| /* |
| * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar |
| * |
| * This file contains the lowest level x86-specific interrupt |
| * entry, irq-stacks and irq statistics code. All the remaining |
| * irq logic is done by the generic kernel/irq/ code and |
| * by the x86-specific irq controller code. (e.g. i8259.c and |
| * io_apic.c.) |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/seq_file.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/notifier.h> |
| #include <linux/cpu.h> |
| #include <linux/delay.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/apic.h> |
| |
| DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); |
| EXPORT_PER_CPU_SYMBOL(irq_stat); |
| |
| DEFINE_PER_CPU(struct pt_regs *, irq_regs); |
| EXPORT_PER_CPU_SYMBOL(irq_regs); |
| |
| #ifdef CONFIG_DEBUG_STACKOVERFLOW |
| /* Debugging check for stack overflow: is there less than 1KB free? */ |
| static int check_stack_overflow(void) |
| { |
| long sp; |
| |
| __asm__ __volatile__("andl %%esp,%0" : |
| "=r" (sp) : "0" (THREAD_SIZE - 1)); |
| |
| return sp < (sizeof(struct thread_info) + STACK_WARN); |
| } |
| |
| static void print_stack_overflow(void) |
| { |
| printk(KERN_WARNING "low stack detected by irq handler\n"); |
| dump_stack(); |
| } |
| |
| #else |
| static inline int check_stack_overflow(void) { return 0; } |
| static inline void print_stack_overflow(void) { } |
| #endif |
| |
| #ifdef CONFIG_4KSTACKS |
| /* |
| * per-CPU IRQ handling contexts (thread information and stack) |
| */ |
| union irq_ctx { |
| struct thread_info tinfo; |
| u32 stack[THREAD_SIZE/sizeof(u32)]; |
| }; |
| |
| static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly; |
| static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly; |
| |
| static char softirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss; |
| static char hardirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss; |
| |
| static void call_on_stack(void *func, void *stack) |
| { |
| asm volatile("xchgl %%ebx,%%esp \n" |
| "call *%%edi \n" |
| "movl %%ebx,%%esp \n" |
| : "=b" (stack) |
| : "0" (stack), |
| "D"(func) |
| : "memory", "cc", "edx", "ecx", "eax"); |
| } |
| |
| static inline int |
| execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) |
| { |
| union irq_ctx *curctx, *irqctx; |
| u32 *isp, arg1, arg2; |
| |
| curctx = (union irq_ctx *) current_thread_info(); |
| irqctx = hardirq_ctx[smp_processor_id()]; |
| |
| /* |
| * this is where we switch to the IRQ stack. However, if we are |
| * already using the IRQ stack (because we interrupted a hardirq |
| * handler) we can't do that and just have to keep using the |
| * current stack (which is the irq stack already after all) |
| */ |
| if (unlikely(curctx == irqctx)) |
| return 0; |
| |
| /* build the stack frame on the IRQ stack */ |
| isp = (u32 *) ((char *)irqctx + sizeof(*irqctx)); |
| irqctx->tinfo.task = curctx->tinfo.task; |
| irqctx->tinfo.previous_esp = current_stack_pointer; |
| |
| /* |
| * Copy the softirq bits in preempt_count so that the |
| * softirq checks work in the hardirq context. |
| */ |
| irqctx->tinfo.preempt_count = |
| (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) | |
| (curctx->tinfo.preempt_count & SOFTIRQ_MASK); |
| |
| if (unlikely(overflow)) |
| call_on_stack(print_stack_overflow, isp); |
| |
| asm volatile("xchgl %%ebx,%%esp \n" |
| "call *%%edi \n" |
| "movl %%ebx,%%esp \n" |
| : "=a" (arg1), "=d" (arg2), "=b" (isp) |
| : "0" (irq), "1" (desc), "2" (isp), |
| "D" (desc->handle_irq) |
| : "memory", "cc", "ecx"); |
| return 1; |
| } |
| |
| /* |
| * allocate per-cpu stacks for hardirq and for softirq processing |
| */ |
| void __cpuinit irq_ctx_init(int cpu) |
| { |
| union irq_ctx *irqctx; |
| |
| if (hardirq_ctx[cpu]) |
| return; |
| |
| irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE]; |
| irqctx->tinfo.task = NULL; |
| irqctx->tinfo.exec_domain = NULL; |
| irqctx->tinfo.cpu = cpu; |
| irqctx->tinfo.preempt_count = HARDIRQ_OFFSET; |
| irqctx->tinfo.addr_limit = MAKE_MM_SEG(0); |
| |
| hardirq_ctx[cpu] = irqctx; |
| |
| irqctx = (union irq_ctx *) &softirq_stack[cpu*THREAD_SIZE]; |
| irqctx->tinfo.task = NULL; |
| irqctx->tinfo.exec_domain = NULL; |
| irqctx->tinfo.cpu = cpu; |
| irqctx->tinfo.preempt_count = 0; |
| irqctx->tinfo.addr_limit = MAKE_MM_SEG(0); |
| |
| softirq_ctx[cpu] = irqctx; |
| |
| printk(KERN_DEBUG "CPU %u irqstacks, hard=%p soft=%p\n", |
| cpu, hardirq_ctx[cpu], softirq_ctx[cpu]); |
| } |
| |
| void irq_ctx_exit(int cpu) |
| { |
| hardirq_ctx[cpu] = NULL; |
| } |
| |
| asmlinkage void do_softirq(void) |
| { |
| unsigned long flags; |
| struct thread_info *curctx; |
| union irq_ctx *irqctx; |
| u32 *isp; |
| |
| if (in_interrupt()) |
| return; |
| |
| local_irq_save(flags); |
| |
| if (local_softirq_pending()) { |
| curctx = current_thread_info(); |
| irqctx = softirq_ctx[smp_processor_id()]; |
| irqctx->tinfo.task = curctx->task; |
| irqctx->tinfo.previous_esp = current_stack_pointer; |
| |
| /* build the stack frame on the softirq stack */ |
| isp = (u32 *) ((char *)irqctx + sizeof(*irqctx)); |
| |
| call_on_stack(__do_softirq, isp); |
| /* |
| * Shouldnt happen, we returned above if in_interrupt(): |
| */ |
| WARN_ON_ONCE(softirq_count()); |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| #else |
| static inline int |
| execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { return 0; } |
| #endif |
| |
| bool handle_irq(unsigned irq, struct pt_regs *regs) |
| { |
| struct irq_desc *desc; |
| int overflow; |
| |
| overflow = check_stack_overflow(); |
| |
| desc = irq_to_desc(irq); |
| if (unlikely(!desc)) |
| return false; |
| |
| if (!execute_on_irq_stack(overflow, desc, irq)) { |
| if (unlikely(overflow)) |
| print_stack_overflow(); |
| desc->handle_irq(irq, desc); |
| } |
| |
| return true; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| #include <asm/genapic.h> |
| |
| /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ |
| void fixup_irqs(void) |
| { |
| unsigned int irq; |
| static int warned; |
| struct irq_desc *desc; |
| |
| for_each_irq_desc(irq, desc) { |
| const struct cpumask *affinity; |
| |
| if (!desc) |
| continue; |
| if (irq == 2) |
| continue; |
| |
| affinity = desc->affinity; |
| if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) { |
| printk("Breaking affinity for irq %i\n", irq); |
| affinity = cpu_all_mask; |
| } |
| if (desc->chip->set_affinity) |
| desc->chip->set_affinity(irq, affinity); |
| else if (desc->action && !(warned++)) |
| printk("Cannot set affinity for irq %i\n", irq); |
| } |
| |
| #if 0 |
| barrier(); |
| /* Ingo Molnar says: "after the IO-APIC masks have been redirected |
| [note the nop - the interrupt-enable boundary on x86 is two |
| instructions from sti] - to flush out pending hardirqs and |
| IPIs. After this point nothing is supposed to reach this CPU." */ |
| __asm__ __volatile__("sti; nop; cli"); |
| barrier(); |
| #else |
| /* That doesn't seem sufficient. Give it 1ms. */ |
| local_irq_enable(); |
| mdelay(1); |
| local_irq_disable(); |
| #endif |
| } |
| #endif |
| |