blob: 82d9f6ac12f3a271481e106df7f75017b3f962c1 [file] [log] [blame]
/*
* Copyright (c) 2011 - 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* Samsung EXYNOS5 SoC series G-Scaler driver
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 2 of the License,
* or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/bug.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/list.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <media/v4l2-ioctl.h>
#include "gsc-core.h"
#define GSC_CLOCK_GATE_NAME "gscl"
static const struct gsc_fmt gsc_formats[] = {
{
.name = "RGB565",
.pixelformat = V4L2_PIX_FMT_RGB565X,
.depth = { 16 },
.color = GSC_RGB,
.num_planes = 1,
.num_comp = 1,
}, {
.name = "XRGB-8-8-8-8, 32 bpp",
.pixelformat = V4L2_PIX_FMT_RGB32,
.depth = { 32 },
.color = GSC_RGB,
.num_planes = 1,
.num_comp = 1,
}, {
.name = "YUV 4:2:2 packed, YCbYCr",
.pixelformat = V4L2_PIX_FMT_YUYV,
.depth = { 16 },
.color = GSC_YUV422,
.yorder = GSC_LSB_Y,
.corder = GSC_CBCR,
.num_planes = 1,
.num_comp = 1,
.mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
}, {
.name = "YUV 4:2:2 packed, CbYCrY",
.pixelformat = V4L2_PIX_FMT_UYVY,
.depth = { 16 },
.color = GSC_YUV422,
.yorder = GSC_LSB_C,
.corder = GSC_CBCR,
.num_planes = 1,
.num_comp = 1,
.mbus_code = V4L2_MBUS_FMT_UYVY8_2X8,
}, {
.name = "YUV 4:2:2 packed, CrYCbY",
.pixelformat = V4L2_PIX_FMT_VYUY,
.depth = { 16 },
.color = GSC_YUV422,
.yorder = GSC_LSB_C,
.corder = GSC_CRCB,
.num_planes = 1,
.num_comp = 1,
.mbus_code = V4L2_MBUS_FMT_VYUY8_2X8,
}, {
.name = "YUV 4:2:2 packed, YCrYCb",
.pixelformat = V4L2_PIX_FMT_YVYU,
.depth = { 16 },
.color = GSC_YUV422,
.yorder = GSC_LSB_Y,
.corder = GSC_CRCB,
.num_planes = 1,
.num_comp = 1,
.mbus_code = V4L2_MBUS_FMT_YVYU8_2X8,
}, {
.name = "YUV 4:4:4 planar, YCbYCr",
.pixelformat = V4L2_PIX_FMT_YUV32,
.depth = { 32 },
.color = GSC_YUV444,
.yorder = GSC_LSB_Y,
.corder = GSC_CBCR,
.num_planes = 1,
.num_comp = 1,
}, {
.name = "YUV 4:2:2 planar, Y/Cb/Cr",
.pixelformat = V4L2_PIX_FMT_YUV422P,
.depth = { 16 },
.color = GSC_YUV422,
.yorder = GSC_LSB_Y,
.corder = GSC_CBCR,
.num_planes = 1,
.num_comp = 3,
}, {
.name = "YUV 4:2:2 planar, Y/CbCr",
.pixelformat = V4L2_PIX_FMT_NV16,
.depth = { 16 },
.color = GSC_YUV422,
.yorder = GSC_LSB_Y,
.corder = GSC_CBCR,
.num_planes = 1,
.num_comp = 2,
}, {
.name = "YUV 4:2:2 planar, Y/CrCb",
.pixelformat = V4L2_PIX_FMT_NV61,
.depth = { 16 },
.color = GSC_YUV422,
.yorder = GSC_LSB_Y,
.corder = GSC_CRCB,
.num_planes = 1,
.num_comp = 2,
}, {
.name = "YUV 4:2:0 planar, YCbCr",
.pixelformat = V4L2_PIX_FMT_YUV420,
.depth = { 12 },
.color = GSC_YUV420,
.yorder = GSC_LSB_Y,
.corder = GSC_CBCR,
.num_planes = 1,
.num_comp = 3,
}, {
.name = "YUV 4:2:0 planar, YCrCb",
.pixelformat = V4L2_PIX_FMT_YVU420,
.depth = { 12 },
.color = GSC_YUV420,
.yorder = GSC_LSB_Y,
.corder = GSC_CRCB,
.num_planes = 1,
.num_comp = 3,
}, {
.name = "YUV 4:2:0 planar, Y/CbCr",
.pixelformat = V4L2_PIX_FMT_NV12,
.depth = { 12 },
.color = GSC_YUV420,
.yorder = GSC_LSB_Y,
.corder = GSC_CBCR,
.num_planes = 1,
.num_comp = 2,
}, {
.name = "YUV 4:2:0 planar, Y/CrCb",
.pixelformat = V4L2_PIX_FMT_NV21,
.depth = { 12 },
.color = GSC_YUV420,
.yorder = GSC_LSB_Y,
.corder = GSC_CRCB,
.num_planes = 1,
.num_comp = 2,
}, {
.name = "YUV 4:2:0 non-contig. 2p, Y/CbCr",
.pixelformat = V4L2_PIX_FMT_NV12M,
.depth = { 8, 4 },
.color = GSC_YUV420,
.yorder = GSC_LSB_Y,
.corder = GSC_CBCR,
.num_planes = 2,
.num_comp = 2,
}, {
.name = "YUV 4:2:0 non-contig. 3p, Y/Cb/Cr",
.pixelformat = V4L2_PIX_FMT_YUV420M,
.depth = { 8, 2, 2 },
.color = GSC_YUV420,
.yorder = GSC_LSB_Y,
.corder = GSC_CBCR,
.num_planes = 3,
.num_comp = 3,
}, {
.name = "YUV 4:2:0 non-contig. 3p, Y/Cr/Cb",
.pixelformat = V4L2_PIX_FMT_YVU420M,
.depth = { 8, 2, 2 },
.color = GSC_YUV420,
.yorder = GSC_LSB_Y,
.corder = GSC_CRCB,
.num_planes = 3,
.num_comp = 3,
}, {
.name = "YUV 4:2:0 n.c. 2p, Y/CbCr tiled",
.pixelformat = V4L2_PIX_FMT_NV12MT_16X16,
.depth = { 8, 4 },
.color = GSC_YUV420,
.yorder = GSC_LSB_Y,
.corder = GSC_CBCR,
.num_planes = 2,
.num_comp = 2,
}
};
const struct gsc_fmt *get_format(int index)
{
if (index >= ARRAY_SIZE(gsc_formats))
return NULL;
return (struct gsc_fmt *)&gsc_formats[index];
}
const struct gsc_fmt *find_fmt(u32 *pixelformat, u32 *mbus_code, u32 index)
{
const struct gsc_fmt *fmt, *def_fmt = NULL;
unsigned int i;
if (index >= ARRAY_SIZE(gsc_formats))
return NULL;
for (i = 0; i < ARRAY_SIZE(gsc_formats); ++i) {
fmt = get_format(i);
if (pixelformat && fmt->pixelformat == *pixelformat)
return fmt;
if (mbus_code && fmt->mbus_code == *mbus_code)
return fmt;
if (index == i)
def_fmt = fmt;
}
return def_fmt;
}
void gsc_set_frame_size(struct gsc_frame *frame, int width, int height)
{
frame->f_width = width;
frame->f_height = height;
frame->crop.width = width;
frame->crop.height = height;
frame->crop.left = 0;
frame->crop.top = 0;
}
int gsc_cal_prescaler_ratio(struct gsc_variant *var, u32 src, u32 dst,
u32 *ratio)
{
if ((dst > src) || (dst >= src / var->poly_sc_down_max)) {
*ratio = 1;
return 0;
}
if ((src / var->poly_sc_down_max / var->pre_sc_down_max) > dst) {
pr_err("Exceeded maximum downscaling ratio (1/16))");
return -EINVAL;
}
*ratio = (dst > (src / 8)) ? 2 : 4;
return 0;
}
void gsc_get_prescaler_shfactor(u32 hratio, u32 vratio, u32 *sh)
{
if (hratio == 4 && vratio == 4)
*sh = 4;
else if ((hratio == 4 && vratio == 2) ||
(hratio == 2 && vratio == 4))
*sh = 3;
else if ((hratio == 4 && vratio == 1) ||
(hratio == 1 && vratio == 4) ||
(hratio == 2 && vratio == 2))
*sh = 2;
else if (hratio == 1 && vratio == 1)
*sh = 0;
else
*sh = 1;
}
void gsc_check_src_scale_info(struct gsc_variant *var,
struct gsc_frame *s_frame, u32 *wratio,
u32 tx, u32 ty, u32 *hratio)
{
int remainder = 0, walign, halign;
if (is_yuv420(s_frame->fmt->color)) {
walign = GSC_SC_ALIGN_4;
halign = GSC_SC_ALIGN_4;
} else if (is_yuv422(s_frame->fmt->color)) {
walign = GSC_SC_ALIGN_4;
halign = GSC_SC_ALIGN_2;
} else {
walign = GSC_SC_ALIGN_2;
halign = GSC_SC_ALIGN_2;
}
remainder = s_frame->crop.width % (*wratio * walign);
if (remainder) {
s_frame->crop.width -= remainder;
gsc_cal_prescaler_ratio(var, s_frame->crop.width, tx, wratio);
pr_info("cropped src width size is recalculated from %d to %d",
s_frame->crop.width + remainder, s_frame->crop.width);
}
remainder = s_frame->crop.height % (*hratio * halign);
if (remainder) {
s_frame->crop.height -= remainder;
gsc_cal_prescaler_ratio(var, s_frame->crop.height, ty, hratio);
pr_info("cropped src height size is recalculated from %d to %d",
s_frame->crop.height + remainder, s_frame->crop.height);
}
}
int gsc_enum_fmt_mplane(struct v4l2_fmtdesc *f)
{
const struct gsc_fmt *fmt;
fmt = find_fmt(NULL, NULL, f->index);
if (!fmt)
return -EINVAL;
strlcpy(f->description, fmt->name, sizeof(f->description));
f->pixelformat = fmt->pixelformat;
return 0;
}
static u32 get_plane_info(struct gsc_frame *frm, u32 addr, u32 *index)
{
if (frm->addr.y == addr) {
*index = 0;
return frm->addr.y;
} else if (frm->addr.cb == addr) {
*index = 1;
return frm->addr.cb;
} else if (frm->addr.cr == addr) {
*index = 2;
return frm->addr.cr;
} else {
pr_err("Plane address is wrong");
return -EINVAL;
}
}
void gsc_set_prefbuf(struct gsc_dev *gsc, struct gsc_frame *frm)
{
u32 f_chk_addr, f_chk_len, s_chk_addr, s_chk_len;
f_chk_addr = f_chk_len = s_chk_addr = s_chk_len = 0;
f_chk_addr = frm->addr.y;
f_chk_len = frm->payload[0];
if (frm->fmt->num_planes == 2) {
s_chk_addr = frm->addr.cb;
s_chk_len = frm->payload[1];
} else if (frm->fmt->num_planes == 3) {
u32 low_addr, low_plane, mid_addr, mid_plane;
u32 high_addr, high_plane;
u32 t_min, t_max;
t_min = min3(frm->addr.y, frm->addr.cb, frm->addr.cr);
low_addr = get_plane_info(frm, t_min, &low_plane);
t_max = max3(frm->addr.y, frm->addr.cb, frm->addr.cr);
high_addr = get_plane_info(frm, t_max, &high_plane);
mid_plane = 3 - (low_plane + high_plane);
if (mid_plane == 0)
mid_addr = frm->addr.y;
else if (mid_plane == 1)
mid_addr = frm->addr.cb;
else if (mid_plane == 2)
mid_addr = frm->addr.cr;
else
return;
f_chk_addr = low_addr;
if (mid_addr + frm->payload[mid_plane] - low_addr >
high_addr + frm->payload[high_plane] - mid_addr) {
f_chk_len = frm->payload[low_plane];
s_chk_addr = mid_addr;
s_chk_len = high_addr +
frm->payload[high_plane] - mid_addr;
} else {
f_chk_len = mid_addr +
frm->payload[mid_plane] - low_addr;
s_chk_addr = high_addr;
s_chk_len = frm->payload[high_plane];
}
}
pr_debug("f_addr = 0x%08x, f_len = %d, s_addr = 0x%08x, s_len = %d\n",
f_chk_addr, f_chk_len, s_chk_addr, s_chk_len);
}
int gsc_try_fmt_mplane(struct gsc_ctx *ctx, struct v4l2_format *f)
{
struct gsc_dev *gsc = ctx->gsc_dev;
struct gsc_variant *variant = gsc->variant;
struct v4l2_pix_format_mplane *pix_mp = &f->fmt.pix_mp;
const struct gsc_fmt *fmt;
u32 max_w, max_h, mod_x, mod_y;
u32 min_w, min_h, tmp_w, tmp_h;
int i;
pr_debug("user put w: %d, h: %d", pix_mp->width, pix_mp->height);
fmt = find_fmt(&pix_mp->pixelformat, NULL, 0);
if (!fmt) {
pr_err("pixelformat format (0x%X) invalid\n",
pix_mp->pixelformat);
return -EINVAL;
}
if (pix_mp->field == V4L2_FIELD_ANY)
pix_mp->field = V4L2_FIELD_NONE;
else if (pix_mp->field != V4L2_FIELD_NONE) {
pr_err("Not supported field order(%d)\n", pix_mp->field);
return -EINVAL;
}
max_w = variant->pix_max->target_rot_dis_w;
max_h = variant->pix_max->target_rot_dis_h;
mod_x = ffs(variant->pix_align->org_w) - 1;
if (is_yuv420(fmt->color))
mod_y = ffs(variant->pix_align->org_h) - 1;
else
mod_y = ffs(variant->pix_align->org_h) - 2;
if (V4L2_TYPE_IS_OUTPUT(f->type)) {
min_w = variant->pix_min->org_w;
min_h = variant->pix_min->org_h;
} else {
min_w = variant->pix_min->target_rot_dis_w;
min_h = variant->pix_min->target_rot_dis_h;
}
pr_debug("mod_x: %d, mod_y: %d, max_w: %d, max_h = %d",
mod_x, mod_y, max_w, max_h);
/* To check if image size is modified to adjust parameter against
hardware abilities */
tmp_w = pix_mp->width;
tmp_h = pix_mp->height;
v4l_bound_align_image(&pix_mp->width, min_w, max_w, mod_x,
&pix_mp->height, min_h, max_h, mod_y, 0);
if (tmp_w != pix_mp->width || tmp_h != pix_mp->height)
pr_info("Image size has been modified from %dx%d to %dx%d",
tmp_w, tmp_h, pix_mp->width, pix_mp->height);
pix_mp->num_planes = fmt->num_planes;
if (pix_mp->width >= 1280) /* HD */
pix_mp->colorspace = V4L2_COLORSPACE_REC709;
else /* SD */
pix_mp->colorspace = V4L2_COLORSPACE_SMPTE170M;
for (i = 0; i < pix_mp->num_planes; ++i) {
int bpl = (pix_mp->width * fmt->depth[i]) >> 3;
pix_mp->plane_fmt[i].bytesperline = bpl;
pix_mp->plane_fmt[i].sizeimage = bpl * pix_mp->height;
pr_debug("[%d]: bpl: %d, sizeimage: %d",
i, bpl, pix_mp->plane_fmt[i].sizeimage);
}
return 0;
}
int gsc_g_fmt_mplane(struct gsc_ctx *ctx, struct v4l2_format *f)
{
struct gsc_frame *frame;
struct v4l2_pix_format_mplane *pix_mp;
int i;
frame = ctx_get_frame(ctx, f->type);
if (IS_ERR(frame))
return PTR_ERR(frame);
pix_mp = &f->fmt.pix_mp;
pix_mp->width = frame->f_width;
pix_mp->height = frame->f_height;
pix_mp->field = V4L2_FIELD_NONE;
pix_mp->pixelformat = frame->fmt->pixelformat;
pix_mp->colorspace = V4L2_COLORSPACE_REC709;
pix_mp->num_planes = frame->fmt->num_planes;
for (i = 0; i < pix_mp->num_planes; ++i) {
pix_mp->plane_fmt[i].bytesperline = (frame->f_width *
frame->fmt->depth[i]) / 8;
pix_mp->plane_fmt[i].sizeimage =
pix_mp->plane_fmt[i].bytesperline * frame->f_height;
}
return 0;
}
void gsc_check_crop_change(u32 tmp_w, u32 tmp_h, u32 *w, u32 *h)
{
if (tmp_w != *w || tmp_h != *h) {
pr_info("Cropped size has been modified from %dx%d to %dx%d",
*w, *h, tmp_w, tmp_h);
*w = tmp_w;
*h = tmp_h;
}
}
int gsc_g_crop(struct gsc_ctx *ctx, struct v4l2_crop *cr)
{
struct gsc_frame *frame;
frame = ctx_get_frame(ctx, cr->type);
if (IS_ERR(frame))
return PTR_ERR(frame);
cr->c = frame->crop;
return 0;
}
int gsc_try_crop(struct gsc_ctx *ctx, struct v4l2_crop *cr)
{
struct gsc_frame *f;
struct gsc_dev *gsc = ctx->gsc_dev;
struct gsc_variant *variant = gsc->variant;
u32 mod_x = 0, mod_y = 0, tmp_w, tmp_h;
u32 min_w, min_h, max_w, max_h;
if (cr->c.top < 0 || cr->c.left < 0) {
pr_err("doesn't support negative values for top & left\n");
return -EINVAL;
}
pr_debug("user put w: %d, h: %d", cr->c.width, cr->c.height);
if (cr->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
f = &ctx->d_frame;
else if (cr->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
f = &ctx->s_frame;
else
return -EINVAL;
max_w = f->f_width;
max_h = f->f_height;
tmp_w = cr->c.width;
tmp_h = cr->c.height;
if (V4L2_TYPE_IS_OUTPUT(cr->type)) {
if ((is_yuv422(f->fmt->color) && f->fmt->num_comp == 1) ||
is_rgb(f->fmt->color))
min_w = 32;
else
min_w = 64;
if ((is_yuv422(f->fmt->color) && f->fmt->num_comp == 3) ||
is_yuv420(f->fmt->color))
min_h = 32;
else
min_h = 16;
} else {
if (is_yuv420(f->fmt->color) || is_yuv422(f->fmt->color))
mod_x = ffs(variant->pix_align->target_w) - 1;
if (is_yuv420(f->fmt->color))
mod_y = ffs(variant->pix_align->target_h) - 1;
if (ctx->gsc_ctrls.rotate->val == 90 ||
ctx->gsc_ctrls.rotate->val == 270) {
max_w = f->f_height;
max_h = f->f_width;
min_w = variant->pix_min->target_rot_en_w;
min_h = variant->pix_min->target_rot_en_h;
tmp_w = cr->c.height;
tmp_h = cr->c.width;
} else {
min_w = variant->pix_min->target_rot_dis_w;
min_h = variant->pix_min->target_rot_dis_h;
}
}
pr_debug("mod_x: %d, mod_y: %d, min_w: %d, min_h = %d",
mod_x, mod_y, min_w, min_h);
pr_debug("tmp_w : %d, tmp_h : %d", tmp_w, tmp_h);
v4l_bound_align_image(&tmp_w, min_w, max_w, mod_x,
&tmp_h, min_h, max_h, mod_y, 0);
if (!V4L2_TYPE_IS_OUTPUT(cr->type) &&
(ctx->gsc_ctrls.rotate->val == 90 ||
ctx->gsc_ctrls.rotate->val == 270))
gsc_check_crop_change(tmp_h, tmp_w,
&cr->c.width, &cr->c.height);
else
gsc_check_crop_change(tmp_w, tmp_h,
&cr->c.width, &cr->c.height);
/* adjust left/top if cropping rectangle is out of bounds */
/* Need to add code to algin left value with 2's multiple */
if (cr->c.left + tmp_w > max_w)
cr->c.left = max_w - tmp_w;
if (cr->c.top + tmp_h > max_h)
cr->c.top = max_h - tmp_h;
if ((is_yuv420(f->fmt->color) || is_yuv422(f->fmt->color)) &&
cr->c.left & 1)
cr->c.left -= 1;
pr_debug("Aligned l:%d, t:%d, w:%d, h:%d, f_w: %d, f_h: %d",
cr->c.left, cr->c.top, cr->c.width, cr->c.height, max_w, max_h);
return 0;
}
int gsc_check_scaler_ratio(struct gsc_variant *var, int sw, int sh, int dw,
int dh, int rot, int out_path)
{
int tmp_w, tmp_h, sc_down_max;
if (out_path == GSC_DMA)
sc_down_max = var->sc_down_max;
else
sc_down_max = var->local_sc_down;
if (rot == 90 || rot == 270) {
tmp_w = dh;
tmp_h = dw;
} else {
tmp_w = dw;
tmp_h = dh;
}
if ((sw / tmp_w) > sc_down_max ||
(sh / tmp_h) > sc_down_max ||
(tmp_w / sw) > var->sc_up_max ||
(tmp_h / sh) > var->sc_up_max)
return -EINVAL;
return 0;
}
int gsc_set_scaler_info(struct gsc_ctx *ctx)
{
struct gsc_scaler *sc = &ctx->scaler;
struct gsc_frame *s_frame = &ctx->s_frame;
struct gsc_frame *d_frame = &ctx->d_frame;
struct gsc_variant *variant = ctx->gsc_dev->variant;
struct device *dev = &ctx->gsc_dev->pdev->dev;
int tx, ty;
int ret;
ret = gsc_check_scaler_ratio(variant, s_frame->crop.width,
s_frame->crop.height, d_frame->crop.width, d_frame->crop.height,
ctx->gsc_ctrls.rotate->val, ctx->out_path);
if (ret) {
pr_err("out of scaler range");
return ret;
}
if (ctx->gsc_ctrls.rotate->val == 90 ||
ctx->gsc_ctrls.rotate->val == 270) {
ty = d_frame->crop.width;
tx = d_frame->crop.height;
} else {
tx = d_frame->crop.width;
ty = d_frame->crop.height;
}
if (tx <= 0 || ty <= 0) {
dev_err(dev, "Invalid target size: %dx%d", tx, ty);
return -EINVAL;
}
ret = gsc_cal_prescaler_ratio(variant, s_frame->crop.width,
tx, &sc->pre_hratio);
if (ret) {
pr_err("Horizontal scale ratio is out of range");
return ret;
}
ret = gsc_cal_prescaler_ratio(variant, s_frame->crop.height,
ty, &sc->pre_vratio);
if (ret) {
pr_err("Vertical scale ratio is out of range");
return ret;
}
gsc_check_src_scale_info(variant, s_frame, &sc->pre_hratio,
tx, ty, &sc->pre_vratio);
gsc_get_prescaler_shfactor(sc->pre_hratio, sc->pre_vratio,
&sc->pre_shfactor);
sc->main_hratio = (s_frame->crop.width << 16) / tx;
sc->main_vratio = (s_frame->crop.height << 16) / ty;
pr_debug("scaler input/output size : sx = %d, sy = %d, tx = %d, ty = %d",
s_frame->crop.width, s_frame->crop.height, tx, ty);
pr_debug("scaler ratio info : pre_shfactor : %d, pre_h : %d",
sc->pre_shfactor, sc->pre_hratio);
pr_debug("pre_v :%d, main_h : %d, main_v : %d",
sc->pre_vratio, sc->main_hratio, sc->main_vratio);
return 0;
}
static int __gsc_s_ctrl(struct gsc_ctx *ctx, struct v4l2_ctrl *ctrl)
{
struct gsc_dev *gsc = ctx->gsc_dev;
struct gsc_variant *variant = gsc->variant;
unsigned int flags = GSC_DST_FMT | GSC_SRC_FMT;
int ret = 0;
if (ctrl->flags & V4L2_CTRL_FLAG_INACTIVE)
return 0;
switch (ctrl->id) {
case V4L2_CID_HFLIP:
ctx->hflip = ctrl->val;
break;
case V4L2_CID_VFLIP:
ctx->vflip = ctrl->val;
break;
case V4L2_CID_ROTATE:
if ((ctx->state & flags) == flags) {
ret = gsc_check_scaler_ratio(variant,
ctx->s_frame.crop.width,
ctx->s_frame.crop.height,
ctx->d_frame.crop.width,
ctx->d_frame.crop.height,
ctx->gsc_ctrls.rotate->val,
ctx->out_path);
if (ret)
return -EINVAL;
}
ctx->rotation = ctrl->val;
break;
case V4L2_CID_ALPHA_COMPONENT:
ctx->d_frame.alpha = ctrl->val;
break;
}
ctx->state |= GSC_PARAMS;
return 0;
}
static int gsc_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct gsc_ctx *ctx = ctrl_to_ctx(ctrl);
unsigned long flags;
int ret;
spin_lock_irqsave(&ctx->gsc_dev->slock, flags);
ret = __gsc_s_ctrl(ctx, ctrl);
spin_unlock_irqrestore(&ctx->gsc_dev->slock, flags);
return ret;
}
static const struct v4l2_ctrl_ops gsc_ctrl_ops = {
.s_ctrl = gsc_s_ctrl,
};
int gsc_ctrls_create(struct gsc_ctx *ctx)
{
if (ctx->ctrls_rdy) {
pr_err("Control handler of this context was created already");
return 0;
}
v4l2_ctrl_handler_init(&ctx->ctrl_handler, GSC_MAX_CTRL_NUM);
ctx->gsc_ctrls.rotate = v4l2_ctrl_new_std(&ctx->ctrl_handler,
&gsc_ctrl_ops, V4L2_CID_ROTATE, 0, 270, 90, 0);
ctx->gsc_ctrls.hflip = v4l2_ctrl_new_std(&ctx->ctrl_handler,
&gsc_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0);
ctx->gsc_ctrls.vflip = v4l2_ctrl_new_std(&ctx->ctrl_handler,
&gsc_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0);
ctx->gsc_ctrls.global_alpha = v4l2_ctrl_new_std(&ctx->ctrl_handler,
&gsc_ctrl_ops, V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 0);
ctx->ctrls_rdy = ctx->ctrl_handler.error == 0;
if (ctx->ctrl_handler.error) {
int err = ctx->ctrl_handler.error;
v4l2_ctrl_handler_free(&ctx->ctrl_handler);
pr_err("Failed to create G-Scaler control handlers");
return err;
}
return 0;
}
void gsc_ctrls_delete(struct gsc_ctx *ctx)
{
if (ctx->ctrls_rdy) {
v4l2_ctrl_handler_free(&ctx->ctrl_handler);
ctx->ctrls_rdy = false;
}
}
/* The color format (num_comp, num_planes) must be already configured. */
int gsc_prepare_addr(struct gsc_ctx *ctx, struct vb2_buffer *vb,
struct gsc_frame *frame, struct gsc_addr *addr)
{
int ret = 0;
u32 pix_size;
if ((vb == NULL) || (frame == NULL))
return -EINVAL;
pix_size = frame->f_width * frame->f_height;
pr_debug("num_planes= %d, num_comp= %d, pix_size= %d",
frame->fmt->num_planes, frame->fmt->num_comp, pix_size);
addr->y = vb2_dma_contig_plane_dma_addr(vb, 0);
if (frame->fmt->num_planes == 1) {
switch (frame->fmt->num_comp) {
case 1:
addr->cb = 0;
addr->cr = 0;
break;
case 2:
/* decompose Y into Y/Cb */
addr->cb = (dma_addr_t)(addr->y + pix_size);
addr->cr = 0;
break;
case 3:
/* decompose Y into Y/Cb/Cr */
addr->cb = (dma_addr_t)(addr->y + pix_size);
if (GSC_YUV420 == frame->fmt->color)
addr->cr = (dma_addr_t)(addr->cb
+ (pix_size >> 2));
else /* 422 */
addr->cr = (dma_addr_t)(addr->cb
+ (pix_size >> 1));
break;
default:
pr_err("Invalid the number of color planes");
return -EINVAL;
}
} else {
if (frame->fmt->num_planes >= 2)
addr->cb = vb2_dma_contig_plane_dma_addr(vb, 1);
if (frame->fmt->num_planes == 3)
addr->cr = vb2_dma_contig_plane_dma_addr(vb, 2);
}
if ((frame->fmt->pixelformat == V4L2_PIX_FMT_VYUY) ||
(frame->fmt->pixelformat == V4L2_PIX_FMT_YVYU) ||
(frame->fmt->pixelformat == V4L2_PIX_FMT_NV61) ||
(frame->fmt->pixelformat == V4L2_PIX_FMT_YVU420) ||
(frame->fmt->pixelformat == V4L2_PIX_FMT_NV21) ||
(frame->fmt->pixelformat == V4L2_PIX_FMT_YVU420M))
swap(addr->cb, addr->cr);
pr_debug("ADDR: y= 0x%X cb= 0x%X cr= 0x%X ret= %d",
addr->y, addr->cb, addr->cr, ret);
return ret;
}
static irqreturn_t gsc_irq_handler(int irq, void *priv)
{
struct gsc_dev *gsc = priv;
struct gsc_ctx *ctx;
int gsc_irq;
gsc_irq = gsc_hw_get_irq_status(gsc);
gsc_hw_clear_irq(gsc, gsc_irq);
if (gsc_irq == GSC_IRQ_OVERRUN) {
pr_err("Local path input over-run interrupt has occurred!\n");
return IRQ_HANDLED;
}
spin_lock(&gsc->slock);
if (test_and_clear_bit(ST_M2M_PEND, &gsc->state)) {
gsc_hw_enable_control(gsc, false);
if (test_and_clear_bit(ST_M2M_SUSPENDING, &gsc->state)) {
set_bit(ST_M2M_SUSPENDED, &gsc->state);
wake_up(&gsc->irq_queue);
goto isr_unlock;
}
ctx = v4l2_m2m_get_curr_priv(gsc->m2m.m2m_dev);
if (!ctx || !ctx->m2m_ctx)
goto isr_unlock;
spin_unlock(&gsc->slock);
gsc_m2m_job_finish(ctx, VB2_BUF_STATE_DONE);
/* wake_up job_abort, stop_streaming */
if (ctx->state & GSC_CTX_STOP_REQ) {
ctx->state &= ~GSC_CTX_STOP_REQ;
wake_up(&gsc->irq_queue);
}
return IRQ_HANDLED;
}
isr_unlock:
spin_unlock(&gsc->slock);
return IRQ_HANDLED;
}
static struct gsc_pix_max gsc_v_100_max = {
.org_scaler_bypass_w = 8192,
.org_scaler_bypass_h = 8192,
.org_scaler_input_w = 4800,
.org_scaler_input_h = 3344,
.real_rot_dis_w = 4800,
.real_rot_dis_h = 3344,
.real_rot_en_w = 2047,
.real_rot_en_h = 2047,
.target_rot_dis_w = 4800,
.target_rot_dis_h = 3344,
.target_rot_en_w = 2016,
.target_rot_en_h = 2016,
};
static struct gsc_pix_min gsc_v_100_min = {
.org_w = 64,
.org_h = 32,
.real_w = 64,
.real_h = 32,
.target_rot_dis_w = 64,
.target_rot_dis_h = 32,
.target_rot_en_w = 32,
.target_rot_en_h = 16,
};
static struct gsc_pix_align gsc_v_100_align = {
.org_h = 16,
.org_w = 16, /* yuv420 : 16, others : 8 */
.offset_h = 2, /* yuv420/422 : 2, others : 1 */
.real_w = 16, /* yuv420/422 : 4~16, others : 2~8 */
.real_h = 16, /* yuv420 : 4~16, others : 1 */
.target_w = 2, /* yuv420/422 : 2, others : 1 */
.target_h = 2, /* yuv420 : 2, others : 1 */
};
static struct gsc_variant gsc_v_100_variant = {
.pix_max = &gsc_v_100_max,
.pix_min = &gsc_v_100_min,
.pix_align = &gsc_v_100_align,
.in_buf_cnt = 32,
.out_buf_cnt = 32,
.sc_up_max = 8,
.sc_down_max = 16,
.poly_sc_down_max = 4,
.pre_sc_down_max = 4,
.local_sc_down = 2,
};
static struct gsc_driverdata gsc_v_100_drvdata = {
.variant = {
[0] = &gsc_v_100_variant,
[1] = &gsc_v_100_variant,
[2] = &gsc_v_100_variant,
[3] = &gsc_v_100_variant,
},
.num_entities = 4,
.lclk_frequency = 266000000UL,
};
static struct platform_device_id gsc_driver_ids[] = {
{
.name = "exynos-gsc",
.driver_data = (unsigned long)&gsc_v_100_drvdata,
},
{},
};
MODULE_DEVICE_TABLE(platform, gsc_driver_ids);
static const struct of_device_id exynos_gsc_match[] = {
{
.compatible = "samsung,exynos5-gsc",
.data = &gsc_v_100_drvdata,
},
{},
};
MODULE_DEVICE_TABLE(of, exynos_gsc_match);
static void *gsc_get_drv_data(struct platform_device *pdev)
{
struct gsc_driverdata *driver_data = NULL;
if (pdev->dev.of_node) {
const struct of_device_id *match;
match = of_match_node(of_match_ptr(exynos_gsc_match),
pdev->dev.of_node);
if (match)
driver_data = (struct gsc_driverdata *)match->data;
} else {
driver_data = (struct gsc_driverdata *)
platform_get_device_id(pdev)->driver_data;
}
return driver_data;
}
static void gsc_clk_put(struct gsc_dev *gsc)
{
if (!IS_ERR(gsc->clock))
clk_unprepare(gsc->clock);
}
static int gsc_clk_get(struct gsc_dev *gsc)
{
int ret;
dev_dbg(&gsc->pdev->dev, "gsc_clk_get Called\n");
gsc->clock = devm_clk_get(&gsc->pdev->dev, GSC_CLOCK_GATE_NAME);
if (IS_ERR(gsc->clock)) {
dev_err(&gsc->pdev->dev, "failed to get clock~~~: %s\n",
GSC_CLOCK_GATE_NAME);
return PTR_ERR(gsc->clock);
}
ret = clk_prepare(gsc->clock);
if (ret < 0) {
dev_err(&gsc->pdev->dev, "clock prepare failed for clock: %s\n",
GSC_CLOCK_GATE_NAME);
gsc->clock = ERR_PTR(-EINVAL);
return ret;
}
return 0;
}
static int gsc_m2m_suspend(struct gsc_dev *gsc)
{
unsigned long flags;
int timeout;
spin_lock_irqsave(&gsc->slock, flags);
if (!gsc_m2m_pending(gsc)) {
spin_unlock_irqrestore(&gsc->slock, flags);
return 0;
}
clear_bit(ST_M2M_SUSPENDED, &gsc->state);
set_bit(ST_M2M_SUSPENDING, &gsc->state);
spin_unlock_irqrestore(&gsc->slock, flags);
timeout = wait_event_timeout(gsc->irq_queue,
test_bit(ST_M2M_SUSPENDED, &gsc->state),
GSC_SHUTDOWN_TIMEOUT);
clear_bit(ST_M2M_SUSPENDING, &gsc->state);
return timeout == 0 ? -EAGAIN : 0;
}
static int gsc_m2m_resume(struct gsc_dev *gsc)
{
unsigned long flags;
spin_lock_irqsave(&gsc->slock, flags);
/* Clear for full H/W setup in first run after resume */
gsc->m2m.ctx = NULL;
spin_unlock_irqrestore(&gsc->slock, flags);
if (test_and_clear_bit(ST_M2M_SUSPENDED, &gsc->state))
gsc_m2m_job_finish(gsc->m2m.ctx,
VB2_BUF_STATE_ERROR);
return 0;
}
static int gsc_probe(struct platform_device *pdev)
{
struct gsc_dev *gsc;
struct resource *res;
struct gsc_driverdata *drv_data = gsc_get_drv_data(pdev);
struct device *dev = &pdev->dev;
int ret = 0;
gsc = devm_kzalloc(dev, sizeof(struct gsc_dev), GFP_KERNEL);
if (!gsc)
return -ENOMEM;
if (dev->of_node)
gsc->id = of_alias_get_id(pdev->dev.of_node, "gsc");
else
gsc->id = pdev->id;
if (gsc->id < 0 || gsc->id >= drv_data->num_entities) {
dev_err(dev, "Invalid platform device id: %d\n", gsc->id);
return -EINVAL;
}
gsc->variant = drv_data->variant[gsc->id];
gsc->pdev = pdev;
gsc->pdata = dev->platform_data;
init_waitqueue_head(&gsc->irq_queue);
spin_lock_init(&gsc->slock);
mutex_init(&gsc->lock);
gsc->clock = ERR_PTR(-EINVAL);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
gsc->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(gsc->regs))
return PTR_ERR(gsc->regs);
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res) {
dev_err(dev, "failed to get IRQ resource\n");
return -ENXIO;
}
ret = gsc_clk_get(gsc);
if (ret)
return ret;
ret = devm_request_irq(dev, res->start, gsc_irq_handler,
0, pdev->name, gsc);
if (ret) {
dev_err(dev, "failed to install irq (%d)\n", ret);
goto err_clk;
}
ret = gsc_register_m2m_device(gsc);
if (ret)
goto err_clk;
platform_set_drvdata(pdev, gsc);
pm_runtime_enable(dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0)
goto err_m2m;
/* Initialize continious memory allocator */
gsc->alloc_ctx = vb2_dma_contig_init_ctx(dev);
if (IS_ERR(gsc->alloc_ctx)) {
ret = PTR_ERR(gsc->alloc_ctx);
goto err_pm;
}
dev_dbg(dev, "gsc-%d registered successfully\n", gsc->id);
pm_runtime_put(dev);
return 0;
err_pm:
pm_runtime_put(dev);
err_m2m:
gsc_unregister_m2m_device(gsc);
err_clk:
gsc_clk_put(gsc);
return ret;
}
static int gsc_remove(struct platform_device *pdev)
{
struct gsc_dev *gsc = platform_get_drvdata(pdev);
gsc_unregister_m2m_device(gsc);
vb2_dma_contig_cleanup_ctx(gsc->alloc_ctx);
pm_runtime_disable(&pdev->dev);
gsc_clk_put(gsc);
dev_dbg(&pdev->dev, "%s driver unloaded\n", pdev->name);
return 0;
}
static int gsc_runtime_resume(struct device *dev)
{
struct gsc_dev *gsc = dev_get_drvdata(dev);
int ret = 0;
pr_debug("gsc%d: state: 0x%lx", gsc->id, gsc->state);
ret = clk_enable(gsc->clock);
if (ret)
return ret;
gsc_hw_set_sw_reset(gsc);
gsc_wait_reset(gsc);
return gsc_m2m_resume(gsc);
}
static int gsc_runtime_suspend(struct device *dev)
{
struct gsc_dev *gsc = dev_get_drvdata(dev);
int ret = 0;
ret = gsc_m2m_suspend(gsc);
if (!ret)
clk_disable(gsc->clock);
pr_debug("gsc%d: state: 0x%lx", gsc->id, gsc->state);
return ret;
}
static int gsc_resume(struct device *dev)
{
struct gsc_dev *gsc = dev_get_drvdata(dev);
unsigned long flags;
pr_debug("gsc%d: state: 0x%lx", gsc->id, gsc->state);
/* Do not resume if the device was idle before system suspend */
spin_lock_irqsave(&gsc->slock, flags);
if (!test_and_clear_bit(ST_SUSPEND, &gsc->state) ||
!gsc_m2m_active(gsc)) {
spin_unlock_irqrestore(&gsc->slock, flags);
return 0;
}
gsc_hw_set_sw_reset(gsc);
gsc_wait_reset(gsc);
spin_unlock_irqrestore(&gsc->slock, flags);
return gsc_m2m_resume(gsc);
}
static int gsc_suspend(struct device *dev)
{
struct gsc_dev *gsc = dev_get_drvdata(dev);
pr_debug("gsc%d: state: 0x%lx", gsc->id, gsc->state);
if (test_and_set_bit(ST_SUSPEND, &gsc->state))
return 0;
return gsc_m2m_suspend(gsc);
}
static const struct dev_pm_ops gsc_pm_ops = {
.suspend = gsc_suspend,
.resume = gsc_resume,
.runtime_suspend = gsc_runtime_suspend,
.runtime_resume = gsc_runtime_resume,
};
static struct platform_driver gsc_driver = {
.probe = gsc_probe,
.remove = gsc_remove,
.id_table = gsc_driver_ids,
.driver = {
.name = GSC_MODULE_NAME,
.owner = THIS_MODULE,
.pm = &gsc_pm_ops,
.of_match_table = exynos_gsc_match,
}
};
module_platform_driver(gsc_driver);
MODULE_AUTHOR("Hyunwong Kim <khw0178.kim@samsung.com>");
MODULE_DESCRIPTION("Samsung EXYNOS5 Soc series G-Scaler driver");
MODULE_LICENSE("GPL");