| /* |
| * |
| * Alchemy Au1x00 ethernet driver |
| * |
| * Copyright 2001-2003, 2006 MontaVista Software Inc. |
| * Copyright 2002 TimeSys Corp. |
| * Added ethtool/mii-tool support, |
| * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> |
| * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de |
| * or riemer@riemer-nt.de: fixed the link beat detection with |
| * ioctls (SIOCGMIIPHY) |
| * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org> |
| * converted to use linux-2.6.x's PHY framework |
| * |
| * Author: MontaVista Software, Inc. |
| * ppopov@mvista.com or source@mvista.com |
| * |
| * ######################################################################## |
| * |
| * This program is free software; you can distribute it and/or modify it |
| * under the terms of the GNU General Public License (Version 2) as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| * |
| * ######################################################################## |
| * |
| * |
| */ |
| #include <linux/dma-mapping.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/timer.h> |
| #include <linux/errno.h> |
| #include <linux/in.h> |
| #include <linux/ioport.h> |
| #include <linux/bitops.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/mii.h> |
| #include <linux/skbuff.h> |
| #include <linux/delay.h> |
| #include <linux/crc32.h> |
| #include <linux/phy.h> |
| |
| #include <asm/cpu.h> |
| #include <asm/mipsregs.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| |
| #include <au1000.h> |
| #include <prom.h> |
| |
| #include "au1000_eth.h" |
| |
| #ifdef AU1000_ETH_DEBUG |
| static int au1000_debug = 5; |
| #else |
| static int au1000_debug = 3; |
| #endif |
| |
| #define DRV_NAME "au1000_eth" |
| #define DRV_VERSION "1.6" |
| #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>" |
| #define DRV_DESC "Au1xxx on-chip Ethernet driver" |
| |
| MODULE_AUTHOR(DRV_AUTHOR); |
| MODULE_DESCRIPTION(DRV_DESC); |
| MODULE_LICENSE("GPL"); |
| |
| // prototypes |
| static void hard_stop(struct net_device *); |
| static void enable_rx_tx(struct net_device *dev); |
| static struct net_device * au1000_probe(int port_num); |
| static int au1000_init(struct net_device *); |
| static int au1000_open(struct net_device *); |
| static int au1000_close(struct net_device *); |
| static int au1000_tx(struct sk_buff *, struct net_device *); |
| static int au1000_rx(struct net_device *); |
| static irqreturn_t au1000_interrupt(int, void *); |
| static void au1000_tx_timeout(struct net_device *); |
| static void set_rx_mode(struct net_device *); |
| static int au1000_ioctl(struct net_device *, struct ifreq *, int); |
| static int mdio_read(struct net_device *, int, int); |
| static void mdio_write(struct net_device *, int, int, u16); |
| static void au1000_adjust_link(struct net_device *); |
| static void enable_mac(struct net_device *, int); |
| |
| /* |
| * Theory of operation |
| * |
| * The Au1000 MACs use a simple rx and tx descriptor ring scheme. |
| * There are four receive and four transmit descriptors. These |
| * descriptors are not in memory; rather, they are just a set of |
| * hardware registers. |
| * |
| * Since the Au1000 has a coherent data cache, the receive and |
| * transmit buffers are allocated from the KSEG0 segment. The |
| * hardware registers, however, are still mapped at KSEG1 to |
| * make sure there's no out-of-order writes, and that all writes |
| * complete immediately. |
| */ |
| |
| /* These addresses are only used if yamon doesn't tell us what |
| * the mac address is, and the mac address is not passed on the |
| * command line. |
| */ |
| static unsigned char au1000_mac_addr[6] __devinitdata = { |
| 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00 |
| }; |
| |
| struct au1000_private *au_macs[NUM_ETH_INTERFACES]; |
| |
| /* |
| * board-specific configurations |
| * |
| * PHY detection algorithm |
| * |
| * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is |
| * autodetected: |
| * |
| * mii_probe() first searches the current MAC's MII bus for a PHY, |
| * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is |
| * defined) PHY address not already claimed by another netdev. |
| * |
| * If nothing was found that way when searching for the 2nd ethernet |
| * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then |
| * the first MII bus is searched as well for an unclaimed PHY; this is |
| * needed in case of a dual-PHY accessible only through the MAC0's MII |
| * bus. |
| * |
| * Finally, if no PHY is found, then the corresponding ethernet |
| * controller is not registered to the network subsystem. |
| */ |
| |
| /* autodetection defaults */ |
| #undef AU1XXX_PHY_SEARCH_HIGHEST_ADDR |
| #define AU1XXX_PHY1_SEARCH_ON_MAC0 |
| |
| /* static PHY setup |
| * |
| * most boards PHY setup should be detectable properly with the |
| * autodetection algorithm in mii_probe(), but in some cases (e.g. if |
| * you have a switch attached, or want to use the PHY's interrupt |
| * notification capabilities) you can provide a static PHY |
| * configuration here |
| * |
| * IRQs may only be set, if a PHY address was configured |
| * If a PHY address is given, also a bus id is required to be set |
| * |
| * ps: make sure the used irqs are configured properly in the board |
| * specific irq-map |
| */ |
| |
| #if defined(CONFIG_MIPS_BOSPORUS) |
| /* |
| * Micrel/Kendin 5 port switch attached to MAC0, |
| * MAC0 is associated with PHY address 5 (== WAN port) |
| * MAC1 is not associated with any PHY, since it's connected directly |
| * to the switch. |
| * no interrupts are used |
| */ |
| # define AU1XXX_PHY_STATIC_CONFIG |
| |
| # define AU1XXX_PHY0_ADDR 5 |
| # define AU1XXX_PHY0_BUSID 0 |
| # undef AU1XXX_PHY0_IRQ |
| |
| # undef AU1XXX_PHY1_ADDR |
| # undef AU1XXX_PHY1_BUSID |
| # undef AU1XXX_PHY1_IRQ |
| #endif |
| |
| #if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0) |
| # error MAC0-associated PHY attached 2nd MACs MII bus not supported yet |
| #endif |
| |
| /* |
| * MII operations |
| */ |
| static int mdio_read(struct net_device *dev, int phy_addr, int reg) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| volatile u32 *const mii_control_reg = &aup->mac->mii_control; |
| volatile u32 *const mii_data_reg = &aup->mac->mii_data; |
| u32 timedout = 20; |
| u32 mii_control; |
| |
| while (*mii_control_reg & MAC_MII_BUSY) { |
| mdelay(1); |
| if (--timedout == 0) { |
| printk(KERN_ERR "%s: read_MII busy timeout!!\n", |
| dev->name); |
| return -1; |
| } |
| } |
| |
| mii_control = MAC_SET_MII_SELECT_REG(reg) | |
| MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ; |
| |
| *mii_control_reg = mii_control; |
| |
| timedout = 20; |
| while (*mii_control_reg & MAC_MII_BUSY) { |
| mdelay(1); |
| if (--timedout == 0) { |
| printk(KERN_ERR "%s: mdio_read busy timeout!!\n", |
| dev->name); |
| return -1; |
| } |
| } |
| return (int)*mii_data_reg; |
| } |
| |
| static void mdio_write(struct net_device *dev, int phy_addr, int reg, u16 value) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| volatile u32 *const mii_control_reg = &aup->mac->mii_control; |
| volatile u32 *const mii_data_reg = &aup->mac->mii_data; |
| u32 timedout = 20; |
| u32 mii_control; |
| |
| while (*mii_control_reg & MAC_MII_BUSY) { |
| mdelay(1); |
| if (--timedout == 0) { |
| printk(KERN_ERR "%s: mdio_write busy timeout!!\n", |
| dev->name); |
| return; |
| } |
| } |
| |
| mii_control = MAC_SET_MII_SELECT_REG(reg) | |
| MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE; |
| |
| *mii_data_reg = value; |
| *mii_control_reg = mii_control; |
| } |
| |
| static int mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum) |
| { |
| /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does |
| * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */ |
| struct net_device *const dev = bus->priv; |
| |
| enable_mac(dev, 0); /* make sure the MAC associated with this |
| * mii_bus is enabled */ |
| return mdio_read(dev, phy_addr, regnum); |
| } |
| |
| static int mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, |
| u16 value) |
| { |
| struct net_device *const dev = bus->priv; |
| |
| enable_mac(dev, 0); /* make sure the MAC associated with this |
| * mii_bus is enabled */ |
| mdio_write(dev, phy_addr, regnum, value); |
| return 0; |
| } |
| |
| static int mdiobus_reset(struct mii_bus *bus) |
| { |
| struct net_device *const dev = bus->priv; |
| |
| enable_mac(dev, 0); /* make sure the MAC associated with this |
| * mii_bus is enabled */ |
| return 0; |
| } |
| |
| static int mii_probe (struct net_device *dev) |
| { |
| struct au1000_private *const aup = (struct au1000_private *) dev->priv; |
| struct phy_device *phydev = NULL; |
| |
| #if defined(AU1XXX_PHY_STATIC_CONFIG) |
| BUG_ON(aup->mac_id < 0 || aup->mac_id > 1); |
| |
| if(aup->mac_id == 0) { /* get PHY0 */ |
| # if defined(AU1XXX_PHY0_ADDR) |
| phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus.phy_map[AU1XXX_PHY0_ADDR]; |
| # else |
| printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n", |
| dev->name); |
| return 0; |
| # endif /* defined(AU1XXX_PHY0_ADDR) */ |
| } else if (aup->mac_id == 1) { /* get PHY1 */ |
| # if defined(AU1XXX_PHY1_ADDR) |
| phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus.phy_map[AU1XXX_PHY1_ADDR]; |
| # else |
| printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n", |
| dev->name); |
| return 0; |
| # endif /* defined(AU1XXX_PHY1_ADDR) */ |
| } |
| |
| #else /* defined(AU1XXX_PHY_STATIC_CONFIG) */ |
| int phy_addr; |
| |
| /* find the first (lowest address) PHY on the current MAC's MII bus */ |
| for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) |
| if (aup->mii_bus.phy_map[phy_addr]) { |
| phydev = aup->mii_bus.phy_map[phy_addr]; |
| # if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR) |
| break; /* break out with first one found */ |
| # endif |
| } |
| |
| # if defined(AU1XXX_PHY1_SEARCH_ON_MAC0) |
| /* try harder to find a PHY */ |
| if (!phydev && (aup->mac_id == 1)) { |
| /* no PHY found, maybe we have a dual PHY? */ |
| printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, " |
| "let's see if it's attached to MAC0...\n"); |
| |
| BUG_ON(!au_macs[0]); |
| |
| /* find the first (lowest address) non-attached PHY on |
| * the MAC0 MII bus */ |
| for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { |
| struct phy_device *const tmp_phydev = |
| au_macs[0]->mii_bus.phy_map[phy_addr]; |
| |
| if (!tmp_phydev) |
| continue; /* no PHY here... */ |
| |
| if (tmp_phydev->attached_dev) |
| continue; /* already claimed by MAC0 */ |
| |
| phydev = tmp_phydev; |
| break; /* found it */ |
| } |
| } |
| # endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */ |
| |
| #endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */ |
| if (!phydev) { |
| printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name); |
| return -1; |
| } |
| |
| /* now we are supposed to have a proper phydev, to attach to... */ |
| BUG_ON(!phydev); |
| BUG_ON(phydev->attached_dev); |
| |
| phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0, |
| PHY_INTERFACE_MODE_MII); |
| |
| if (IS_ERR(phydev)) { |
| printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); |
| return PTR_ERR(phydev); |
| } |
| |
| /* mask with MAC supported features */ |
| phydev->supported &= (SUPPORTED_10baseT_Half |
| | SUPPORTED_10baseT_Full |
| | SUPPORTED_100baseT_Half |
| | SUPPORTED_100baseT_Full |
| | SUPPORTED_Autoneg |
| /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */ |
| | SUPPORTED_MII |
| | SUPPORTED_TP); |
| |
| phydev->advertising = phydev->supported; |
| |
| aup->old_link = 0; |
| aup->old_speed = 0; |
| aup->old_duplex = -1; |
| aup->phy_dev = phydev; |
| |
| printk(KERN_INFO "%s: attached PHY driver [%s] " |
| "(mii_bus:phy_addr=%s, irq=%d)\n", |
| dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Buffer allocation/deallocation routines. The buffer descriptor returned |
| * has the virtual and dma address of a buffer suitable for |
| * both, receive and transmit operations. |
| */ |
| static db_dest_t *GetFreeDB(struct au1000_private *aup) |
| { |
| db_dest_t *pDB; |
| pDB = aup->pDBfree; |
| |
| if (pDB) { |
| aup->pDBfree = pDB->pnext; |
| } |
| return pDB; |
| } |
| |
| void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB) |
| { |
| db_dest_t *pDBfree = aup->pDBfree; |
| if (pDBfree) |
| pDBfree->pnext = pDB; |
| aup->pDBfree = pDB; |
| } |
| |
| static void enable_rx_tx(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| |
| if (au1000_debug > 4) |
| printk(KERN_INFO "%s: enable_rx_tx\n", dev->name); |
| |
| aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE); |
| au_sync_delay(10); |
| } |
| |
| static void hard_stop(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| |
| if (au1000_debug > 4) |
| printk(KERN_INFO "%s: hard stop\n", dev->name); |
| |
| aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); |
| au_sync_delay(10); |
| } |
| |
| static void enable_mac(struct net_device *dev, int force_reset) |
| { |
| unsigned long flags; |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| |
| spin_lock_irqsave(&aup->lock, flags); |
| |
| if(force_reset || (!aup->mac_enabled)) { |
| *aup->enable = MAC_EN_CLOCK_ENABLE; |
| au_sync_delay(2); |
| *aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 |
| | MAC_EN_CLOCK_ENABLE); |
| au_sync_delay(2); |
| |
| aup->mac_enabled = 1; |
| } |
| |
| spin_unlock_irqrestore(&aup->lock, flags); |
| } |
| |
| static void reset_mac_unlocked(struct net_device *dev) |
| { |
| struct au1000_private *const aup = (struct au1000_private *) dev->priv; |
| int i; |
| |
| hard_stop(dev); |
| |
| *aup->enable = MAC_EN_CLOCK_ENABLE; |
| au_sync_delay(2); |
| *aup->enable = 0; |
| au_sync_delay(2); |
| |
| aup->tx_full = 0; |
| for (i = 0; i < NUM_RX_DMA; i++) { |
| /* reset control bits */ |
| aup->rx_dma_ring[i]->buff_stat &= ~0xf; |
| } |
| for (i = 0; i < NUM_TX_DMA; i++) { |
| /* reset control bits */ |
| aup->tx_dma_ring[i]->buff_stat &= ~0xf; |
| } |
| |
| aup->mac_enabled = 0; |
| |
| } |
| |
| static void reset_mac(struct net_device *dev) |
| { |
| struct au1000_private *const aup = (struct au1000_private *) dev->priv; |
| unsigned long flags; |
| |
| if (au1000_debug > 4) |
| printk(KERN_INFO "%s: reset mac, aup %x\n", |
| dev->name, (unsigned)aup); |
| |
| spin_lock_irqsave(&aup->lock, flags); |
| |
| reset_mac_unlocked (dev); |
| |
| spin_unlock_irqrestore(&aup->lock, flags); |
| } |
| |
| /* |
| * Setup the receive and transmit "rings". These pointers are the addresses |
| * of the rx and tx MAC DMA registers so they are fixed by the hardware -- |
| * these are not descriptors sitting in memory. |
| */ |
| static void |
| setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base) |
| { |
| int i; |
| |
| for (i = 0; i < NUM_RX_DMA; i++) { |
| aup->rx_dma_ring[i] = |
| (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i); |
| } |
| for (i = 0; i < NUM_TX_DMA; i++) { |
| aup->tx_dma_ring[i] = |
| (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i); |
| } |
| } |
| |
| static struct { |
| u32 base_addr; |
| u32 macen_addr; |
| int irq; |
| struct net_device *dev; |
| } iflist[2] = { |
| #ifdef CONFIG_SOC_AU1000 |
| {AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT}, |
| {AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT} |
| #endif |
| #ifdef CONFIG_SOC_AU1100 |
| {AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT} |
| #endif |
| #ifdef CONFIG_SOC_AU1500 |
| {AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT}, |
| {AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT} |
| #endif |
| #ifdef CONFIG_SOC_AU1550 |
| {AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT}, |
| {AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT} |
| #endif |
| }; |
| |
| static int num_ifs; |
| |
| /* |
| * Setup the base address and interrupt of the Au1xxx ethernet macs |
| * based on cpu type and whether the interface is enabled in sys_pinfunc |
| * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0. |
| */ |
| static int __init au1000_init_module(void) |
| { |
| int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4); |
| struct net_device *dev; |
| int i, found_one = 0; |
| |
| num_ifs = NUM_ETH_INTERFACES - ni; |
| |
| for(i = 0; i < num_ifs; i++) { |
| dev = au1000_probe(i); |
| iflist[i].dev = dev; |
| if (dev) |
| found_one++; |
| } |
| if (!found_one) |
| return -ENODEV; |
| return 0; |
| } |
| |
| /* |
| * ethtool operations |
| */ |
| |
| static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct au1000_private *aup = (struct au1000_private *)dev->priv; |
| |
| if (aup->phy_dev) |
| return phy_ethtool_gset(aup->phy_dev, cmd); |
| |
| return -EINVAL; |
| } |
| |
| static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct au1000_private *aup = (struct au1000_private *)dev->priv; |
| |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| |
| if (aup->phy_dev) |
| return phy_ethtool_sset(aup->phy_dev, cmd); |
| |
| return -EINVAL; |
| } |
| |
| static void |
| au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
| { |
| struct au1000_private *aup = (struct au1000_private *)dev->priv; |
| |
| strcpy(info->driver, DRV_NAME); |
| strcpy(info->version, DRV_VERSION); |
| info->fw_version[0] = '\0'; |
| sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id); |
| info->regdump_len = 0; |
| } |
| |
| static const struct ethtool_ops au1000_ethtool_ops = { |
| .get_settings = au1000_get_settings, |
| .set_settings = au1000_set_settings, |
| .get_drvinfo = au1000_get_drvinfo, |
| .get_link = ethtool_op_get_link, |
| }; |
| |
| static struct net_device * au1000_probe(int port_num) |
| { |
| static unsigned version_printed = 0; |
| struct au1000_private *aup = NULL; |
| struct net_device *dev = NULL; |
| db_dest_t *pDB, *pDBfree; |
| char ethaddr[6]; |
| int irq, i, err; |
| u32 base, macen; |
| |
| if (port_num >= NUM_ETH_INTERFACES) |
| return NULL; |
| |
| base = CPHYSADDR(iflist[port_num].base_addr ); |
| macen = CPHYSADDR(iflist[port_num].macen_addr); |
| irq = iflist[port_num].irq; |
| |
| if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") || |
| !request_mem_region(macen, 4, "Au1x00 ENET")) |
| return NULL; |
| |
| if (version_printed++ == 0) |
| printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR); |
| |
| dev = alloc_etherdev(sizeof(struct au1000_private)); |
| if (!dev) { |
| printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME); |
| return NULL; |
| } |
| |
| if ((err = register_netdev(dev)) != 0) { |
| printk(KERN_ERR "%s: Cannot register net device, error %d\n", |
| DRV_NAME, err); |
| free_netdev(dev); |
| return NULL; |
| } |
| |
| printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n", |
| dev->name, base, irq); |
| |
| aup = dev->priv; |
| |
| /* Allocate the data buffers */ |
| /* Snooping works fine with eth on all au1xxx */ |
| aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE * |
| (NUM_TX_BUFFS + NUM_RX_BUFFS), |
| &aup->dma_addr, 0); |
| if (!aup->vaddr) { |
| free_netdev(dev); |
| release_mem_region( base, MAC_IOSIZE); |
| release_mem_region(macen, 4); |
| return NULL; |
| } |
| |
| /* aup->mac is the base address of the MAC's registers */ |
| aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr; |
| |
| /* Setup some variables for quick register address access */ |
| aup->enable = (volatile u32 *)iflist[port_num].macen_addr; |
| aup->mac_id = port_num; |
| au_macs[port_num] = aup; |
| |
| if (port_num == 0) { |
| if (prom_get_ethernet_addr(ethaddr) == 0) |
| memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr)); |
| else { |
| printk(KERN_INFO "%s: No MAC address found\n", |
| dev->name); |
| /* Use the hard coded MAC addresses */ |
| } |
| |
| setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR); |
| } else if (port_num == 1) |
| setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR); |
| |
| /* |
| * Assign to the Ethernet ports two consecutive MAC addresses |
| * to match those that are printed on their stickers |
| */ |
| memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr)); |
| dev->dev_addr[5] += port_num; |
| |
| *aup->enable = 0; |
| aup->mac_enabled = 0; |
| |
| aup->mii_bus.priv = dev; |
| aup->mii_bus.read = mdiobus_read; |
| aup->mii_bus.write = mdiobus_write; |
| aup->mii_bus.reset = mdiobus_reset; |
| aup->mii_bus.name = "au1000_eth_mii"; |
| snprintf(aup->mii_bus.id, MII_BUS_ID_SIZE, "%x", aup->mac_id); |
| aup->mii_bus.irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL); |
| for(i = 0; i < PHY_MAX_ADDR; ++i) |
| aup->mii_bus.irq[i] = PHY_POLL; |
| |
| /* if known, set corresponding PHY IRQs */ |
| #if defined(AU1XXX_PHY_STATIC_CONFIG) |
| # if defined(AU1XXX_PHY0_IRQ) |
| if (AU1XXX_PHY0_BUSID == aup->mac_id) |
| aup->mii_bus.irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ; |
| # endif |
| # if defined(AU1XXX_PHY1_IRQ) |
| if (AU1XXX_PHY1_BUSID == aup->mac_id) |
| aup->mii_bus.irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ; |
| # endif |
| #endif |
| mdiobus_register(&aup->mii_bus); |
| |
| if (mii_probe(dev) != 0) { |
| goto err_out; |
| } |
| |
| pDBfree = NULL; |
| /* setup the data buffer descriptors and attach a buffer to each one */ |
| pDB = aup->db; |
| for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { |
| pDB->pnext = pDBfree; |
| pDBfree = pDB; |
| pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); |
| pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); |
| pDB++; |
| } |
| aup->pDBfree = pDBfree; |
| |
| for (i = 0; i < NUM_RX_DMA; i++) { |
| pDB = GetFreeDB(aup); |
| if (!pDB) { |
| goto err_out; |
| } |
| aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; |
| aup->rx_db_inuse[i] = pDB; |
| } |
| for (i = 0; i < NUM_TX_DMA; i++) { |
| pDB = GetFreeDB(aup); |
| if (!pDB) { |
| goto err_out; |
| } |
| aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; |
| aup->tx_dma_ring[i]->len = 0; |
| aup->tx_db_inuse[i] = pDB; |
| } |
| |
| spin_lock_init(&aup->lock); |
| dev->base_addr = base; |
| dev->irq = irq; |
| dev->open = au1000_open; |
| dev->hard_start_xmit = au1000_tx; |
| dev->stop = au1000_close; |
| dev->set_multicast_list = &set_rx_mode; |
| dev->do_ioctl = &au1000_ioctl; |
| SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops); |
| dev->tx_timeout = au1000_tx_timeout; |
| dev->watchdog_timeo = ETH_TX_TIMEOUT; |
| |
| /* |
| * The boot code uses the ethernet controller, so reset it to start |
| * fresh. au1000_init() expects that the device is in reset state. |
| */ |
| reset_mac(dev); |
| |
| return dev; |
| |
| err_out: |
| /* here we should have a valid dev plus aup-> register addresses |
| * so we can reset the mac properly.*/ |
| reset_mac(dev); |
| |
| for (i = 0; i < NUM_RX_DMA; i++) { |
| if (aup->rx_db_inuse[i]) |
| ReleaseDB(aup, aup->rx_db_inuse[i]); |
| } |
| for (i = 0; i < NUM_TX_DMA; i++) { |
| if (aup->tx_db_inuse[i]) |
| ReleaseDB(aup, aup->tx_db_inuse[i]); |
| } |
| dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), |
| (void *)aup->vaddr, aup->dma_addr); |
| unregister_netdev(dev); |
| free_netdev(dev); |
| release_mem_region( base, MAC_IOSIZE); |
| release_mem_region(macen, 4); |
| return NULL; |
| } |
| |
| /* |
| * Initialize the interface. |
| * |
| * When the device powers up, the clocks are disabled and the |
| * mac is in reset state. When the interface is closed, we |
| * do the same -- reset the device and disable the clocks to |
| * conserve power. Thus, whenever au1000_init() is called, |
| * the device should already be in reset state. |
| */ |
| static int au1000_init(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| u32 flags; |
| int i; |
| u32 control; |
| |
| if (au1000_debug > 4) |
| printk("%s: au1000_init\n", dev->name); |
| |
| /* bring the device out of reset */ |
| enable_mac(dev, 1); |
| |
| spin_lock_irqsave(&aup->lock, flags); |
| |
| aup->mac->control = 0; |
| aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; |
| aup->tx_tail = aup->tx_head; |
| aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; |
| |
| aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4]; |
| aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | |
| dev->dev_addr[1]<<8 | dev->dev_addr[0]; |
| |
| for (i = 0; i < NUM_RX_DMA; i++) { |
| aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; |
| } |
| au_sync(); |
| |
| control = MAC_RX_ENABLE | MAC_TX_ENABLE; |
| #ifndef CONFIG_CPU_LITTLE_ENDIAN |
| control |= MAC_BIG_ENDIAN; |
| #endif |
| if (aup->phy_dev) { |
| if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex)) |
| control |= MAC_FULL_DUPLEX; |
| else |
| control |= MAC_DISABLE_RX_OWN; |
| } else { /* PHY-less op, assume full-duplex */ |
| control |= MAC_FULL_DUPLEX; |
| } |
| |
| aup->mac->control = control; |
| aup->mac->vlan1_tag = 0x8100; /* activate vlan support */ |
| au_sync(); |
| |
| spin_unlock_irqrestore(&aup->lock, flags); |
| return 0; |
| } |
| |
| static void |
| au1000_adjust_link(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| struct phy_device *phydev = aup->phy_dev; |
| unsigned long flags; |
| |
| int status_change = 0; |
| |
| BUG_ON(!aup->phy_dev); |
| |
| spin_lock_irqsave(&aup->lock, flags); |
| |
| if (phydev->link && (aup->old_speed != phydev->speed)) { |
| // speed changed |
| |
| switch(phydev->speed) { |
| case SPEED_10: |
| case SPEED_100: |
| break; |
| default: |
| printk(KERN_WARNING |
| "%s: Speed (%d) is not 10/100 ???\n", |
| dev->name, phydev->speed); |
| break; |
| } |
| |
| aup->old_speed = phydev->speed; |
| |
| status_change = 1; |
| } |
| |
| if (phydev->link && (aup->old_duplex != phydev->duplex)) { |
| // duplex mode changed |
| |
| /* switching duplex mode requires to disable rx and tx! */ |
| hard_stop(dev); |
| |
| if (DUPLEX_FULL == phydev->duplex) |
| aup->mac->control = ((aup->mac->control |
| | MAC_FULL_DUPLEX) |
| & ~MAC_DISABLE_RX_OWN); |
| else |
| aup->mac->control = ((aup->mac->control |
| & ~MAC_FULL_DUPLEX) |
| | MAC_DISABLE_RX_OWN); |
| au_sync_delay(1); |
| |
| enable_rx_tx(dev); |
| aup->old_duplex = phydev->duplex; |
| |
| status_change = 1; |
| } |
| |
| if(phydev->link != aup->old_link) { |
| // link state changed |
| |
| if (phydev->link) // link went up |
| netif_schedule(dev); |
| else { // link went down |
| aup->old_speed = 0; |
| aup->old_duplex = -1; |
| } |
| |
| aup->old_link = phydev->link; |
| status_change = 1; |
| } |
| |
| spin_unlock_irqrestore(&aup->lock, flags); |
| |
| if (status_change) { |
| if (phydev->link) |
| printk(KERN_INFO "%s: link up (%d/%s)\n", |
| dev->name, phydev->speed, |
| DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); |
| else |
| printk(KERN_INFO "%s: link down\n", dev->name); |
| } |
| } |
| |
| static int au1000_open(struct net_device *dev) |
| { |
| int retval; |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| |
| if (au1000_debug > 4) |
| printk("%s: open: dev=%p\n", dev->name, dev); |
| |
| if ((retval = request_irq(dev->irq, &au1000_interrupt, 0, |
| dev->name, dev))) { |
| printk(KERN_ERR "%s: unable to get IRQ %d\n", |
| dev->name, dev->irq); |
| return retval; |
| } |
| |
| if ((retval = au1000_init(dev))) { |
| printk(KERN_ERR "%s: error in au1000_init\n", dev->name); |
| free_irq(dev->irq, dev); |
| return retval; |
| } |
| |
| if (aup->phy_dev) { |
| /* cause the PHY state machine to schedule a link state check */ |
| aup->phy_dev->state = PHY_CHANGELINK; |
| phy_start(aup->phy_dev); |
| } |
| |
| netif_start_queue(dev); |
| |
| if (au1000_debug > 4) |
| printk("%s: open: Initialization done.\n", dev->name); |
| |
| return 0; |
| } |
| |
| static int au1000_close(struct net_device *dev) |
| { |
| unsigned long flags; |
| struct au1000_private *const aup = (struct au1000_private *) dev->priv; |
| |
| if (au1000_debug > 4) |
| printk("%s: close: dev=%p\n", dev->name, dev); |
| |
| if (aup->phy_dev) |
| phy_stop(aup->phy_dev); |
| |
| spin_lock_irqsave(&aup->lock, flags); |
| |
| reset_mac_unlocked (dev); |
| |
| /* stop the device */ |
| netif_stop_queue(dev); |
| |
| /* disable the interrupt */ |
| free_irq(dev->irq, dev); |
| spin_unlock_irqrestore(&aup->lock, flags); |
| |
| return 0; |
| } |
| |
| static void __exit au1000_cleanup_module(void) |
| { |
| int i, j; |
| struct net_device *dev; |
| struct au1000_private *aup; |
| |
| for (i = 0; i < num_ifs; i++) { |
| dev = iflist[i].dev; |
| if (dev) { |
| aup = (struct au1000_private *) dev->priv; |
| unregister_netdev(dev); |
| for (j = 0; j < NUM_RX_DMA; j++) |
| if (aup->rx_db_inuse[j]) |
| ReleaseDB(aup, aup->rx_db_inuse[j]); |
| for (j = 0; j < NUM_TX_DMA; j++) |
| if (aup->tx_db_inuse[j]) |
| ReleaseDB(aup, aup->tx_db_inuse[j]); |
| dma_free_noncoherent(NULL, MAX_BUF_SIZE * |
| (NUM_TX_BUFFS + NUM_RX_BUFFS), |
| (void *)aup->vaddr, aup->dma_addr); |
| release_mem_region(dev->base_addr, MAC_IOSIZE); |
| release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4); |
| free_netdev(dev); |
| } |
| } |
| } |
| |
| static void update_tx_stats(struct net_device *dev, u32 status) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| struct net_device_stats *ps = &dev->stats; |
| |
| if (status & TX_FRAME_ABORTED) { |
| if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) { |
| if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { |
| /* any other tx errors are only valid |
| * in half duplex mode */ |
| ps->tx_errors++; |
| ps->tx_aborted_errors++; |
| } |
| } |
| else { |
| ps->tx_errors++; |
| ps->tx_aborted_errors++; |
| if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) |
| ps->tx_carrier_errors++; |
| } |
| } |
| } |
| |
| |
| /* |
| * Called from the interrupt service routine to acknowledge |
| * the TX DONE bits. This is a must if the irq is setup as |
| * edge triggered. |
| */ |
| static void au1000_tx_ack(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| volatile tx_dma_t *ptxd; |
| |
| ptxd = aup->tx_dma_ring[aup->tx_tail]; |
| |
| while (ptxd->buff_stat & TX_T_DONE) { |
| update_tx_stats(dev, ptxd->status); |
| ptxd->buff_stat &= ~TX_T_DONE; |
| ptxd->len = 0; |
| au_sync(); |
| |
| aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); |
| ptxd = aup->tx_dma_ring[aup->tx_tail]; |
| |
| if (aup->tx_full) { |
| aup->tx_full = 0; |
| netif_wake_queue(dev); |
| } |
| } |
| } |
| |
| |
| /* |
| * Au1000 transmit routine. |
| */ |
| static int au1000_tx(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| struct net_device_stats *ps = &dev->stats; |
| volatile tx_dma_t *ptxd; |
| u32 buff_stat; |
| db_dest_t *pDB; |
| int i; |
| |
| if (au1000_debug > 5) |
| printk("%s: tx: aup %x len=%d, data=%p, head %d\n", |
| dev->name, (unsigned)aup, skb->len, |
| skb->data, aup->tx_head); |
| |
| ptxd = aup->tx_dma_ring[aup->tx_head]; |
| buff_stat = ptxd->buff_stat; |
| if (buff_stat & TX_DMA_ENABLE) { |
| /* We've wrapped around and the transmitter is still busy */ |
| netif_stop_queue(dev); |
| aup->tx_full = 1; |
| return 1; |
| } |
| else if (buff_stat & TX_T_DONE) { |
| update_tx_stats(dev, ptxd->status); |
| ptxd->len = 0; |
| } |
| |
| if (aup->tx_full) { |
| aup->tx_full = 0; |
| netif_wake_queue(dev); |
| } |
| |
| pDB = aup->tx_db_inuse[aup->tx_head]; |
| skb_copy_from_linear_data(skb, pDB->vaddr, skb->len); |
| if (skb->len < ETH_ZLEN) { |
| for (i=skb->len; i<ETH_ZLEN; i++) { |
| ((char *)pDB->vaddr)[i] = 0; |
| } |
| ptxd->len = ETH_ZLEN; |
| } |
| else |
| ptxd->len = skb->len; |
| |
| ps->tx_packets++; |
| ps->tx_bytes += ptxd->len; |
| |
| ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; |
| au_sync(); |
| dev_kfree_skb(skb); |
| aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); |
| dev->trans_start = jiffies; |
| return 0; |
| } |
| |
| static inline void update_rx_stats(struct net_device *dev, u32 status) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| struct net_device_stats *ps = &dev->stats; |
| |
| ps->rx_packets++; |
| if (status & RX_MCAST_FRAME) |
| ps->multicast++; |
| |
| if (status & RX_ERROR) { |
| ps->rx_errors++; |
| if (status & RX_MISSED_FRAME) |
| ps->rx_missed_errors++; |
| if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR)) |
| ps->rx_length_errors++; |
| if (status & RX_CRC_ERROR) |
| ps->rx_crc_errors++; |
| if (status & RX_COLL) |
| ps->collisions++; |
| } |
| else |
| ps->rx_bytes += status & RX_FRAME_LEN_MASK; |
| |
| } |
| |
| /* |
| * Au1000 receive routine. |
| */ |
| static int au1000_rx(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| struct sk_buff *skb; |
| volatile rx_dma_t *prxd; |
| u32 buff_stat, status; |
| db_dest_t *pDB; |
| u32 frmlen; |
| |
| if (au1000_debug > 5) |
| printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head); |
| |
| prxd = aup->rx_dma_ring[aup->rx_head]; |
| buff_stat = prxd->buff_stat; |
| while (buff_stat & RX_T_DONE) { |
| status = prxd->status; |
| pDB = aup->rx_db_inuse[aup->rx_head]; |
| update_rx_stats(dev, status); |
| if (!(status & RX_ERROR)) { |
| |
| /* good frame */ |
| frmlen = (status & RX_FRAME_LEN_MASK); |
| frmlen -= 4; /* Remove FCS */ |
| skb = dev_alloc_skb(frmlen + 2); |
| if (skb == NULL) { |
| printk(KERN_ERR |
| "%s: Memory squeeze, dropping packet.\n", |
| dev->name); |
| dev->stats.rx_dropped++; |
| continue; |
| } |
| skb_reserve(skb, 2); /* 16 byte IP header align */ |
| skb_copy_to_linear_data(skb, |
| (unsigned char *)pDB->vaddr, frmlen); |
| skb_put(skb, frmlen); |
| skb->protocol = eth_type_trans(skb, dev); |
| netif_rx(skb); /* pass the packet to upper layers */ |
| } |
| else { |
| if (au1000_debug > 4) { |
| if (status & RX_MISSED_FRAME) |
| printk("rx miss\n"); |
| if (status & RX_WDOG_TIMER) |
| printk("rx wdog\n"); |
| if (status & RX_RUNT) |
| printk("rx runt\n"); |
| if (status & RX_OVERLEN) |
| printk("rx overlen\n"); |
| if (status & RX_COLL) |
| printk("rx coll\n"); |
| if (status & RX_MII_ERROR) |
| printk("rx mii error\n"); |
| if (status & RX_CRC_ERROR) |
| printk("rx crc error\n"); |
| if (status & RX_LEN_ERROR) |
| printk("rx len error\n"); |
| if (status & RX_U_CNTRL_FRAME) |
| printk("rx u control frame\n"); |
| if (status & RX_MISSED_FRAME) |
| printk("rx miss\n"); |
| } |
| } |
| prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); |
| aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); |
| au_sync(); |
| |
| /* next descriptor */ |
| prxd = aup->rx_dma_ring[aup->rx_head]; |
| buff_stat = prxd->buff_stat; |
| dev->last_rx = jiffies; |
| } |
| return 0; |
| } |
| |
| |
| /* |
| * Au1000 interrupt service routine. |
| */ |
| static irqreturn_t au1000_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| |
| /* Handle RX interrupts first to minimize chance of overrun */ |
| |
| au1000_rx(dev); |
| au1000_tx_ack(dev); |
| return IRQ_RETVAL(1); |
| } |
| |
| |
| /* |
| * The Tx ring has been full longer than the watchdog timeout |
| * value. The transmitter must be hung? |
| */ |
| static void au1000_tx_timeout(struct net_device *dev) |
| { |
| printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev); |
| reset_mac(dev); |
| au1000_init(dev); |
| dev->trans_start = jiffies; |
| netif_wake_queue(dev); |
| } |
| |
| static void set_rx_mode(struct net_device *dev) |
| { |
| struct au1000_private *aup = (struct au1000_private *) dev->priv; |
| |
| if (au1000_debug > 4) |
| printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags); |
| |
| if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ |
| aup->mac->control |= MAC_PROMISCUOUS; |
| } else if ((dev->flags & IFF_ALLMULTI) || |
| dev->mc_count > MULTICAST_FILTER_LIMIT) { |
| aup->mac->control |= MAC_PASS_ALL_MULTI; |
| aup->mac->control &= ~MAC_PROMISCUOUS; |
| printk(KERN_INFO "%s: Pass all multicast\n", dev->name); |
| } else { |
| int i; |
| struct dev_mc_list *mclist; |
| u32 mc_filter[2]; /* Multicast hash filter */ |
| |
| mc_filter[1] = mc_filter[0] = 0; |
| for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; |
| i++, mclist = mclist->next) { |
| set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26, |
| (long *)mc_filter); |
| } |
| aup->mac->multi_hash_high = mc_filter[1]; |
| aup->mac->multi_hash_low = mc_filter[0]; |
| aup->mac->control &= ~MAC_PROMISCUOUS; |
| aup->mac->control |= MAC_HASH_MODE; |
| } |
| } |
| |
| static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| struct au1000_private *aup = (struct au1000_private *)dev->priv; |
| |
| if (!netif_running(dev)) return -EINVAL; |
| |
| if (!aup->phy_dev) return -EINVAL; // PHY not controllable |
| |
| return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd); |
| } |
| |
| module_init(au1000_init_module); |
| module_exit(au1000_cleanup_module); |