| /* |
| * Generic pidhash and scalable, time-bounded PID allocator |
| * |
| * (C) 2002-2003 William Irwin, IBM |
| * (C) 2004 William Irwin, Oracle |
| * (C) 2002-2004 Ingo Molnar, Red Hat |
| * |
| * pid-structures are backing objects for tasks sharing a given ID to chain |
| * against. There is very little to them aside from hashing them and |
| * parking tasks using given ID's on a list. |
| * |
| * The hash is always changed with the tasklist_lock write-acquired, |
| * and the hash is only accessed with the tasklist_lock at least |
| * read-acquired, so there's no additional SMP locking needed here. |
| * |
| * We have a list of bitmap pages, which bitmaps represent the PID space. |
| * Allocating and freeing PIDs is completely lockless. The worst-case |
| * allocation scenario when all but one out of 1 million PIDs possible are |
| * allocated already: the scanning of 32 list entries and at most PAGE_SIZE |
| * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/hash.h> |
| |
| #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift) |
| static struct hlist_head *pid_hash[PIDTYPE_MAX]; |
| static int pidhash_shift; |
| |
| int pid_max = PID_MAX_DEFAULT; |
| int last_pid; |
| |
| #define RESERVED_PIDS 300 |
| |
| int pid_max_min = RESERVED_PIDS + 1; |
| int pid_max_max = PID_MAX_LIMIT; |
| |
| #define PIDMAP_ENTRIES ((PID_MAX_LIMIT + 8*PAGE_SIZE - 1)/PAGE_SIZE/8) |
| #define BITS_PER_PAGE (PAGE_SIZE*8) |
| #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) |
| #define mk_pid(map, off) (((map) - pidmap_array)*BITS_PER_PAGE + (off)) |
| #define find_next_offset(map, off) \ |
| find_next_zero_bit((map)->page, BITS_PER_PAGE, off) |
| |
| /* |
| * PID-map pages start out as NULL, they get allocated upon |
| * first use and are never deallocated. This way a low pid_max |
| * value does not cause lots of bitmaps to be allocated, but |
| * the scheme scales to up to 4 million PIDs, runtime. |
| */ |
| typedef struct pidmap { |
| atomic_t nr_free; |
| void *page; |
| } pidmap_t; |
| |
| static pidmap_t pidmap_array[PIDMAP_ENTRIES] = |
| { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } }; |
| |
| static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); |
| |
| fastcall void free_pidmap(int pid) |
| { |
| pidmap_t *map = pidmap_array + pid / BITS_PER_PAGE; |
| int offset = pid & BITS_PER_PAGE_MASK; |
| |
| clear_bit(offset, map->page); |
| atomic_inc(&map->nr_free); |
| } |
| |
| int alloc_pidmap(void) |
| { |
| int i, offset, max_scan, pid, last = last_pid; |
| pidmap_t *map; |
| |
| pid = last + 1; |
| if (pid >= pid_max) |
| pid = RESERVED_PIDS; |
| offset = pid & BITS_PER_PAGE_MASK; |
| map = &pidmap_array[pid/BITS_PER_PAGE]; |
| max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset; |
| for (i = 0; i <= max_scan; ++i) { |
| if (unlikely(!map->page)) { |
| unsigned long page = get_zeroed_page(GFP_KERNEL); |
| /* |
| * Free the page if someone raced with us |
| * installing it: |
| */ |
| spin_lock(&pidmap_lock); |
| if (map->page) |
| free_page(page); |
| else |
| map->page = (void *)page; |
| spin_unlock(&pidmap_lock); |
| if (unlikely(!map->page)) |
| break; |
| } |
| if (likely(atomic_read(&map->nr_free))) { |
| do { |
| if (!test_and_set_bit(offset, map->page)) { |
| atomic_dec(&map->nr_free); |
| last_pid = pid; |
| return pid; |
| } |
| offset = find_next_offset(map, offset); |
| pid = mk_pid(map, offset); |
| /* |
| * find_next_offset() found a bit, the pid from it |
| * is in-bounds, and if we fell back to the last |
| * bitmap block and the final block was the same |
| * as the starting point, pid is before last_pid. |
| */ |
| } while (offset < BITS_PER_PAGE && pid < pid_max && |
| (i != max_scan || pid < last || |
| !((last+1) & BITS_PER_PAGE_MASK))); |
| } |
| if (map < &pidmap_array[(pid_max-1)/BITS_PER_PAGE]) { |
| ++map; |
| offset = 0; |
| } else { |
| map = &pidmap_array[0]; |
| offset = RESERVED_PIDS; |
| if (unlikely(last == offset)) |
| break; |
| } |
| pid = mk_pid(map, offset); |
| } |
| return -1; |
| } |
| |
| struct pid * fastcall find_pid(enum pid_type type, int nr) |
| { |
| struct hlist_node *elem; |
| struct pid *pid; |
| |
| hlist_for_each_entry_rcu(pid, elem, |
| &pid_hash[type][pid_hashfn(nr)], pid_chain) { |
| if (pid->nr == nr) |
| return pid; |
| } |
| return NULL; |
| } |
| |
| int fastcall attach_pid(task_t *task, enum pid_type type, int nr) |
| { |
| struct pid *pid, *task_pid; |
| |
| task_pid = &task->pids[type]; |
| pid = find_pid(type, nr); |
| task_pid->nr = nr; |
| if (pid == NULL) { |
| INIT_LIST_HEAD(&task_pid->pid_list); |
| hlist_add_head_rcu(&task_pid->pid_chain, |
| &pid_hash[type][pid_hashfn(nr)]); |
| } else { |
| INIT_HLIST_NODE(&task_pid->pid_chain); |
| list_add_tail_rcu(&task_pid->pid_list, &pid->pid_list); |
| } |
| |
| return 0; |
| } |
| |
| static fastcall int __detach_pid(task_t *task, enum pid_type type) |
| { |
| struct pid *pid, *pid_next; |
| int nr = 0; |
| |
| pid = &task->pids[type]; |
| if (!hlist_unhashed(&pid->pid_chain)) { |
| |
| if (list_empty(&pid->pid_list)) { |
| nr = pid->nr; |
| hlist_del_rcu(&pid->pid_chain); |
| } else { |
| pid_next = list_entry(pid->pid_list.next, |
| struct pid, pid_list); |
| /* insert next pid from pid_list to hash */ |
| hlist_replace_rcu(&pid->pid_chain, |
| &pid_next->pid_chain); |
| } |
| } |
| |
| list_del_rcu(&pid->pid_list); |
| pid->nr = 0; |
| |
| return nr; |
| } |
| |
| void fastcall detach_pid(task_t *task, enum pid_type type) |
| { |
| int tmp, nr; |
| |
| nr = __detach_pid(task, type); |
| if (!nr) |
| return; |
| |
| for (tmp = PIDTYPE_MAX; --tmp >= 0; ) |
| if (tmp != type && find_pid(tmp, nr)) |
| return; |
| |
| free_pidmap(nr); |
| } |
| |
| task_t *find_task_by_pid_type(int type, int nr) |
| { |
| struct pid *pid; |
| |
| pid = find_pid(type, nr); |
| if (!pid) |
| return NULL; |
| |
| return pid_task(&pid->pid_list, type); |
| } |
| |
| EXPORT_SYMBOL(find_task_by_pid_type); |
| |
| /* |
| * The pid hash table is scaled according to the amount of memory in the |
| * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or |
| * more. |
| */ |
| void __init pidhash_init(void) |
| { |
| int i, j, pidhash_size; |
| unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); |
| |
| pidhash_shift = max(4, fls(megabytes * 4)); |
| pidhash_shift = min(12, pidhash_shift); |
| pidhash_size = 1 << pidhash_shift; |
| |
| printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", |
| pidhash_size, pidhash_shift, |
| PIDTYPE_MAX * pidhash_size * sizeof(struct hlist_head)); |
| |
| for (i = 0; i < PIDTYPE_MAX; i++) { |
| pid_hash[i] = alloc_bootmem(pidhash_size * |
| sizeof(*(pid_hash[i]))); |
| if (!pid_hash[i]) |
| panic("Could not alloc pidhash!\n"); |
| for (j = 0; j < pidhash_size; j++) |
| INIT_HLIST_HEAD(&pid_hash[i][j]); |
| } |
| } |
| |
| void __init pidmap_init(void) |
| { |
| int i; |
| |
| pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL); |
| set_bit(0, pidmap_array->page); |
| atomic_dec(&pidmap_array->nr_free); |
| |
| /* |
| * Allocate PID 0, and hash it via all PID types: |
| */ |
| |
| for (i = 0; i < PIDTYPE_MAX; i++) |
| attach_pid(current, i, 0); |
| } |