (!tx_info->tx)
return;
bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
}
/* Called with conf_lock & bnad->bna_lock held */
void
bnad_rx_coalescing_timeo_set(struct bnad *bnad)
{
struct bnad_rx_info *rx_info;
int i;
for (i = 0; i < bnad->num_rx; i++) {
rx_info = &bnad->rx_info[i];
if (!rx_info->rx)
continue;
bna_rx_coalescing_timeo_set(rx_info->rx,
bnad->rx_coalescing_timeo);
}
}
/*
* Called with bnad->bna_lock held
*/
int
bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
{
int ret;
if (!is_valid_ether_addr(mac_addr))
return -EADDRNOTAVAIL;
/* If datapath is down, pretend everything went through */
if (!bnad->rx_info[0].rx)
return 0;
ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
if (ret != BNA_CB_SUCCESS)
return -EADDRNOTAVAIL;
return 0;
}
/* Should be called with conf_lock held */
int
bnad_enable_default_bcast(struct bnad *bnad)
{
struct bnad_rx_info *rx_info = &bnad->rx_info[0];
int ret;
unsigned long flags;
init_completion(&bnad->bnad_completions.mcast_comp);
spin_lock_irqsave(&bnad->bna_lock, flags);
ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
bnad_cb_rx_mcast_add);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
if (ret == BNA_CB_SUCCESS)
wait_for_completion(&bnad->bnad_completions.mcast_comp);
else
return -ENODEV;
if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
return -ENODEV;
return 0;
}
/* Called with mutex_lock(&bnad->conf_mutex) held */
void
bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
{
u16 vid;
unsigned long flags;
for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
}
}
/* Statistics utilities */
void
bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
{
int i, j;
for (i = 0; i < bnad->num_rx; i++) {
for (j = 0; j < bnad->num_rxp_per_rx; j++) {
if (bnad->rx_info[i].rx_ctrl[j].ccb) {
stats->rx_packets += bnad->rx_info[i].
rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
stats->rx_bytes += bnad->rx_info[i].
rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
bnad->rx_info[i].rx_ctrl[j].ccb->
rcb[1]->rxq) {
stats->rx_packets +=
bnad->rx_info[i].rx_ctrl[j].
ccb->rcb[1]->rxq->rx_packets;
stats->rx_bytes +=
bnad->rx_info[i].rx_ctrl[j].
ccb->rcb[1]->rxq->rx_bytes;
}
}
}
}
for (i = 0; i < bnad->num_tx; i++) {
for (j = 0; j < bnad->num_txq_per_tx; j++) {
if (bnad->tx_info[i].tcb[j]) {
stats->tx_packets +=
bnad->tx_info[i].tcb[j]->txq->tx_packets;
stats->tx_bytes +=
bnad->tx_info[i].tcb[j]->txq->tx_bytes;
}
}
}
}
/*
* Must be called with the bna_lock held.
*/
void
bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
{
struct bfi_enet_stats_mac *mac_stats;
u32 bmap;
int i;
mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
stats->rx_errors =
mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
mac_stats->rx_undersize;
stats->tx_errors = mac_stats->tx_fcs_error +
mac_stats->tx_undersize;
stats->rx_dropped = mac_stats->rx_drop;
stats->tx_dropped = mac_stats->tx_drop;
stats->multicast = mac_stats->rx_multicast;
stats->collisions = mac_stats->tx_total_collision;
stats->rx_length_errors = mac_stats->rx_frame_length_error;
/* receive ring buffer overflow ?? */
stats->rx_crc_errors = mac_stats->rx_fcs_error;
stats->rx_frame_errors = mac_stats->rx_alignment_error;
/* recv'r fifo overrun */
bmap = bna_rx_rid_mask(&bnad->bna);
for (i = 0; bmap; i++) {
if (bmap & 1) {
stats->rx_fifo_errors +=
bnad->stats.bna_stats->
hw_stats.rxf_stats[i].frame_drops;
break;
}
bmap >>= 1;
}
}
static void
bnad_mbox_irq_sync(struct bnad *bnad)
{
u32 irq;
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
if (bnad->cfg_flags & BNAD_CF_MSIX)
irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
else
irq = bnad->pcidev->irq;
spin_unlock_irqrestore(&bnad->bna_lock, flags);
synchronize_irq(irq);
}
/* Utility used by bnad_start_xmit, for doing TSO */
static int
bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
{
int err;
err = skb_cow_head(skb, 0);
if (err < 0) {
BNAD_UPDATE_CTR(bnad, tso_err);
return err;
}
/*
* For TSO, the TCP checksum field is seeded with pseudo-header sum
* excluding the length field.
*/
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *iph = ip_hdr(skb);
/* Do we really need these? */
iph->tot_len = 0;
iph->check = 0;
tcp_hdr(skb)->check =
~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
IPPROTO_TCP, 0);
BNAD_UPDATE_CTR(bnad, tso4);
} else {
struct ipv6hdr *ipv6h = ipv6_hdr(skb);
ipv6h->payload_len = 0;
tcp_hdr(skb)->check =
~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
IPPROTO_TCP, 0);
BNAD_UPDATE_CTR(bnad, tso6);
}
return 0;
}
/*
* Initialize Q numbers depending on Rx Paths
* Called with bnad->bna_lock held, because of cfg_flags
* access.
*/
static void
bnad_q_num_init(struct bnad *bnad)
{
int rxps;
rxps = min((uint)num_online_cpus(),
(uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
if (!(bnad->cfg_flags & BNAD_CF_MSIX))
rxps = 1; /* INTx */
bnad->num_rx = 1;
bnad->num_tx = 1;
bnad->num_rxp_per_rx = rxps;
bnad->num_txq_per_tx = BNAD_TXQ_NUM;
}
/*
* Adjusts the Q numbers, given a number of msix vectors
* Give preference to RSS as opposed to Tx priority Queues,
* in such a case, just use 1 Tx Q
* Called with bnad->bna_lock held b'cos of cfg_flags access
*/
static void
bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
{
bnad->num_txq_per_tx = 1;
if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) +
bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
(bnad->cfg_flags & BNAD_CF_MSIX)) {
bnad->num_rxp_per_rx = msix_vectors -
(bnad->num_tx * bnad->num_txq_per_tx) -
BNAD_MAILBOX_MSIX_VECTORS;
} else
bnad->num_rxp_per_rx = 1;
}
/* Enable / disable ioceth */
static int
bnad_ioceth_disable(struct bnad *bnad)
{
unsigned long flags;
int err = 0;
spin_lock_irqsave(&bnad->bna_lock, flags);
init_completion(&bnad->bnad_completions.ioc_comp);
bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
err = bnad->bnad_completions.ioc_comp_status;
return err;
}
static int
bnad_ioceth_enable(struct bnad *bnad)
{
int err = 0;
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
init_completion(&bnad->bnad_completions.ioc_comp);
bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
bna_ioceth_enable(&bnad->bna.ioceth);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
err = bnad->bnad_completions.ioc_comp_status;
return err;
}
/* Free BNA resources */
static void
bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
u32 res_val_max)
{
int i;
for (i = 0; i < res_val_max; i++)
bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
}
/* Allocates memory and interrupt resources for BNA */
static int
bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
u32 res_val_max)
{
int i, err;
for (i = 0; i < res_val_max; i++) {
err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
if (err)
goto err_return;
}
return 0;
err_return:
bnad_res_free(bnad, res_info, res_val_max);
return err;
}
/* Interrupt enable / disable */
static void
bnad_enable_msix(struct bnad *bnad)
{
int i, ret;
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
spin_unlock_irqrestore(&bnad->bna_lock, flags);
return;
}
spin_unlock_irqrestore(&bnad->bna_lock, flags);
if (bnad->msix_table)
return;
bnad->msix_table =
kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
if (!bnad->msix_table)
goto intx_mode;
for (i = 0; i < bnad->msix_num; i++)
bnad->msix_table[i].entry = i;
ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
1, bnad->msix_num);
if (ret < 0) {
goto intx_mode;
} else if (ret < bnad->msix_num) {
pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
ret, bnad->msix_num);
spin_lock_irqsave(&bnad->bna_lock, flags);
/* ret = #of vectors that we got */
bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
(ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
BNAD_MAILBOX_MSIX_VECTORS;
if (bnad->msix_num > ret) {
pci_disable_msix(bnad->pcidev);
goto intx_mode;
}
}
pci_intx(bnad->pcidev, 0);
return;
intx_mode:
pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
kfree(bnad->msix_table);
bnad->msix_table = NULL;
bnad->msix_num = 0;
spin_lock_irqsave(&bnad->bna_lock, flags);
bnad->cfg_flags &= ~BNAD_CF_MSIX;
bnad_q_num_init(bnad);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
}
static void
bnad_disable_msix(struct bnad *bnad)
{
u32 cfg_flags;
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
cfg_flags = bnad->cfg_flags;
if (bnad->cfg_flags & BNAD_CF_MSIX)
bnad->cfg_flags &= ~BNAD_CF_MSIX;
spin_unlock_irqrestore(&bnad->bna_lock, flags);
if (cfg_flags & BNAD_CF_MSIX) {
pci_disable_msix(bnad->pcidev);
kfree(bnad->msix_table);
bnad->msix_table = NULL;
}
}
/* Netdev entry points */
static int
bnad_open(struct net_device *netdev)
{
int err;
struct bnad *bnad = netdev_priv(netdev);
struct bna_pause_config pause_config;
unsigned long flags;
mutex_lock(&bnad->conf_mutex);
/* Tx */
err = bnad_setup_tx(bnad, 0);
if (err)
goto err_return;
/* Rx */
err = bnad_setup_rx(bnad, 0);
if (err)
goto cleanup_tx;
/* Port */
pause_config.tx_pause = 0;
pause_config.rx_pause = 0;
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_enet_mtu_set(&bnad->bna.enet,
BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
bna_enet_enable(&bnad->bna.enet);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
/* Enable broadcast */
bnad_enable_default_bcast(bnad);
/* Restore VLANs, if any */
bnad_restore_vlans(bnad, 0);
/* Set the UCAST address */
spin_lock_irqsave(&bnad->bna_lock, flags);
bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
/* Start the stats timer */
bnad_stats_timer_start(bnad);
mutex_unlock(&bnad->conf_mutex);
return 0;
cleanup_tx:
bnad_destroy_tx(bnad, 0);
err_return:
mutex_unlock(&bnad->conf_mutex);
return err;
}
static int
bnad_stop(struct net_device *netdev)
{
struct bnad *bnad = netdev_priv(netdev);
unsigned long flags;
mutex_lock(&bnad->conf_mutex);
/* Stop the stats timer */
bnad_stats_timer_stop(bnad);
init_completion(&bnad->bnad_completions.enet_comp);
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
bnad_cb_enet_disabled);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
wait_for_completion(&bnad->bnad_completions.enet_comp);
bnad_destroy_tx(bnad, 0);
bnad_destroy_rx(bnad, 0);
/* Synchronize mailbox IRQ */
bnad_mbox_irq_sync(bnad);
mutex_unlock(&bnad->conf_mutex);
return 0;
}
/* TX */
/* Returns 0 for success */
static int
bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
struct sk_buff *skb, struct bna_txq_entry *txqent)
{
u16 flags = 0;
u32 gso_size;
u16 vlan_tag = 0;
if (vlan_tx_tag_present(skb)) {
vlan_tag = (u16)vlan_tx_tag_get(skb);
flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
}
if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
| (vlan_tag & 0x1fff);
flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
}
txqent->hdr.wi.vlan_tag = htons(vlan_tag);
if (skb_is_gso(skb)) {
gso_size = skb_shinfo(skb)->gso_size;
if (unlikely(gso_size > bnad->netdev->mtu)) {
BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
return -EINVAL;
}
if (unlikely((gso_size + skb_transport_offset(skb) +
tcp_hdrlen(skb)) >= skb->len)) {
txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
txqent->hdr.wi.lso_mss = 0;
BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
} else {
txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
txqent->hdr.wi.lso_mss = htons(gso_size);
}
if (bnad_tso_prepare(bnad, skb)) {
BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
return -EINVAL;
}
flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
txqent->hdr.wi.l4_hdr_size_n_offset =
htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
} else {
txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
txqent->hdr.wi.lso_mss = 0;
if (unlikely(skb->len > (bnad->netdev->mtu + ETH_HLEN))) {
BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
return -EINVAL;
}
if (skb->ip_summed == CHECKSUM_PARTIAL) {
u8 proto = 0;
if (skb->protocol == htons(ETH_P_IP))
proto = ip_hdr(skb)->protocol;
#ifdef NETIF_F_IPV6_CSUM
else if (skb->protocol == htons(ETH_P_IPV6)) {
/* nexthdr may not be TCP immediately. */
proto = ipv6_hdr(skb)->nexthdr;
}
#endif
if (proto == IPPROTO_TCP) {
flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
txqent->hdr.wi.l4_hdr_size_n_offset =
htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
(0, skb_transport_offset(skb)));
BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
if (unlikely(skb_headlen(skb) <
skb_transport_offset(skb) +
tcp_hdrlen(skb))) {
BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
return -EINVAL;
}
} else if (proto == IPPROTO_UDP) {
flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
txqent->hdr.wi.l4_hdr_size_n_offset =
htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
(0, skb_transport_offset(skb)));
BNAD_UPDATE_CTR(bnad, udpcsum_offload);
if (unlikely(skb_headlen(skb) <
skb_transport_offset(skb) +
sizeof(struct udphdr))) {
BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
return -EINVAL;
}
} else {
BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
return -EINVAL;
}
} else
txqent->hdr.wi.l4_hdr_size_n_offset = 0;
}
txqent->hdr.wi.flags = htons(flags);
txqent->hdr.wi.frame_length = htonl(skb->len);
return 0;
}
/*
* bnad_start_xmit : Netdev entry point for Transmit
* Called under lock held by net_device
*/
static netdev_tx_t
bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct bnad *bnad = netdev_priv(netdev);
u32 txq_id = 0;
struct bna_tcb *tcb = NULL;
struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
u32 prod, q_depth, vect_id;
u32 wis, vectors, len;
int i;
dma_addr_t dma_addr;
struct bna_txq_entry *txqent;
len = skb_headlen(skb);
/* Sanity checks for the skb */
if (unlikely(skb->len <= ETH_HLEN)) {
dev_kfree_skb_any(skb);
BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
return NETDEV_TX_OK;
}
if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
dev_kfree_skb_any(skb);
BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
return NETDEV_TX_OK;
}
if (unlikely(len == 0)) {
dev_kfree_skb_any(skb);
BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
return NETDEV_TX_OK;
}
tcb = bnad->tx_info[0].tcb[txq_id];
/*
* Takes care of the Tx that is scheduled between clearing the flag
* and the netif_tx_stop_all_queues() call.
*/
if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
dev_kfree_skb_any(skb);
BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
return NETDEV_TX_OK;
}
q_depth = tcb->q_depth;
prod = tcb->producer_index;
unmap_q = tcb->unmap_q;
vectors = 1 + skb_shinfo(skb)->nr_frags;
wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */
if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
dev_kfree_skb_any(skb);
BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
return NETDEV_TX_OK;
}
/* Check for available TxQ resources */
if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
!test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
u32 sent;
sent = bnad_txcmpl_process(bnad, tcb);
if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
bna_ib_ack(tcb->i_dbell, sent);
smp_mb__before_clear_bit();
clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
} else {
netif_stop_queue(netdev);
BNAD_UPDATE_CTR(bnad, netif_queue_stop);
}
smp_mb();
/*
* Check again to deal with race condition between
* netif_stop_queue here, and netif_wake_queue in
* interrupt handler which is not inside netif tx lock.
*/
if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
BNAD_UPDATE_CTR(bnad, netif_queue_stop);
return NETDEV_TX_BUSY;
} else {
netif_wake_queue(netdev);
BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
}
}
txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
head_unmap = &unmap_q[prod];
/* Program the opcode, flags, frame_len, num_vectors in WI */
if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
txqent->hdr.wi.reserved = 0;
txqent->hdr.wi.num_vectors = vectors;
head_unmap->skb = skb;
head_unmap->nvecs = 0;
/* Program the vectors */
unmap = head_unmap;
dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
len, DMA_TO_DEVICE);
BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
txqent->vector[0].length = htons(len);
dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
head_unmap->nvecs++;
for (i = 0, vect_id = 0; i < vectors - 1; i++) {
const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
u32 size = skb_frag_size(frag);
if (unlikely(size == 0)) {
/* Undo the changes starting at tcb->producer_index */
bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
tcb->producer_index);
dev_kfree_skb_any(skb);
BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
return NETDEV_TX_OK;
}
len += size;
vect_id++;
if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
vect_id = 0;
BNA_QE_INDX_INC(prod, q_depth);
txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
unmap = &unmap_q[prod];
}
dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
0, size, DMA_TO_DEVICE);
dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
txqent->vector[vect_id].length = htons(size);
dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
dma_addr);
head_unmap->nvecs++;
}
if (unlikely(len != skb->len)) {
/* Undo the changes starting at tcb->producer_index */
bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
dev_kfree_skb_any(skb);
BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
return NETDEV_TX_OK;
}
BNA_QE_INDX_INC(prod, q_depth);
tcb->producer_index = prod;
smp_mb();
if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
return NETDEV_TX_OK;
skb_tx_timestamp(skb);
bna_txq_prod_indx_doorbell(tcb);
smp_mb();
return NETDEV_TX_OK;
}
/*
* Used spin_lock to synchronize reading of stats structures, which
* is written by BNA under the same lock.
*/
static struct rtnl_link_stats64 *
bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
{
struct bnad *bnad = netdev_priv(netdev);
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
bnad_netdev_qstats_fill(bnad, stats);
bnad_netdev_hwstats_fill(bnad, stats);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
return stats;
}
static void
bnad_set_rx_ucast_fltr(struct bnad *bnad)
{
struct net_device *netdev = bnad->netdev;
int uc_count = netdev_uc_count(netdev);
enum bna_cb_status ret;
u8 *mac_list;
struct netdev_hw_addr *ha;
int entry;
if (netdev_uc_empty(bnad->netdev)) {
bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
return;
}
if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
goto mode_default;
mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC);
if (mac_list == NULL)
goto mode_default;
entry = 0;
netdev_for_each_uc_addr(ha, netdev) {
memcpy(&mac_list[entry * ETH_ALEN],
&ha->addr[0], ETH_ALEN);
entry++;
}
ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry,
mac_list, NULL);
kfree(mac_list);
if (ret != BNA_CB_SUCCESS)
goto mode_default;
return;
/* ucast packets not in UCAM are routed to default function */
mode_default:
bnad->cfg_flags |= BNAD_CF_DEFAULT;
bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
}
static void
bnad_set_rx_mcast_fltr(struct bnad *bnad)
{
struct net_device *netdev = bnad->netdev;
int mc_count = netdev_mc_count(netdev);
enum bna_cb_status ret;
u8 *mac_list;
if (netdev->flags & IFF_ALLMULTI)
goto mode_allmulti;
if (netdev_mc_empty(netdev))
return;
if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
goto mode_allmulti;
mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC);
if (mac_list == NULL)
goto mode_allmulti;
memcpy(&mac_list[0], &bnad_bcast_addr[0], ETH_ALEN);
/* copy rest of the MCAST addresses */
bnad_netdev_mc_list_get(netdev, mac_list);
ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
mac_list, NULL);
kfree(mac_list);
if (ret != BNA_CB_SUCCESS)
goto mode_allmulti;
return;
mode_allmulti:
bnad->cfg_flags |= BNAD_CF_ALLMULTI;
bna_rx_mcast_delall(bnad->rx_info[0].rx, NULL);
}
void
bnad_set_rx_mode(struct net_device *netdev)
{
struct bnad *bnad = netdev_priv(netdev);
enum bna_rxmode new_mode, mode_mask;
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
if (bnad->rx_info[0].rx == NULL) {
spin_unlock_irqrestore(&bnad->bna_lock, flags);
return;
}
/* clear bnad flags to update it with new settings */
bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
BNAD_CF_ALLMULTI);
new_mode = 0;
if (netdev->flags & IFF_PROMISC) {
new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
bnad->cfg_flags |= BNAD_CF_PROMISC;
} else {
bnad_set_rx_mcast_fltr(bnad);
if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
new_mode |= BNA_RXMODE_ALLMULTI;
bnad_set_rx_ucast_fltr(bnad);
if (bnad->cfg_flags & BNAD_CF_DEFAULT)
new_mode |= BNA_RXMODE_DEFAULT;
}
mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
BNA_RXMODE_ALLMULTI;
bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask, NULL);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
}
/*
* bna_lock is used to sync writes to netdev->addr
* conf_lock cannot be used since this call may be made
* in a non-blocking context.
*/
static int
bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
{
int err;
struct bnad *bnad = netdev_priv(netdev);
struct sockaddr *sa = (struct sockaddr *)mac_addr;
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
if (!err)
memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
return err;
}
static int
bnad_mtu_set(struct bnad *bnad, int frame_size)
{
unsigned long flags;
init_completion(&bnad->bnad_completions.mtu_comp);
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
wait_for_completion(&bnad->bnad_completions.mtu_comp);
return bnad->bnad_completions.mtu_comp_status;
}
static int
bnad_change_mtu(struct net_device *netdev, int new_mtu)
{
int err, mtu;
struct bnad *bnad = netdev_priv(netdev);
u32 rx_count = 0, frame, new_frame;
if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
return -EINVAL;
mutex_lock(&bnad->conf_mutex);
mtu = netdev->mtu;
netdev->mtu = new_mtu;
frame = BNAD_FRAME_SIZE(mtu);
new_frame = BNAD_FRAME_SIZE(new_mtu);
/* check if multi-buffer needs to be enabled */
if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
netif_running(bnad->netdev)) {
/* only when transition is over 4K */
if ((frame <= 4096 && new_frame > 4096) ||
(frame > 4096 && new_frame <= 4096))
rx_count = bnad_reinit_rx(bnad);
}
/* rx_count > 0 - new rx created
* - Linux set err = 0 and return
*/
err = bnad_mtu_set(bnad, new_frame);
if (err)
err = -EBUSY;
mutex_unlock(&bnad->conf_mutex);
return err;
}
static int
bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
{
struct bnad *bnad = netdev_priv(netdev);
unsigned long flags;
if (!bnad->rx_info[0].rx)
return 0;
mutex_lock(&bnad->conf_mutex);
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
set_bit(vid, bnad->active_vlans);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
mutex_unlock(&bnad->conf_mutex);
return 0;
}
static int
bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
{
struct bnad *bnad = netdev_priv(netdev);
unsigned long flags;
if (!bnad->rx_info[0].rx)
return 0;
mutex_lock(&bnad->conf_mutex);
spin_lock_irqsave(&bnad->bna_lock, flags);
clear_bit(vid, bnad->active_vlans);
bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
mutex_unlock(&bnad->conf_mutex);
return 0;
}
static int bnad_set_features(struct net_device *dev, netdev_features_t features)
{
struct bnad *bnad = netdev_priv(dev);
netdev_features_t changed = features ^ dev->features;
if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
unsigned long flags;
spin_lock_irqsave(&bnad->bna_lock, flags);
if (features & NETIF_F_HW_VLAN_CTAG_RX)
bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
else
bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
}
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void
bnad_netpoll(struct net_device *netdev)
{
struct bnad *bnad = netdev_priv(netdev);
struct bnad_rx_info *rx_info;
struct bnad_rx_ctrl *rx_ctrl;
u32 curr_mask;
int i, j;
if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
bna_intx_disable(&bnad->bna, curr_mask);
bnad_isr(bnad->pcidev->irq, netdev);
bna_intx_enable(&bnad->bna, curr_mask);
} else {
/*
* Tx processing may happen in sending context, so no need
* to explicitly process completions here
*/
/* Rx processing */
for (i = 0; i < bnad->num_rx; i++) {
rx_info = &bnad->rx_info[i];
if (!rx_info->rx)
continue;
for (j = 0; j < bnad->num_rxp_per_rx; j++) {
rx_ctrl = &rx_info->rx_ctrl[j];
if (rx_ctrl->ccb)
bnad_netif_rx_schedule_poll(bnad,
rx_ctrl->ccb);
}
}
}
}
#endif
static const struct net_device_ops bnad_netdev_ops = {
.ndo_open = bnad_open,
.ndo_stop = bnad_stop,
.ndo_start_xmit = bnad_start_xmit,
.ndo_get_stats64 = bnad_get_stats64,
.ndo_set_rx_mode = bnad_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = bnad_set_mac_address,
.ndo_change_mtu = bnad_change_mtu,
.ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid,
.ndo_set_features = bnad_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = bnad_netpoll
#endif
};
static void
bnad_netdev_init(struct bnad *bnad, bool using_dac)
{
struct net_device *netdev = bnad->netdev;
netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX;
netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_TSO | NETIF_F_TSO6;
netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
if (using_dac)
netdev->features |= NETIF_F_HIGHDMA;
netdev->mem_start = bnad->mmio_start;
netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
netdev->netdev_ops = &bnad_netdev_ops;
bnad_set_ethtool_ops(netdev);
}
/*
* 1. Initialize the bnad structure
* 2. Setup netdev pointer in pci_dev
* 3. Initialize no. of TxQ & CQs & MSIX vectors
* 4. Initialize work queue.
*/
static int
bnad_init(struct bnad *bnad,
struct pci_dev *pdev, struct net_device *netdev)
{
unsigned long flags;
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
bnad->netdev = netdev;
bnad->pcidev = pdev;
bnad->mmio_start = pci_resource_start(pdev, 0);
bnad->mmio_len = pci_resource_len(pdev, 0);
bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
if (!bnad->bar0) {
dev_err(&pdev->dev, "ioremap for bar0 failed\n");
return -ENOMEM;
}
pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
(unsigned long long) bnad->mmio_len);
spin_lock_irqsave(&bnad->bna_lock, flags);
if (!bnad_msix_disable)
bnad->cfg_flags = BNAD_CF_MSIX;
bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
bnad_q_num_init(bnad);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
(bnad->num_rx * bnad->num_rxp_per_rx) +
BNAD_MAILBOX_MSIX_VECTORS;
bnad->txq_depth = BNAD_TXQ_DEPTH;
bnad->rxq_depth = BNAD_RXQ_DEPTH;
bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
if (!bnad->work_q) {
iounmap(bnad->bar0);
return -ENOMEM;
}
return 0;
}
/*
* Must be called after bnad_pci_uninit()
* so that iounmap() and pci_set_drvdata(NULL)
* happens only after PCI uninitialization.
*/
static void
bnad_uninit(struct bnad *bnad)
{
if (bnad->work_q) {
flush_workqueue(bnad->work_q);
destroy_workqueue(bnad->work_q);
bnad->work_q = NULL;
}
if (bnad->bar0)
iounmap(bnad->bar0);
}
/*
* Initialize locks
a) Per ioceth mutes used for serializing configuration
changes from OS interface
b) spin lock used to protect bna state machine
*/
static void
bnad_lock_init(struct bnad *bnad)
{
spin_lock_init(&bnad->bna_lock);
mutex_init(&bnad->conf_mutex);
mutex_init(&bnad_list_mutex);
}
static void
bnad_lock_uninit(struct bnad *bnad)
{
mutex_destroy(&bnad->conf_mutex);
mutex_destroy(&bnad_list_mutex);
}
/* PCI Initialization */
static int
bnad_pci_init(struct bnad *bnad,
struct pci_dev *pdev, bool *using_dac)
{
int err;
err = pci_enable_device(pdev);
if (err)
return err;
err = pci_request_regions(pdev, BNAD_NAME);
if (err)
goto disable_device;
if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
*using_dac = true;
} else {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err)
goto release_regions;
*using_dac = false;
}
pci_set_master(pdev);
return 0;
release_regions:
pci_release_regions(pdev);
disable_device:
pci_disable_device(pdev);
return err;
}
static void
bnad_pci_uninit(struct pci_dev *pdev)
{
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static int
bnad_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *pcidev_id)
{
bool using_dac;
int err;
struct bnad *bnad;
struct bna *bna;
struct net_device *netdev;
struct bfa_pcidev pcidev_info;
unsigned long flags;
pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
pdev, pcidev_id, PCI_FUNC(pdev->devfn));
mutex_lock(&bnad_fwimg_mutex);
if (!cna_get_firmware_buf(pdev)) {
mutex_unlock(&bnad_fwimg_mutex);
pr_warn("Failed to load Firmware Image!\n");
return -ENODEV;
}
mutex_unlock(&bnad_fwimg_mutex);
/*
* Allocates sizeof(struct net_device + struct bnad)
* bnad = netdev->priv
*/
netdev = alloc_etherdev(sizeof(struct bnad));
if (!netdev) {
err = -ENOMEM;
return err;
}
bnad = netdev_priv(netdev);
bnad_lock_init(bnad);
bnad_add_to_list(bnad);
mutex_lock(&bnad->conf_mutex);
/*
* PCI initialization
* Output : using_dac = 1 for 64 bit DMA
* = 0 for 32 bit DMA
*/
using_dac = false;
err = bnad_pci_init(bnad, pdev, &using_dac);
if (err)
goto unlock_mutex;
/*
* Initialize bnad structure
* Setup relation between pci_dev & netdev
*/
err = bnad_init(bnad, pdev, netdev);
if (err)
goto pci_uninit;
/* Initialize netdev structure, set up ethtool ops */
bnad_netdev_init(bnad, using_dac);
/* Set link to down state */
netif_carrier_off(netdev);
/* Setup the debugfs node for this bfad */
if (bna_debugfs_enable)
bnad_debugfs_init(bnad);
/* Get resource requirement form bna */
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_res_req(&bnad->res_info[0]);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
/* Allocate resources from bna */
err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
if (err)
goto drv_uninit;
bna = &bnad->bna;
/* Setup pcidev_info for bna_init() */
pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
pcidev_info.device_id = bnad->pcidev->device;
pcidev_info.pci_bar_kva = bnad->bar0;
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
bnad->stats.bna_stats = &bna->stats;
bnad_enable_msix(bnad);
err = bnad_mbox_irq_alloc(bnad);
if (err)
goto res_free;
/* Set up timers */
setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
((unsigned long)bnad));
setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
((unsigned long)bnad));
setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
((unsigned long)bnad));
setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
((unsigned long)bnad));
/* Now start the timer before calling IOC */
mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer,
jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
/*
* Start the chip
* If the call back comes with error, we bail out.
* This is a catastrophic error.
*/
err = bnad_ioceth_enable(bnad);
if (err) {
pr_err("BNA: Initialization failed err=%d\n",
err);
goto probe_success;
}
spin_lock_irqsave(&bnad->bna_lock, flags);
if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
bna_attr(bna)->num_rxp - 1);
if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
err = -EIO;
}
spin_unlock_irqrestore(&bnad->bna_lock, flags);
if (err)
goto disable_ioceth;
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
if (err) {
err = -EIO;
goto disable_ioceth;
}
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
/* Get the burnt-in mac */
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
bnad_set_netdev_perm_addr(bnad);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
mutex_unlock(&bnad->conf_mutex);
/* Finally, reguister with net_device layer */
err = register_netdev(netdev);
if (err) {
pr_err("BNA : Registering with netdev failed\n");
goto probe_uninit;
}
set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
return 0;
probe_success:
mutex_unlock(&bnad->conf_mutex);
return 0;
probe_uninit:
mutex_lock(&bnad->conf_mutex);
bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
disable_ioceth:
bnad_ioceth_disable(bnad);
del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_uninit(bna);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
bnad_mbox_irq_free(bnad);
bnad_disable_msix(bnad);
res_free:
bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
drv_uninit:
/* Remove the debugfs node for this bnad */
kfree(bnad->regdata);
bnad_debugfs_uninit(bnad);
bnad_uninit(bnad);
pci_uninit:
bnad_pci_uninit(pdev);
unlock_mutex:
mutex_unlock(&bnad->conf_mutex);
bnad_remove_from_list(bnad);
bnad_lock_uninit(bnad);
free_netdev(netdev);
return err;
}
static void
bnad_pci_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct bnad *bnad;
struct bna *bna;
unsigned long flags;
if (!netdev)
return;
pr_info("%s bnad_pci_remove\n", netdev->name);
bnad = netdev_priv(netdev);
bna = &bnad->bna;
if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
unregister_netdev(netdev);
mutex_lock(&bnad->conf_mutex);
bnad_ioceth_disable(bnad);
del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
spin_lock_irqsave(&bnad->bna_lock, flags);
bna_uninit(bna);
spin_unlock_irqrestore(&bnad->bna_lock, flags);
bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
bnad_mbox_irq_free(bnad);
bnad_disable_msix(bnad);
bnad_pci_uninit(pdev);
mutex_unlock(&bnad->conf_mutex);
bnad_remove_from_list(bnad);
bnad_lock_uninit(bnad);
/* Remove the debugfs node for this bnad */
kfree(bnad->regdata);
bnad_debugfs_uninit(bnad);
bnad_uninit(bnad);
free_netdev(netdev);
}
static DEFINE_PCI_DEVICE_TABLE(bnad_pci_id_table) = {
{
PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
PCI_DEVICE_ID_BROCADE_CT),
.class = PCI_CLASS_NETWORK_ETHERNET << 8,
.class_mask = 0xffff00
},
{
PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
BFA_PCI_DEVICE_ID_CT2),
.class = PCI_CLASS_NETWORK_ETHERNET << 8,
.class_mask = 0xffff00
},
{0, },
};
MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
static struct pci_driver bnad_pci_driver = {
.name = BNAD_NAME,
.id_table = bnad_pci_id_table,
.probe = bnad_pci_probe,
.remove = bnad_pci_remove,
};
static int __init
bnad_module_init(void)
{
int err;
pr_info("Brocade 10G Ethernet driver - version: %s\n",
BNAD_VERSION);
bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
err = pci_register_driver(&bnad_pci_driver);
if (err < 0) {
pr_err("bna : PCI registration failed in module init "
"(%d)\n", err);
return err;
}
return 0;
}
static void __exit
bnad_module_exit(void)
{
pci_unregister_driver(&bnad_pci_driver);
release_firmware(bfi_fw);
}
module_init(bnad_module_init);
module_exit(bnad_module_exit);
MODULE_AUTHOR("Brocade");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
MODULE_VERSION(BNAD_VERSION);
MODULE_FIRMWARE(CNA_FW_FILE_CT);
MODULE_FIRMWARE(CNA_FW_FILE_CT2);