blob: 9ff30c2efadbf99c8901bf0fe26f22cea73f63b5 [file] [log] [blame]
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <drm/drmP.h>
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include "psb_drv.h"
#include "psb_intel_drv.h"
#include "psb_intel_reg.h"
#include "gma_display.h"
#include <drm/drm_dp_helper.h>
#define _wait_for(COND, MS, W) ({ \
unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
int ret__ = 0; \
while (! (COND)) { \
if (time_after(jiffies, timeout__)) { \
ret__ = -ETIMEDOUT; \
break; \
} \
if (W && !in_dbg_master()) msleep(W); \
} \
ret__; \
})
#define wait_for(COND, MS) _wait_for(COND, MS, 1)
#define DP_LINK_STATUS_SIZE 6
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
#define DP_LINK_CONFIGURATION_SIZE 9
#define CDV_FAST_LINK_TRAIN 1
struct cdv_intel_dp {
uint32_t output_reg;
uint32_t DP;
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
bool has_audio;
int force_audio;
uint32_t color_range;
uint8_t link_bw;
uint8_t lane_count;
uint8_t dpcd[4];
struct gma_encoder *encoder;
struct i2c_adapter adapter;
struct i2c_algo_dp_aux_data algo;
uint8_t train_set[4];
uint8_t link_status[DP_LINK_STATUS_SIZE];
int panel_power_up_delay;
int panel_power_down_delay;
int panel_power_cycle_delay;
int backlight_on_delay;
int backlight_off_delay;
struct drm_display_mode *panel_fixed_mode; /* for eDP */
bool panel_on;
};
struct ddi_regoff {
uint32_t PreEmph1;
uint32_t PreEmph2;
uint32_t VSwing1;
uint32_t VSwing2;
uint32_t VSwing3;
uint32_t VSwing4;
uint32_t VSwing5;
};
static struct ddi_regoff ddi_DP_train_table[] = {
{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
.VSwing5 = 0x8158,},
{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
.VSwing5 = 0x8258,},
};
static uint32_t dp_vswing_premph_table[] = {
0x55338954, 0x4000,
0x554d8954, 0x2000,
0x55668954, 0,
0x559ac0d4, 0x6000,
};
/**
* is_edp - is the given port attached to an eDP panel (either CPU or PCH)
* @intel_dp: DP struct
*
* If a CPU or PCH DP output is attached to an eDP panel, this function
* will return true, and false otherwise.
*/
static bool is_edp(struct gma_encoder *encoder)
{
return encoder->type == INTEL_OUTPUT_EDP;
}
static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
static int
cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
{
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
int max_lane_count = 4;
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
switch (max_lane_count) {
case 1: case 2: case 4:
break;
default:
max_lane_count = 4;
}
}
return max_lane_count;
}
static int
cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
{
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
switch (max_link_bw) {
case DP_LINK_BW_1_62:
case DP_LINK_BW_2_7:
break;
default:
max_link_bw = DP_LINK_BW_1_62;
break;
}
return max_link_bw;
}
static int
cdv_intel_dp_link_clock(uint8_t link_bw)
{
if (link_bw == DP_LINK_BW_2_7)
return 270000;
else
return 162000;
}
static int
cdv_intel_dp_link_required(int pixel_clock, int bpp)
{
return (pixel_clock * bpp + 7) / 8;
}
static int
cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
return (max_link_clock * max_lanes * 19) / 20;
}
static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
{
struct drm_device *dev = intel_encoder->base.dev;
struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
u32 pp;
if (intel_dp->panel_on) {
DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
return;
}
DRM_DEBUG_KMS("\n");
pp = REG_READ(PP_CONTROL);
pp |= EDP_FORCE_VDD;
REG_WRITE(PP_CONTROL, pp);
REG_READ(PP_CONTROL);
msleep(intel_dp->panel_power_up_delay);
}
static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
{
struct drm_device *dev = intel_encoder->base.dev;
u32 pp;
DRM_DEBUG_KMS("\n");
pp = REG_READ(PP_CONTROL);
pp &= ~EDP_FORCE_VDD;
REG_WRITE(PP_CONTROL, pp);
REG_READ(PP_CONTROL);
}
/* Returns true if the panel was already on when called */
static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
{
struct drm_device *dev = intel_encoder->base.dev;
struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
if (intel_dp->panel_on)
return true;
DRM_DEBUG_KMS("\n");
pp = REG_READ(PP_CONTROL);
pp &= ~PANEL_UNLOCK_MASK;
pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
REG_WRITE(PP_CONTROL, pp);
REG_READ(PP_CONTROL);
if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
intel_dp->panel_on = false;
} else
intel_dp->panel_on = true;
msleep(intel_dp->panel_power_up_delay);
return false;
}
static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
{
struct drm_device *dev = intel_encoder->base.dev;
u32 pp, idle_off_mask = PP_ON ;
struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
DRM_DEBUG_KMS("\n");
pp = REG_READ(PP_CONTROL);
if ((pp & POWER_TARGET_ON) == 0)
return;
intel_dp->panel_on = false;
pp &= ~PANEL_UNLOCK_MASK;
/* ILK workaround: disable reset around power sequence */
pp &= ~POWER_TARGET_ON;
pp &= ~EDP_FORCE_VDD;
pp &= ~EDP_BLC_ENABLE;
REG_WRITE(PP_CONTROL, pp);
REG_READ(PP_CONTROL);
DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
DRM_DEBUG_KMS("Error in turning off Panel\n");
}
msleep(intel_dp->panel_power_cycle_delay);
DRM_DEBUG_KMS("Over\n");
}
static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
{
struct drm_device *dev = intel_encoder->base.dev;
u32 pp;
DRM_DEBUG_KMS("\n");
/*
* If we enable the backlight right away following a panel power
* on, we may see slight flicker as the panel syncs with the eDP
* link. So delay a bit to make sure the image is solid before
* allowing it to appear.
*/
msleep(300);
pp = REG_READ(PP_CONTROL);
pp |= EDP_BLC_ENABLE;
REG_WRITE(PP_CONTROL, pp);
gma_backlight_enable(dev);
}
static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
{
struct drm_device *dev = intel_encoder->base.dev;
struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
u32 pp;
DRM_DEBUG_KMS("\n");
gma_backlight_disable(dev);
msleep(10);
pp = REG_READ(PP_CONTROL);
pp &= ~EDP_BLC_ENABLE;
REG_WRITE(PP_CONTROL, pp);
msleep(intel_dp->backlight_off_delay);
}
static int
cdv_intel_dp_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct gma_encoder *encoder = gma_attached_encoder(connector);
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
int max_lanes = cdv_intel_dp_max_lane_count(encoder);
struct drm_psb_private *dev_priv = connector->dev->dev_private;
if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
return MODE_PANEL;
if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
return MODE_PANEL;
}
/* only refuse the mode on non eDP since we have seen some weird eDP panels
which are outside spec tolerances but somehow work by magic */
if (!is_edp(encoder) &&
(cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
return MODE_CLOCK_HIGH;
if (is_edp(encoder)) {
if (cdv_intel_dp_link_required(mode->clock, 24)
> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
return MODE_CLOCK_HIGH;
}
if (mode->clock < 10000)
return MODE_CLOCK_LOW;
return MODE_OK;
}
static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
int i;
uint32_t v = 0;
if (src_bytes > 4)
src_bytes = 4;
for (i = 0; i < src_bytes; i++)
v |= ((uint32_t) src[i]) << ((3-i) * 8);
return v;
}
static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
int i;
if (dst_bytes > 4)
dst_bytes = 4;
for (i = 0; i < dst_bytes; i++)
dst[i] = src >> ((3-i) * 8);
}
static int
cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
uint8_t *send, int send_bytes,
uint8_t *recv, int recv_size)
{
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
uint32_t output_reg = intel_dp->output_reg;
struct drm_device *dev = encoder->base.dev;
uint32_t ch_ctl = output_reg + 0x10;
uint32_t ch_data = ch_ctl + 4;
int i;
int recv_bytes;
uint32_t status;
uint32_t aux_clock_divider;
int try, precharge;
/* The clock divider is based off the hrawclk,
* and would like to run at 2MHz. So, take the
* hrawclk value and divide by 2 and use that
* On CDV platform it uses 200MHz as hrawclk.
*
*/
aux_clock_divider = 200 / 2;
precharge = 4;
if (is_edp(encoder))
precharge = 10;
if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
REG_READ(ch_ctl));
return -EBUSY;
}
/* Must try at least 3 times according to DP spec */
for (try = 0; try < 5; try++) {
/* Load the send data into the aux channel data registers */
for (i = 0; i < send_bytes; i += 4)
REG_WRITE(ch_data + i,
pack_aux(send + i, send_bytes - i));
/* Send the command and wait for it to complete */
REG_WRITE(ch_ctl,
DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_TIME_OUT_400us |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
for (;;) {
status = REG_READ(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
udelay(100);
}
/* Clear done status and any errors */
REG_WRITE(ch_ctl,
status |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
if (status & DP_AUX_CH_CTL_DONE)
break;
}
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
return -EBUSY;
}
/* Check for timeout or receive error.
* Timeouts occur when the sink is not connected
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
return -EIO;
}
/* Timeouts occur when the device isn't connected, so they're
* "normal" -- don't fill the kernel log with these */
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
return -ETIMEDOUT;
}
/* Unload any bytes sent back from the other side */
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
if (recv_bytes > recv_size)
recv_bytes = recv_size;
for (i = 0; i < recv_bytes; i += 4)
unpack_aux(REG_READ(ch_data + i),
recv + i, recv_bytes - i);
return recv_bytes;
}
/* Write data to the aux channel in native mode */
static int
cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
uint16_t address, uint8_t *send, int send_bytes)
{
int ret;
uint8_t msg[20];
int msg_bytes;
uint8_t ack;
if (send_bytes > 16)
return -1;
msg[0] = DP_AUX_NATIVE_WRITE << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = send_bytes - 1;
memcpy(&msg[4], send, send_bytes);
msg_bytes = send_bytes + 4;
for (;;) {
ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
if (ret < 0)
return ret;
ack >>= 4;
if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
break;
else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
return send_bytes;
}
/* Write a single byte to the aux channel in native mode */
static int
cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
uint16_t address, uint8_t byte)
{
return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
}
/* read bytes from a native aux channel */
static int
cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
uint16_t address, uint8_t *recv, int recv_bytes)
{
uint8_t msg[4];
int msg_bytes;
uint8_t reply[20];
int reply_bytes;
uint8_t ack;
int ret;
msg[0] = DP_AUX_NATIVE_READ << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = recv_bytes - 1;
msg_bytes = 4;
reply_bytes = recv_bytes + 1;
for (;;) {
ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
reply, reply_bytes);
if (ret == 0)
return -EPROTO;
if (ret < 0)
return ret;
ack = reply[0] >> 4;
if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
memcpy(recv, reply + 1, ret - 1);
return ret - 1;
}
else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
}
static int
cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
uint8_t write_byte, uint8_t *read_byte)
{
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
struct cdv_intel_dp *intel_dp = container_of(adapter,
struct cdv_intel_dp,
adapter);
struct gma_encoder *encoder = intel_dp->encoder;
uint16_t address = algo_data->address;
uint8_t msg[5];
uint8_t reply[2];
unsigned retry;
int msg_bytes;
int reply_bytes;
int ret;
/* Set up the command byte */
if (mode & MODE_I2C_READ)
msg[0] = DP_AUX_I2C_READ << 4;
else
msg[0] = DP_AUX_I2C_WRITE << 4;
if (!(mode & MODE_I2C_STOP))
msg[0] |= DP_AUX_I2C_MOT << 4;
msg[1] = address >> 8;
msg[2] = address;
switch (mode) {
case MODE_I2C_WRITE:
msg[3] = 0;
msg[4] = write_byte;
msg_bytes = 5;
reply_bytes = 1;
break;
case MODE_I2C_READ:
msg[3] = 0;
msg_bytes = 4;
reply_bytes = 2;
break;
default:
msg_bytes = 3;
reply_bytes = 1;
break;
}
for (retry = 0; retry < 5; retry++) {
ret = cdv_intel_dp_aux_ch(encoder,
msg, msg_bytes,
reply, reply_bytes);
if (ret < 0) {
DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
return ret;
}
switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
case DP_AUX_NATIVE_REPLY_ACK:
/* I2C-over-AUX Reply field is only valid
* when paired with AUX ACK.
*/
break;
case DP_AUX_NATIVE_REPLY_NACK:
DRM_DEBUG_KMS("aux_ch native nack\n");
return -EREMOTEIO;
case DP_AUX_NATIVE_REPLY_DEFER:
udelay(100);
continue;
default:
DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
reply[0]);
return -EREMOTEIO;
}
switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
case DP_AUX_I2C_REPLY_ACK:
if (mode == MODE_I2C_READ) {
*read_byte = reply[1];
}
return reply_bytes - 1;
case DP_AUX_I2C_REPLY_NACK:
DRM_DEBUG_KMS("aux_i2c nack\n");
return -EREMOTEIO;
case DP_AUX_I2C_REPLY_DEFER:
DRM_DEBUG_KMS("aux_i2c defer\n");
udelay(100);
break;
default:
DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
return -EREMOTEIO;
}
}
DRM_ERROR("too many retries, giving up\n");
return -EREMOTEIO;
}
static int
cdv_intel_dp_i2c_init(struct gma_connector *connector,
struct gma_encoder *encoder, const char *name)
{
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
int ret;
DRM_DEBUG_KMS("i2c_init %s\n", name);
intel_dp->algo.running = false;
intel_dp->algo.address = 0;
intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
intel_dp->adapter.owner = THIS_MODULE;
intel_dp->adapter.class = I2C_CLASS_DDC;
strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
intel_dp->adapter.algo_data = &intel_dp->algo;
intel_dp->adapter.dev.parent = connector->base.kdev;
if (is_edp(encoder))
cdv_intel_edp_panel_vdd_on(encoder);
ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
if (is_edp(encoder))
cdv_intel_edp_panel_vdd_off(encoder);
return ret;
}
static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
struct drm_display_mode *adjusted_mode)
{
adjusted_mode->hdisplay = fixed_mode->hdisplay;
adjusted_mode->hsync_start = fixed_mode->hsync_start;
adjusted_mode->hsync_end = fixed_mode->hsync_end;
adjusted_mode->htotal = fixed_mode->htotal;
adjusted_mode->vdisplay = fixed_mode->vdisplay;
adjusted_mode->vsync_start = fixed_mode->vsync_start;
adjusted_mode->vsync_end = fixed_mode->vsync_end;
adjusted_mode->vtotal = fixed_mode->vtotal;
adjusted_mode->clock = fixed_mode->clock;
drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
}
static bool
cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_psb_private *dev_priv = encoder->dev->dev_private;
struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
int lane_count, clock;
int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
int refclock = mode->clock;
int bpp = 24;
if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
refclock = intel_dp->panel_fixed_mode->clock;
bpp = dev_priv->edp.bpp;
}
for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
for (clock = max_clock; clock >= 0; clock--) {
int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
intel_dp->link_bw = bws[clock];
intel_dp->lane_count = lane_count;
adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
DRM_DEBUG_KMS("Display port link bw %02x lane "
"count %d clock %d\n",
intel_dp->link_bw, intel_dp->lane_count,
adjusted_mode->clock);
return true;
}
}
}
if (is_edp(intel_encoder)) {
/* okay we failed just pick the highest */
intel_dp->lane_count = max_lane_count;
intel_dp->link_bw = bws[max_clock];
adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
"count %d clock %d\n",
intel_dp->link_bw, intel_dp->lane_count,
adjusted_mode->clock);
return true;
}
return false;
}
struct cdv_intel_dp_m_n {
uint32_t tu;
uint32_t gmch_m;
uint32_t gmch_n;
uint32_t link_m;
uint32_t link_n;
};
static void
cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
/*
while (*num > 0xffffff || *den > 0xffffff) {
*num >>= 1;
*den >>= 1;
}*/
uint64_t value, m;
m = *num;
value = m * (0x800000);
m = do_div(value, *den);
*num = value;
*den = 0x800000;
}
static void
cdv_intel_dp_compute_m_n(int bpp,
int nlanes,
int pixel_clock,
int link_clock,
struct cdv_intel_dp_m_n *m_n)
{
m_n->tu = 64;
m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
m_n->gmch_n = link_clock * nlanes;
cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
m_n->link_m = pixel_clock;
m_n->link_n = link_clock;
cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
void
cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_encoder *encoder;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
int lane_count = 4, bpp = 24;
struct cdv_intel_dp_m_n m_n;
int pipe = gma_crtc->pipe;
/*
* Find the lane count in the intel_encoder private
*/
list_for_each_entry(encoder, &mode_config->encoder_list, head) {
struct gma_encoder *intel_encoder;
struct cdv_intel_dp *intel_dp;
if (encoder->crtc != crtc)
continue;
intel_encoder = to_gma_encoder(encoder);
intel_dp = intel_encoder->dev_priv;
if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
lane_count = intel_dp->lane_count;
break;
} else if (is_edp(intel_encoder)) {
lane_count = intel_dp->lane_count;
bpp = dev_priv->edp.bpp;
break;
}
}
/*
* Compute the GMCH and Link ratios. The '3' here is
* the number of bytes_per_pixel post-LUT, which we always
* set up for 8-bits of R/G/B, or 3 bytes total.
*/
cdv_intel_dp_compute_m_n(bpp, lane_count,
mode->clock, adjusted_mode->clock, &m_n);
{
REG_WRITE(PIPE_GMCH_DATA_M(pipe),
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
m_n.gmch_m);
REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
}
}
static void
cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
struct drm_crtc *crtc = encoder->crtc;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
struct drm_device *dev = encoder->dev;
intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
intel_dp->DP |= intel_dp->color_range;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF;
switch (intel_dp->lane_count) {
case 1:
intel_dp->DP |= DP_PORT_WIDTH_1;
break;
case 2:
intel_dp->DP |= DP_PORT_WIDTH_2;
break;
case 4:
intel_dp->DP |= DP_PORT_WIDTH_4;
break;
}
if (intel_dp->has_audio)
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
intel_dp->link_configuration[0] = intel_dp->link_bw;
intel_dp->link_configuration[1] = intel_dp->lane_count;
/*
* Check for DPCD version > 1.1 and enhanced framing support
*/
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
(intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
intel_dp->DP |= DP_ENHANCED_FRAMING;
}
/* CPT DP's pipe select is decided in TRANS_DP_CTL */
if (gma_crtc->pipe == 1)
intel_dp->DP |= DP_PIPEB_SELECT;
REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
if (is_edp(intel_encoder)) {
uint32_t pfit_control;
cdv_intel_edp_panel_on(intel_encoder);
if (mode->hdisplay != adjusted_mode->hdisplay ||
mode->vdisplay != adjusted_mode->vdisplay)
pfit_control = PFIT_ENABLE;
else
pfit_control = 0;
pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
REG_WRITE(PFIT_CONTROL, pfit_control);
}
}
/* If the sink supports it, try to set the power state appropriately */
static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
{
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
int ret, i;
/* Should have a valid DPCD by this point */
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
return;
if (mode != DRM_MODE_DPMS_ON) {
ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
DP_SET_POWER_D3);
if (ret != 1)
DRM_DEBUG_DRIVER("failed to write sink power state\n");
} else {
/*
* When turning on, we need to retry for 1ms to give the sink
* time to wake up.
*/
for (i = 0; i < 3; i++) {
ret = cdv_intel_dp_aux_native_write_1(encoder,
DP_SET_POWER,
DP_SET_POWER_D0);
if (ret == 1)
break;
udelay(1000);
}
}
}
static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
{
struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
int edp = is_edp(intel_encoder);
if (edp) {
cdv_intel_edp_backlight_off(intel_encoder);
cdv_intel_edp_panel_off(intel_encoder);
cdv_intel_edp_panel_vdd_on(intel_encoder);
}
/* Wake up the sink first */
cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
cdv_intel_dp_link_down(intel_encoder);
if (edp)
cdv_intel_edp_panel_vdd_off(intel_encoder);
}
static void cdv_intel_dp_commit(struct drm_encoder *encoder)
{
struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
int edp = is_edp(intel_encoder);
if (edp)
cdv_intel_edp_panel_on(intel_encoder);
cdv_intel_dp_start_link_train(intel_encoder);
cdv_intel_dp_complete_link_train(intel_encoder);
if (edp)
cdv_intel_edp_backlight_on(intel_encoder);
}
static void
cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
struct drm_device *dev = encoder->dev;
uint32_t dp_reg = REG_READ(intel_dp->output_reg);
int edp = is_edp(intel_encoder);
if (mode != DRM_MODE_DPMS_ON) {
if (edp) {
cdv_intel_edp_backlight_off(intel_encoder);
cdv_intel_edp_panel_vdd_on(intel_encoder);
}
cdv_intel_dp_sink_dpms(intel_encoder, mode);
cdv_intel_dp_link_down(intel_encoder);
if (edp) {
cdv_intel_edp_panel_vdd_off(intel_encoder);
cdv_intel_edp_panel_off(intel_encoder);
}
} else {
if (edp)
cdv_intel_edp_panel_on(intel_encoder);
cdv_intel_dp_sink_dpms(intel_encoder, mode);
if (!(dp_reg & DP_PORT_EN)) {
cdv_intel_dp_start_link_train(intel_encoder);
cdv_intel_dp_complete_link_train(intel_encoder);
}
if (edp)
cdv_intel_edp_backlight_on(intel_encoder);
}
}
/*
* Native read with retry for link status and receiver capability reads for
* cases where the sink may still be asleep.
*/
static bool
cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
uint8_t *recv, int recv_bytes)
{
int ret, i;
/*
* Sinks are *supposed* to come up within 1ms from an off state,
* but we're also supposed to retry 3 times per the spec.
*/
for (i = 0; i < 3; i++) {
ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
recv_bytes);
if (ret == recv_bytes)
return true;
udelay(1000);
}
return false;
}
/*
* Fetch AUX CH registers 0x202 - 0x207 which contain
* link status information
*/
static bool
cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
{
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
return cdv_intel_dp_aux_native_read_retry(encoder,
DP_LANE0_1_STATUS,
intel_dp->link_status,
DP_LINK_STATUS_SIZE);
}
static uint8_t
cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int r)
{
return link_status[r - DP_LANE0_1_STATUS];
}
static uint8_t
cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
uint8_t l = cdv_intel_dp_link_status(link_status, i);
return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}
static uint8_t
cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
uint8_t l = cdv_intel_dp_link_status(link_status, i);
return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}
#if 0
static char *voltage_names[] = {
"0.4V", "0.6V", "0.8V", "1.2V"
};
static char *pre_emph_names[] = {
"0dB", "3.5dB", "6dB", "9.5dB"
};
static char *link_train_names[] = {
"pattern 1", "pattern 2", "idle", "off"
};
#endif
#define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200
/*
static uint8_t
cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
}
*/
static void
cdv_intel_get_adjust_train(struct gma_encoder *encoder)
{
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
uint8_t v = 0;
uint8_t p = 0;
int lane;
for (lane = 0; lane < intel_dp->lane_count; lane++) {
uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
if (v >= CDV_DP_VOLTAGE_MAX)
v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
for (lane = 0; lane < 4; lane++)
intel_dp->train_set[lane] = v | p;
}
static uint8_t
cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_LANE0_1_STATUS + (lane >> 1);
int s = (lane & 1) * 4;
uint8_t l = cdv_intel_dp_link_status(link_status, i);
return (l >> s) & 0xf;
}
/* Check for clock recovery is done on all channels */
static bool
cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
int lane;
uint8_t lane_status;
for (lane = 0; lane < lane_count; lane++) {
lane_status = cdv_intel_get_lane_status(link_status, lane);
if ((lane_status & DP_LANE_CR_DONE) == 0)
return false;
}
return true;
}
/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
DP_LANE_CHANNEL_EQ_DONE|\
DP_LANE_SYMBOL_LOCKED)
static bool
cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
{
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
uint8_t lane_align;
uint8_t lane_status;
int lane;
lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
DP_LANE_ALIGN_STATUS_UPDATED);
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
return false;
for (lane = 0; lane < intel_dp->lane_count; lane++) {
lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
return false;
}
return true;
}
static bool
cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
uint32_t dp_reg_value,
uint8_t dp_train_pat)
{
struct drm_device *dev = encoder->base.dev;
int ret;
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
REG_WRITE(intel_dp->output_reg, dp_reg_value);
REG_READ(intel_dp->output_reg);
ret = cdv_intel_dp_aux_native_write_1(encoder,
DP_TRAINING_PATTERN_SET,
dp_train_pat);
if (ret != 1) {
DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
dp_train_pat);
return false;
}
return true;
}
static bool
cdv_intel_dplink_set_level(struct gma_encoder *encoder,
uint8_t dp_train_pat)
{
int ret;
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
ret = cdv_intel_dp_aux_native_write(encoder,
DP_TRAINING_LANE0_SET,
intel_dp->train_set,
intel_dp->lane_count);
if (ret != intel_dp->lane_count) {
DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
intel_dp->train_set[0], intel_dp->lane_count);
return false;
}
return true;
}
static void
cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
{
struct drm_device *dev = encoder->base.dev;
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
struct ddi_regoff *ddi_reg;
int vswing, premph, index;
if (intel_dp->output_reg == DP_B)
ddi_reg = &ddi_DP_train_table[0];
else
ddi_reg = &ddi_DP_train_table[1];
vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT;
if (vswing + premph > 3)
return;
#ifdef CDV_FAST_LINK_TRAIN
return;
#endif
DRM_DEBUG_KMS("Test2\n");
//return ;
cdv_sb_reset(dev);
/* ;Swing voltage programming
;gfx_dpio_set_reg(0xc058, 0x0505313A) */
cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
* The VSwing_PreEmph table is also considered based on the vswing/premp
*/
index = (vswing + premph) * 2;
if (premph == 1 && vswing == 1) {
cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
} else
cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_1200)
cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
else
cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
/* ;Pre emphasis programming
* ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
*/
cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
index = 2 * premph + 1;
cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
return;
}
/* Enable corresponding port and start training pattern 1 */
static void
cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
int i;
uint8_t voltage;
bool clock_recovery = false;
int tries;
u32 reg;
uint32_t DP = intel_dp->DP;
DP |= DP_PORT_EN;
DP &= ~DP_LINK_TRAIN_MASK;
reg = DP;
reg |= DP_LINK_TRAIN_PAT_1;
/* Enable output, wait for it to become active */
REG_WRITE(intel_dp->output_reg, reg);
REG_READ(intel_dp->output_reg);
gma_wait_for_vblank(dev);
DRM_DEBUG_KMS("Link config\n");
/* Write the link configuration data */
cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
intel_dp->link_configuration,
2);
memset(intel_dp->train_set, 0, 4);
voltage = 0;
tries = 0;
clock_recovery = false;
DRM_DEBUG_KMS("Start train\n");
reg = DP | DP_LINK_TRAIN_PAT_1;
for (;;) {
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
intel_dp->train_set[0],
intel_dp->link_configuration[0],
intel_dp->link_configuration[1]);
if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
}
cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
/* Set training pattern 1 */
cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
udelay(200);
if (!cdv_intel_dp_get_link_status(encoder))
break;
DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
DRM_DEBUG_KMS("PT1 train is done\n");
clock_recovery = true;
break;
}
/* Check to see if we've tried the max voltage */
for (i = 0; i < intel_dp->lane_count; i++)
if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
if (i == intel_dp->lane_count)
break;
/* Check to see if we've tried the same voltage 5 times */
if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
++tries;
if (tries == 5)
break;
} else
tries = 0;
voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
/* Compute new intel_dp->train_set as requested by target */
cdv_intel_get_adjust_train(encoder);
}
if (!clock_recovery) {
DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
}
intel_dp->DP = DP;
}
static void
cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
bool channel_eq = false;
int tries, cr_tries;
u32 reg;
uint32_t DP = intel_dp->DP;
/* channel equalization */
tries = 0;
cr_tries = 0;
channel_eq = false;
DRM_DEBUG_KMS("\n");
reg = DP | DP_LINK_TRAIN_PAT_2;
for (;;) {
DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
intel_dp->train_set[0],
intel_dp->link_configuration[0],
intel_dp->link_configuration[1]);
/* channel eq pattern */
if (!cdv_intel_dp_set_link_train(encoder, reg,
DP_TRAINING_PATTERN_2)) {
DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
}
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
if (cr_tries > 5) {
DRM_ERROR("failed to train DP, aborting\n");
cdv_intel_dp_link_down(encoder);
break;
}
cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
udelay(1000);
if (!cdv_intel_dp_get_link_status(encoder))
break;
DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
/* Make sure clock is still ok */
if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
cdv_intel_dp_start_link_train(encoder);
cr_tries++;
continue;
}
if (cdv_intel_channel_eq_ok(encoder)) {
DRM_DEBUG_KMS("PT2 train is done\n");
channel_eq = true;
break;
}
/* Try 5 times, then try clock recovery if that fails */
if (tries > 5) {
cdv_intel_dp_link_down(encoder);
cdv_intel_dp_start_link_train(encoder);
tries = 0;
cr_tries++;
continue;
}
/* Compute new intel_dp->train_set as requested by target */
cdv_intel_get_adjust_train(encoder);
++tries;
}
reg = DP | DP_LINK_TRAIN_OFF;
REG_WRITE(intel_dp->output_reg, reg);
REG_READ(intel_dp->output_reg);
cdv_intel_dp_aux_native_write_1(encoder,
DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}
static void
cdv_intel_dp_link_down(struct gma_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
uint32_t DP = intel_dp->DP;
if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
return;
DRM_DEBUG_KMS("\n");
{
DP &= ~DP_LINK_TRAIN_MASK;
REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
}
REG_READ(intel_dp->output_reg);
msleep(17);
REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
REG_READ(intel_dp->output_reg);
}
static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
{
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
enum drm_connector_status status;
status = connector_status_disconnected;
if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
{
if (intel_dp->dpcd[DP_DPCD_REV] != 0)
status = connector_status_connected;
}
if (status == connector_status_connected)
DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
intel_dp->dpcd[0], intel_dp->dpcd[1],
intel_dp->dpcd[2], intel_dp->dpcd[3]);
return status;
}
/**
* Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
*
* \return true if DP port is connected.
* \return false if DP port is disconnected.
*/
static enum drm_connector_status
cdv_intel_dp_detect(struct drm_connector *connector, bool force)
{
struct gma_encoder *encoder = gma_attached_encoder(connector);
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
enum drm_connector_status status;
struct edid *edid = NULL;
int edp = is_edp(encoder);
intel_dp->has_audio = false;
if (edp)
cdv_intel_edp_panel_vdd_on(encoder);
status = cdv_dp_detect(encoder);
if (status != connector_status_connected) {
if (edp)
cdv_intel_edp_panel_vdd_off(encoder);
return status;
}
if (intel_dp->force_audio) {
intel_dp->has_audio = intel_dp->force_audio > 0;
} else {
edid = drm_get_edid(connector, &intel_dp->adapter);
if (edid) {
intel_dp->has_audio = drm_detect_monitor_audio(edid);
kfree(edid);
}
}
if (edp)
cdv_intel_edp_panel_vdd_off(encoder);
return connector_status_connected;
}
static int cdv_intel_dp_get_modes(struct drm_connector *connector)
{
struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
struct edid *edid = NULL;
int ret = 0;
int edp = is_edp(intel_encoder);
edid = drm_get_edid(connector, &intel_dp->adapter);
if (edid) {
drm_mode_connector_update_edid_property(connector, edid);
ret = drm_add_edid_modes(connector, edid);
kfree(edid);
}
if (is_edp(intel_encoder)) {
struct drm_device *dev = connector->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
cdv_intel_edp_panel_vdd_off(intel_encoder);
if (ret) {
if (edp && !intel_dp->panel_fixed_mode) {
struct drm_display_mode *newmode;
list_for_each_entry(newmode, &connector->probed_modes,
head) {
if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
intel_dp->panel_fixed_mode =
drm_mode_duplicate(dev, newmode);
break;
}
}
}
return ret;
}
if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
intel_dp->panel_fixed_mode =
drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
if (intel_dp->panel_fixed_mode) {
intel_dp->panel_fixed_mode->type |=
DRM_MODE_TYPE_PREFERRED;
}
}
if (intel_dp->panel_fixed_mode != NULL) {
struct drm_display_mode *mode;
mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
drm_mode_probed_add(connector, mode);
return 1;
}
}
return ret;
}
static bool
cdv_intel_dp_detect_audio(struct drm_connector *connector)
{
struct gma_encoder *encoder = gma_attached_encoder(connector);
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
struct edid *edid;
bool has_audio = false;
int edp = is_edp(encoder);
if (edp)
cdv_intel_edp_panel_vdd_on(encoder);
edid = drm_get_edid(connector, &intel_dp->adapter);
if (edid) {
has_audio = drm_detect_monitor_audio(edid);
kfree(edid);
}
if (edp)
cdv_intel_edp_panel_vdd_off(encoder);
return has_audio;
}
static int
cdv_intel_dp_set_property(struct drm_connector *connector,
struct drm_property *property,
uint64_t val)
{
struct drm_psb_private *dev_priv = connector->dev->dev_private;
struct gma_encoder *encoder = gma_attached_encoder(connector);
struct cdv_intel_dp *intel_dp = encoder->dev_priv;
int ret;
ret = drm_object_property_set_value(&connector->base, property, val);
if (ret)
return ret;
if (property == dev_priv->force_audio_property) {
int i = val;
bool has_audio;
if (i == intel_dp->force_audio)
return 0;
intel_dp->force_audio = i;
if (i == 0)
has_audio = cdv_intel_dp_detect_audio(connector);
else
has_audio = i > 0;
if (has_audio == intel_dp->has_audio)
return 0;
intel_dp->has_audio = has_audio;
goto done;
}
if (property == dev_priv->broadcast_rgb_property) {
if (val == !!intel_dp->color_range)
return 0;
intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
goto done;
}
return -EINVAL;
done:
if (encoder->base.crtc) {
struct drm_crtc *crtc = encoder->base.crtc;
drm_crtc_helper_set_mode(crtc, &crtc->mode,
crtc->x, crtc->y,
crtc->primary->fb);
}
return 0;
}
static void
cdv_intel_dp_destroy(struct drm_connector *connector)
{
struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
if (is_edp(gma_encoder)) {
/* cdv_intel_panel_destroy_backlight(connector->dev); */
if (intel_dp->panel_fixed_mode) {
kfree(intel_dp->panel_fixed_mode);
intel_dp->panel_fixed_mode = NULL;
}
}
i2c_del_adapter(&intel_dp->adapter);
drm_sysfs_connector_remove(connector);
drm_connector_cleanup(connector);
kfree(connector);
}
static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
.dpms = cdv_intel_dp_dpms,
.mode_fixup = cdv_intel_dp_mode_fixup,
.prepare = cdv_intel_dp_prepare,
.mode_set = cdv_intel_dp_mode_set,
.commit = cdv_intel_dp_commit,
};
static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
.dpms = drm_helper_connector_dpms,
.detect = cdv_intel_dp_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = cdv_intel_dp_set_property,
.destroy = cdv_intel_dp_destroy,
};
static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
.get_modes = cdv_intel_dp_get_modes,
.mode_valid = cdv_intel_dp_mode_valid,
.best_encoder = gma_best_encoder,
};
static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
.destroy = cdv_intel_dp_encoder_destroy,
};
static void cdv_intel_dp_add_properties(struct drm_connector *connector)
{
cdv_intel_attach_force_audio_property(connector);
cdv_intel_attach_broadcast_rgb_property(connector);
}
/* check the VBT to see whether the eDP is on DP-D port */
static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
{
struct drm_psb_private *dev_priv = dev->dev_private;
struct child_device_config *p_child;
int i;
if (!dev_priv->child_dev_num)
return false;
for (i = 0; i < dev_priv->child_dev_num; i++) {
p_child = dev_priv->child_dev + i;
if (p_child->dvo_port == PORT_IDPC &&
p_child->device_type == DEVICE_TYPE_eDP)
return true;
}
return false;
}
/* Cedarview display clock gating
We need this disable dot get correct behaviour while enabling
DP/eDP. TODO - investigate if we can turn it back to normality
after enabling */
static void cdv_disable_intel_clock_gating(struct drm_device *dev)
{
u32 reg_value;
reg_value = REG_READ(DSPCLK_GATE_D);
reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
DPUNIT_PIPEA_GATE_DISABLE |
DPCUNIT_CLOCK_GATE_DISABLE |
DPLSUNIT_CLOCK_GATE_DISABLE |
DPOUNIT_CLOCK_GATE_DISABLE |
DPIOUNIT_CLOCK_GATE_DISABLE);
REG_WRITE(DSPCLK_GATE_D, reg_value);
udelay(500);
}
void
cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
{
struct gma_encoder *gma_encoder;
struct gma_connector *gma_connector;
struct drm_connector *connector;
struct drm_encoder *encoder;
struct cdv_intel_dp *intel_dp;
const char *name = NULL;
int type = DRM_MODE_CONNECTOR_DisplayPort;
gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
if (!gma_encoder)
return;
gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
if (!gma_connector)
goto err_connector;
intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
if (!intel_dp)
goto err_priv;
if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
type = DRM_MODE_CONNECTOR_eDP;
connector = &gma_connector->base;
encoder = &gma_encoder->base;
drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS);
gma_connector_attach_encoder(gma_connector, gma_encoder);
if (type == DRM_MODE_CONNECTOR_DisplayPort)
gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
else
gma_encoder->type = INTEL_OUTPUT_EDP;
gma_encoder->dev_priv=intel_dp;
intel_dp->encoder = gma_encoder;
intel_dp->output_reg = output_reg;
drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
connector->polled = DRM_CONNECTOR_POLL_HPD;
connector->interlace_allowed = false;
connector->doublescan_allowed = false;
drm_sysfs_connector_add(connector);
/* Set up the DDC bus. */
switch (output_reg) {
case DP_B:
name = "DPDDC-B";
gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
break;
case DP_C:
name = "DPDDC-C";
gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
break;
}
cdv_disable_intel_clock_gating(dev);
cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
/* FIXME:fail check */
cdv_intel_dp_add_properties(connector);
if (is_edp(gma_encoder)) {
int ret;
struct edp_power_seq cur;
u32 pp_on, pp_off, pp_div;
u32 pwm_ctrl;
pp_on = REG_READ(PP_CONTROL);
pp_on &= ~PANEL_UNLOCK_MASK;
pp_on |= PANEL_UNLOCK_REGS;
REG_WRITE(PP_CONTROL, pp_on);
pwm_ctrl = REG_READ(BLC_PWM_CTL2);
pwm_ctrl |= PWM_PIPE_B;
REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
pp_on = REG_READ(PP_ON_DELAYS);
pp_off = REG_READ(PP_OFF_DELAYS);
pp_div = REG_READ(PP_DIVISOR);
/* Pull timing values out of registers */
cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
PANEL_POWER_UP_DELAY_SHIFT;
cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
PANEL_LIGHT_ON_DELAY_SHIFT;
cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
PANEL_LIGHT_OFF_DELAY_SHIFT;
cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
PANEL_POWER_DOWN_DELAY_SHIFT;
cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
PANEL_POWER_CYCLE_DELAY_SHIFT);
DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
intel_dp->backlight_on_delay = cur.t8 / 10;
intel_dp->backlight_off_delay = cur.t9 / 10;
intel_dp->panel_power_down_delay = cur.t10 / 10;
intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
intel_dp->panel_power_cycle_delay);
DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
cdv_intel_edp_panel_vdd_on(gma_encoder);
ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
intel_dp->dpcd,
sizeof(intel_dp->dpcd));
cdv_intel_edp_panel_vdd_off(gma_encoder);
if (ret == 0) {
/* if this fails, presume the device is a ghost */
DRM_INFO("failed to retrieve link info, disabling eDP\n");
cdv_intel_dp_encoder_destroy(encoder);
cdv_intel_dp_destroy(connector);
goto err_priv;
} else {
DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
intel_dp->dpcd[0], intel_dp->dpcd[1],
intel_dp->dpcd[2], intel_dp->dpcd[3]);
}
/* The CDV reference driver moves pnale backlight setup into the displays that
have a backlight: this is a good idea and one we should probably adopt, however
we need to migrate all the drivers before we can do that */
/*cdv_intel_panel_setup_backlight(dev); */
}
return;
err_priv:
kfree(gma_connector);
err_connector:
kfree(gma_encoder);
}