| /* |
| * MTD SPI driver for ST M25Pxx (and similar) serial flash chips |
| * |
| * Author: Mike Lavender, mike@steroidmicros.com |
| * |
| * Copyright (c) 2005, Intec Automation Inc. |
| * |
| * Some parts are based on lart.c by Abraham Van Der Merwe |
| * |
| * Cleaned up and generalized based on mtd_dataflash.c |
| * |
| * This code is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/err.h> |
| #include <linux/errno.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/interrupt.h> |
| #include <linux/mutex.h> |
| #include <linux/math64.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/mod_devicetable.h> |
| |
| #include <linux/mtd/cfi.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/of_platform.h> |
| |
| #include <linux/spi/spi.h> |
| #include <linux/spi/flash.h> |
| |
| /* Flash opcodes. */ |
| #define OPCODE_WREN 0x06 /* Write enable */ |
| #define OPCODE_RDSR 0x05 /* Read status register */ |
| #define OPCODE_WRSR 0x01 /* Write status register 1 byte */ |
| #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */ |
| #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */ |
| #define OPCODE_QUAD_READ 0x6b /* Read data bytes */ |
| #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */ |
| #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */ |
| #define OPCODE_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */ |
| #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */ |
| #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */ |
| #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */ |
| #define OPCODE_RDID 0x9f /* Read JEDEC ID */ |
| #define OPCODE_RDCR 0x35 /* Read configuration register */ |
| |
| /* 4-byte address opcodes - used on Spansion and some Macronix flashes. */ |
| #define OPCODE_NORM_READ_4B 0x13 /* Read data bytes (low frequency) */ |
| #define OPCODE_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */ |
| #define OPCODE_QUAD_READ_4B 0x6c /* Read data bytes */ |
| #define OPCODE_PP_4B 0x12 /* Page program (up to 256 bytes) */ |
| #define OPCODE_SE_4B 0xdc /* Sector erase (usually 64KiB) */ |
| |
| /* Used for SST flashes only. */ |
| #define OPCODE_BP 0x02 /* Byte program */ |
| #define OPCODE_WRDI 0x04 /* Write disable */ |
| #define OPCODE_AAI_WP 0xad /* Auto address increment word program */ |
| |
| /* Used for Macronix and Winbond flashes. */ |
| #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */ |
| #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */ |
| |
| /* Used for Spansion flashes only. */ |
| #define OPCODE_BRWR 0x17 /* Bank register write */ |
| |
| /* Status Register bits. */ |
| #define SR_WIP 1 /* Write in progress */ |
| #define SR_WEL 2 /* Write enable latch */ |
| /* meaning of other SR_* bits may differ between vendors */ |
| #define SR_BP0 4 /* Block protect 0 */ |
| #define SR_BP1 8 /* Block protect 1 */ |
| #define SR_BP2 0x10 /* Block protect 2 */ |
| #define SR_SRWD 0x80 /* SR write protect */ |
| |
| #define SR_QUAD_EN_MX 0x40 /* Macronix Quad I/O */ |
| |
| /* Configuration Register bits. */ |
| #define CR_QUAD_EN_SPAN 0x2 /* Spansion Quad I/O */ |
| |
| /* Define max times to check status register before we give up. */ |
| #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */ |
| #define MAX_CMD_SIZE 6 |
| |
| #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16) |
| |
| /****************************************************************************/ |
| |
| enum read_type { |
| M25P80_NORMAL = 0, |
| M25P80_FAST, |
| M25P80_QUAD, |
| }; |
| |
| struct m25p { |
| struct spi_device *spi; |
| struct mutex lock; |
| struct mtd_info mtd; |
| u16 page_size; |
| u16 addr_width; |
| u8 erase_opcode; |
| u8 read_opcode; |
| u8 program_opcode; |
| u8 *command; |
| enum read_type flash_read; |
| }; |
| |
| static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd) |
| { |
| return container_of(mtd, struct m25p, mtd); |
| } |
| |
| /****************************************************************************/ |
| |
| /* |
| * Internal helper functions |
| */ |
| |
| /* |
| * Read the status register, returning its value in the location |
| * Return the status register value. |
| * Returns negative if error occurred. |
| */ |
| static int read_sr(struct m25p *flash) |
| { |
| ssize_t retval; |
| u8 code = OPCODE_RDSR; |
| u8 val; |
| |
| retval = spi_write_then_read(flash->spi, &code, 1, &val, 1); |
| |
| if (retval < 0) { |
| dev_err(&flash->spi->dev, "error %d reading SR\n", |
| (int) retval); |
| return retval; |
| } |
| |
| return val; |
| } |
| |
| /* |
| * Read configuration register, returning its value in the |
| * location. Return the configuration register value. |
| * Returns negative if error occured. |
| */ |
| static int read_cr(struct m25p *flash) |
| { |
| u8 code = OPCODE_RDCR; |
| int ret; |
| u8 val; |
| |
| ret = spi_write_then_read(flash->spi, &code, 1, &val, 1); |
| if (ret < 0) { |
| dev_err(&flash->spi->dev, "error %d reading CR\n", ret); |
| return ret; |
| } |
| |
| return val; |
| } |
| |
| /* |
| * Write status register 1 byte |
| * Returns negative if error occurred. |
| */ |
| static int write_sr(struct m25p *flash, u8 val) |
| { |
| flash->command[0] = OPCODE_WRSR; |
| flash->command[1] = val; |
| |
| return spi_write(flash->spi, flash->command, 2); |
| } |
| |
| /* |
| * Set write enable latch with Write Enable command. |
| * Returns negative if error occurred. |
| */ |
| static inline int write_enable(struct m25p *flash) |
| { |
| u8 code = OPCODE_WREN; |
| |
| return spi_write_then_read(flash->spi, &code, 1, NULL, 0); |
| } |
| |
| /* |
| * Send write disble instruction to the chip. |
| */ |
| static inline int write_disable(struct m25p *flash) |
| { |
| u8 code = OPCODE_WRDI; |
| |
| return spi_write_then_read(flash->spi, &code, 1, NULL, 0); |
| } |
| |
| /* |
| * Enable/disable 4-byte addressing mode. |
| */ |
| static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable) |
| { |
| int status; |
| bool need_wren = false; |
| |
| switch (JEDEC_MFR(jedec_id)) { |
| case CFI_MFR_ST: /* Micron, actually */ |
| /* Some Micron need WREN command; all will accept it */ |
| need_wren = true; |
| case CFI_MFR_MACRONIX: |
| case 0xEF /* winbond */: |
| if (need_wren) |
| write_enable(flash); |
| |
| flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B; |
| status = spi_write(flash->spi, flash->command, 1); |
| |
| if (need_wren) |
| write_disable(flash); |
| |
| return status; |
| default: |
| /* Spansion style */ |
| flash->command[0] = OPCODE_BRWR; |
| flash->command[1] = enable << 7; |
| return spi_write(flash->spi, flash->command, 2); |
| } |
| } |
| |
| /* |
| * Service routine to read status register until ready, or timeout occurs. |
| * Returns non-zero if error. |
| */ |
| static int wait_till_ready(struct m25p *flash) |
| { |
| unsigned long deadline; |
| int sr; |
| |
| deadline = jiffies + MAX_READY_WAIT_JIFFIES; |
| |
| do { |
| if ((sr = read_sr(flash)) < 0) |
| break; |
| else if (!(sr & SR_WIP)) |
| return 0; |
| |
| cond_resched(); |
| |
| } while (!time_after_eq(jiffies, deadline)); |
| |
| return 1; |
| } |
| |
| /* |
| * Write status Register and configuration register with 2 bytes |
| * The first byte will be written to the status register, while the |
| * second byte will be written to the configuration register. |
| * Return negative if error occured. |
| */ |
| static int write_sr_cr(struct m25p *flash, u16 val) |
| { |
| flash->command[0] = OPCODE_WRSR; |
| flash->command[1] = val & 0xff; |
| flash->command[2] = (val >> 8); |
| |
| return spi_write(flash->spi, flash->command, 3); |
| } |
| |
| static int macronix_quad_enable(struct m25p *flash) |
| { |
| int ret, val; |
| u8 cmd[2]; |
| cmd[0] = OPCODE_WRSR; |
| |
| val = read_sr(flash); |
| cmd[1] = val | SR_QUAD_EN_MX; |
| write_enable(flash); |
| |
| spi_write(flash->spi, &cmd, 2); |
| |
| if (wait_till_ready(flash)) |
| return 1; |
| |
| ret = read_sr(flash); |
| if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { |
| dev_err(&flash->spi->dev, "Macronix Quad bit not set\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int spansion_quad_enable(struct m25p *flash) |
| { |
| int ret; |
| int quad_en = CR_QUAD_EN_SPAN << 8; |
| |
| write_enable(flash); |
| |
| ret = write_sr_cr(flash, quad_en); |
| if (ret < 0) { |
| dev_err(&flash->spi->dev, |
| "error while writing configuration register\n"); |
| return -EINVAL; |
| } |
| |
| /* read back and check it */ |
| ret = read_cr(flash); |
| if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { |
| dev_err(&flash->spi->dev, "Spansion Quad bit not set\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int set_quad_mode(struct m25p *flash, u32 jedec_id) |
| { |
| int status; |
| |
| switch (JEDEC_MFR(jedec_id)) { |
| case CFI_MFR_MACRONIX: |
| status = macronix_quad_enable(flash); |
| if (status) { |
| dev_err(&flash->spi->dev, |
| "Macronix quad-read not enabled\n"); |
| return -EINVAL; |
| } |
| return status; |
| default: |
| status = spansion_quad_enable(flash); |
| if (status) { |
| dev_err(&flash->spi->dev, |
| "Spansion quad-read not enabled\n"); |
| return -EINVAL; |
| } |
| return status; |
| } |
| } |
| |
| /* |
| * Erase the whole flash memory |
| * |
| * Returns 0 if successful, non-zero otherwise. |
| */ |
| static int erase_chip(struct m25p *flash) |
| { |
| pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__, |
| (long long)(flash->mtd.size >> 10)); |
| |
| /* Wait until finished previous write command. */ |
| if (wait_till_ready(flash)) |
| return 1; |
| |
| /* Send write enable, then erase commands. */ |
| write_enable(flash); |
| |
| /* Set up command buffer. */ |
| flash->command[0] = OPCODE_CHIP_ERASE; |
| |
| spi_write(flash->spi, flash->command, 1); |
| |
| return 0; |
| } |
| |
| static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd) |
| { |
| /* opcode is in cmd[0] */ |
| cmd[1] = addr >> (flash->addr_width * 8 - 8); |
| cmd[2] = addr >> (flash->addr_width * 8 - 16); |
| cmd[3] = addr >> (flash->addr_width * 8 - 24); |
| cmd[4] = addr >> (flash->addr_width * 8 - 32); |
| } |
| |
| static int m25p_cmdsz(struct m25p *flash) |
| { |
| return 1 + flash->addr_width; |
| } |
| |
| /* |
| * Erase one sector of flash memory at offset ``offset'' which is any |
| * address within the sector which should be erased. |
| * |
| * Returns 0 if successful, non-zero otherwise. |
| */ |
| static int erase_sector(struct m25p *flash, u32 offset) |
| { |
| pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev), |
| __func__, flash->mtd.erasesize / 1024, offset); |
| |
| /* Wait until finished previous write command. */ |
| if (wait_till_ready(flash)) |
| return 1; |
| |
| /* Send write enable, then erase commands. */ |
| write_enable(flash); |
| |
| /* Set up command buffer. */ |
| flash->command[0] = flash->erase_opcode; |
| m25p_addr2cmd(flash, offset, flash->command); |
| |
| spi_write(flash->spi, flash->command, m25p_cmdsz(flash)); |
| |
| return 0; |
| } |
| |
| /****************************************************************************/ |
| |
| /* |
| * MTD implementation |
| */ |
| |
| /* |
| * Erase an address range on the flash chip. The address range may extend |
| * one or more erase sectors. Return an error is there is a problem erasing. |
| */ |
| static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| struct m25p *flash = mtd_to_m25p(mtd); |
| u32 addr,len; |
| uint32_t rem; |
| |
| pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev), |
| __func__, (long long)instr->addr, |
| (long long)instr->len); |
| |
| div_u64_rem(instr->len, mtd->erasesize, &rem); |
| if (rem) |
| return -EINVAL; |
| |
| addr = instr->addr; |
| len = instr->len; |
| |
| mutex_lock(&flash->lock); |
| |
| /* whole-chip erase? */ |
| if (len == flash->mtd.size) { |
| if (erase_chip(flash)) { |
| instr->state = MTD_ERASE_FAILED; |
| mutex_unlock(&flash->lock); |
| return -EIO; |
| } |
| |
| /* REVISIT in some cases we could speed up erasing large regions |
| * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up |
| * to use "small sector erase", but that's not always optimal. |
| */ |
| |
| /* "sector"-at-a-time erase */ |
| } else { |
| while (len) { |
| if (erase_sector(flash, addr)) { |
| instr->state = MTD_ERASE_FAILED; |
| mutex_unlock(&flash->lock); |
| return -EIO; |
| } |
| |
| addr += mtd->erasesize; |
| len -= mtd->erasesize; |
| } |
| } |
| |
| mutex_unlock(&flash->lock); |
| |
| instr->state = MTD_ERASE_DONE; |
| mtd_erase_callback(instr); |
| |
| return 0; |
| } |
| |
| /* |
| * Dummy Cycle calculation for different type of read. |
| * It can be used to support more commands with |
| * different dummy cycle requirements. |
| */ |
| static inline int m25p80_dummy_cycles_read(struct m25p *flash) |
| { |
| switch (flash->flash_read) { |
| case M25P80_FAST: |
| case M25P80_QUAD: |
| return 1; |
| case M25P80_NORMAL: |
| return 0; |
| default: |
| dev_err(&flash->spi->dev, "No valid read type supported\n"); |
| return -1; |
| } |
| } |
| |
| static inline unsigned int m25p80_rx_nbits(const struct m25p *flash) |
| { |
| switch (flash->flash_read) { |
| case M25P80_QUAD: |
| return 4; |
| default: |
| return 0; |
| } |
| } |
| |
| /* |
| * Read an address range from the flash chip. The address range |
| * may be any size provided it is within the physical boundaries. |
| */ |
| static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct m25p *flash = mtd_to_m25p(mtd); |
| struct spi_transfer t[2]; |
| struct spi_message m; |
| uint8_t opcode; |
| int dummy; |
| |
| pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev), |
| __func__, (u32)from, len); |
| |
| spi_message_init(&m); |
| memset(t, 0, (sizeof t)); |
| |
| dummy = m25p80_dummy_cycles_read(flash); |
| if (dummy < 0) { |
| dev_err(&flash->spi->dev, "No valid read command supported\n"); |
| return -EINVAL; |
| } |
| |
| t[0].tx_buf = flash->command; |
| t[0].len = m25p_cmdsz(flash) + dummy; |
| spi_message_add_tail(&t[0], &m); |
| |
| t[1].rx_buf = buf; |
| t[1].rx_nbits = m25p80_rx_nbits(flash); |
| t[1].len = len; |
| spi_message_add_tail(&t[1], &m); |
| |
| mutex_lock(&flash->lock); |
| |
| /* Wait till previous write/erase is done. */ |
| if (wait_till_ready(flash)) { |
| /* REVISIT status return?? */ |
| mutex_unlock(&flash->lock); |
| return 1; |
| } |
| |
| /* Set up the write data buffer. */ |
| opcode = flash->read_opcode; |
| flash->command[0] = opcode; |
| m25p_addr2cmd(flash, from, flash->command); |
| |
| spi_sync(flash->spi, &m); |
| |
| *retlen = m.actual_length - m25p_cmdsz(flash) - dummy; |
| |
| mutex_unlock(&flash->lock); |
| |
| return 0; |
| } |
| |
| /* |
| * Write an address range to the flash chip. Data must be written in |
| * FLASH_PAGESIZE chunks. The address range may be any size provided |
| * it is within the physical boundaries. |
| */ |
| static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct m25p *flash = mtd_to_m25p(mtd); |
| u32 page_offset, page_size; |
| struct spi_transfer t[2]; |
| struct spi_message m; |
| |
| pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev), |
| __func__, (u32)to, len); |
| |
| spi_message_init(&m); |
| memset(t, 0, (sizeof t)); |
| |
| t[0].tx_buf = flash->command; |
| t[0].len = m25p_cmdsz(flash); |
| spi_message_add_tail(&t[0], &m); |
| |
| t[1].tx_buf = buf; |
| spi_message_add_tail(&t[1], &m); |
| |
| mutex_lock(&flash->lock); |
| |
| /* Wait until finished previous write command. */ |
| if (wait_till_ready(flash)) { |
| mutex_unlock(&flash->lock); |
| return 1; |
| } |
| |
| write_enable(flash); |
| |
| /* Set up the opcode in the write buffer. */ |
| flash->command[0] = flash->program_opcode; |
| m25p_addr2cmd(flash, to, flash->command); |
| |
| page_offset = to & (flash->page_size - 1); |
| |
| /* do all the bytes fit onto one page? */ |
| if (page_offset + len <= flash->page_size) { |
| t[1].len = len; |
| |
| spi_sync(flash->spi, &m); |
| |
| *retlen = m.actual_length - m25p_cmdsz(flash); |
| } else { |
| u32 i; |
| |
| /* the size of data remaining on the first page */ |
| page_size = flash->page_size - page_offset; |
| |
| t[1].len = page_size; |
| spi_sync(flash->spi, &m); |
| |
| *retlen = m.actual_length - m25p_cmdsz(flash); |
| |
| /* write everything in flash->page_size chunks */ |
| for (i = page_size; i < len; i += page_size) { |
| page_size = len - i; |
| if (page_size > flash->page_size) |
| page_size = flash->page_size; |
| |
| /* write the next page to flash */ |
| m25p_addr2cmd(flash, to + i, flash->command); |
| |
| t[1].tx_buf = buf + i; |
| t[1].len = page_size; |
| |
| wait_till_ready(flash); |
| |
| write_enable(flash); |
| |
| spi_sync(flash->spi, &m); |
| |
| *retlen += m.actual_length - m25p_cmdsz(flash); |
| } |
| } |
| |
| mutex_unlock(&flash->lock); |
| |
| return 0; |
| } |
| |
| static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct m25p *flash = mtd_to_m25p(mtd); |
| struct spi_transfer t[2]; |
| struct spi_message m; |
| size_t actual; |
| int cmd_sz, ret; |
| |
| pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev), |
| __func__, (u32)to, len); |
| |
| spi_message_init(&m); |
| memset(t, 0, (sizeof t)); |
| |
| t[0].tx_buf = flash->command; |
| t[0].len = m25p_cmdsz(flash); |
| spi_message_add_tail(&t[0], &m); |
| |
| t[1].tx_buf = buf; |
| spi_message_add_tail(&t[1], &m); |
| |
| mutex_lock(&flash->lock); |
| |
| /* Wait until finished previous write command. */ |
| ret = wait_till_ready(flash); |
| if (ret) |
| goto time_out; |
| |
| write_enable(flash); |
| |
| actual = to % 2; |
| /* Start write from odd address. */ |
| if (actual) { |
| flash->command[0] = OPCODE_BP; |
| m25p_addr2cmd(flash, to, flash->command); |
| |
| /* write one byte. */ |
| t[1].len = 1; |
| spi_sync(flash->spi, &m); |
| ret = wait_till_ready(flash); |
| if (ret) |
| goto time_out; |
| *retlen += m.actual_length - m25p_cmdsz(flash); |
| } |
| to += actual; |
| |
| flash->command[0] = OPCODE_AAI_WP; |
| m25p_addr2cmd(flash, to, flash->command); |
| |
| /* Write out most of the data here. */ |
| cmd_sz = m25p_cmdsz(flash); |
| for (; actual < len - 1; actual += 2) { |
| t[0].len = cmd_sz; |
| /* write two bytes. */ |
| t[1].len = 2; |
| t[1].tx_buf = buf + actual; |
| |
| spi_sync(flash->spi, &m); |
| ret = wait_till_ready(flash); |
| if (ret) |
| goto time_out; |
| *retlen += m.actual_length - cmd_sz; |
| cmd_sz = 1; |
| to += 2; |
| } |
| write_disable(flash); |
| ret = wait_till_ready(flash); |
| if (ret) |
| goto time_out; |
| |
| /* Write out trailing byte if it exists. */ |
| if (actual != len) { |
| write_enable(flash); |
| flash->command[0] = OPCODE_BP; |
| m25p_addr2cmd(flash, to, flash->command); |
| t[0].len = m25p_cmdsz(flash); |
| t[1].len = 1; |
| t[1].tx_buf = buf + actual; |
| |
| spi_sync(flash->spi, &m); |
| ret = wait_till_ready(flash); |
| if (ret) |
| goto time_out; |
| *retlen += m.actual_length - m25p_cmdsz(flash); |
| write_disable(flash); |
| } |
| |
| time_out: |
| mutex_unlock(&flash->lock); |
| return ret; |
| } |
| |
| static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct m25p *flash = mtd_to_m25p(mtd); |
| uint32_t offset = ofs; |
| uint8_t status_old, status_new; |
| int res = 0; |
| |
| mutex_lock(&flash->lock); |
| /* Wait until finished previous command */ |
| if (wait_till_ready(flash)) { |
| res = 1; |
| goto err; |
| } |
| |
| status_old = read_sr(flash); |
| |
| if (offset < flash->mtd.size-(flash->mtd.size/2)) |
| status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0; |
| else if (offset < flash->mtd.size-(flash->mtd.size/4)) |
| status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; |
| else if (offset < flash->mtd.size-(flash->mtd.size/8)) |
| status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; |
| else if (offset < flash->mtd.size-(flash->mtd.size/16)) |
| status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2; |
| else if (offset < flash->mtd.size-(flash->mtd.size/32)) |
| status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; |
| else if (offset < flash->mtd.size-(flash->mtd.size/64)) |
| status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1; |
| else |
| status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0; |
| |
| /* Only modify protection if it will not unlock other areas */ |
| if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) > |
| (status_old&(SR_BP2|SR_BP1|SR_BP0))) { |
| write_enable(flash); |
| if (write_sr(flash, status_new) < 0) { |
| res = 1; |
| goto err; |
| } |
| } |
| |
| err: mutex_unlock(&flash->lock); |
| return res; |
| } |
| |
| static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct m25p *flash = mtd_to_m25p(mtd); |
| uint32_t offset = ofs; |
| uint8_t status_old, status_new; |
| int res = 0; |
| |
| mutex_lock(&flash->lock); |
| /* Wait until finished previous command */ |
| if (wait_till_ready(flash)) { |
| res = 1; |
| goto err; |
| } |
| |
| status_old = read_sr(flash); |
| |
| if (offset+len > flash->mtd.size-(flash->mtd.size/64)) |
| status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0); |
| else if (offset+len > flash->mtd.size-(flash->mtd.size/32)) |
| status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0; |
| else if (offset+len > flash->mtd.size-(flash->mtd.size/16)) |
| status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1; |
| else if (offset+len > flash->mtd.size-(flash->mtd.size/8)) |
| status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; |
| else if (offset+len > flash->mtd.size-(flash->mtd.size/4)) |
| status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2; |
| else if (offset+len > flash->mtd.size-(flash->mtd.size/2)) |
| status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; |
| else |
| status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; |
| |
| /* Only modify protection if it will not lock other areas */ |
| if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) < |
| (status_old&(SR_BP2|SR_BP1|SR_BP0))) { |
| write_enable(flash); |
| if (write_sr(flash, status_new) < 0) { |
| res = 1; |
| goto err; |
| } |
| } |
| |
| err: mutex_unlock(&flash->lock); |
| return res; |
| } |
| |
| /****************************************************************************/ |
| |
| /* |
| * SPI device driver setup and teardown |
| */ |
| |
| struct flash_info { |
| /* JEDEC id zero means "no ID" (most older chips); otherwise it has |
| * a high byte of zero plus three data bytes: the manufacturer id, |
| * then a two byte device id. |
| */ |
| u32 jedec_id; |
| u16 ext_id; |
| |
| /* The size listed here is what works with OPCODE_SE, which isn't |
| * necessarily called a "sector" by the vendor. |
| */ |
| unsigned sector_size; |
| u16 n_sectors; |
| |
| u16 page_size; |
| u16 addr_width; |
| |
| u16 flags; |
| #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */ |
| #define M25P_NO_ERASE 0x02 /* No erase command needed */ |
| #define SST_WRITE 0x04 /* use SST byte programming */ |
| #define M25P_NO_FR 0x08 /* Can't do fastread */ |
| #define SECT_4K_PMC 0x10 /* OPCODE_BE_4K_PMC works uniformly */ |
| #define M25P80_QUAD_READ 0x20 /* Flash supports Quad Read */ |
| }; |
| |
| #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ |
| ((kernel_ulong_t)&(struct flash_info) { \ |
| .jedec_id = (_jedec_id), \ |
| .ext_id = (_ext_id), \ |
| .sector_size = (_sector_size), \ |
| .n_sectors = (_n_sectors), \ |
| .page_size = 256, \ |
| .flags = (_flags), \ |
| }) |
| |
| #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \ |
| ((kernel_ulong_t)&(struct flash_info) { \ |
| .sector_size = (_sector_size), \ |
| .n_sectors = (_n_sectors), \ |
| .page_size = (_page_size), \ |
| .addr_width = (_addr_width), \ |
| .flags = (_flags), \ |
| }) |
| |
| /* NOTE: double check command sets and memory organization when you add |
| * more flash chips. This current list focusses on newer chips, which |
| * have been converging on command sets which including JEDEC ID. |
| */ |
| static const struct spi_device_id m25p_ids[] = { |
| /* Atmel -- some are (confusingly) marketed as "DataFlash" */ |
| { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, |
| { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, |
| |
| { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, |
| { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, |
| { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, |
| |
| { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, |
| { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, |
| { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, |
| { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, |
| |
| { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) }, |
| |
| /* EON -- en25xxx */ |
| { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, |
| { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, |
| { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, |
| { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, |
| { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) }, |
| { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) }, |
| |
| /* ESMT */ |
| { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) }, |
| |
| /* Everspin */ |
| { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, M25P_NO_ERASE | M25P_NO_FR) }, |
| { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, M25P_NO_ERASE | M25P_NO_FR) }, |
| |
| /* GigaDevice */ |
| { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) }, |
| { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) }, |
| |
| /* Intel/Numonyx -- xxxs33b */ |
| { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, |
| { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, |
| { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, |
| |
| /* Macronix */ |
| { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, |
| { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, |
| { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, |
| { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) }, |
| { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) }, |
| { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) }, |
| { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) }, |
| { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, |
| { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, |
| { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, |
| { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, |
| { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, M25P80_QUAD_READ) }, |
| |
| /* Micron */ |
| { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) }, |
| { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) }, |
| { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) }, |
| { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) }, |
| { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) }, |
| |
| /* PMC */ |
| { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) }, |
| { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) }, |
| { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) }, |
| |
| /* Spansion -- single (large) sector size only, at least |
| * for the chips listed here (without boot sectors). |
| */ |
| { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, 0) }, |
| { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) }, |
| { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, |
| { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, M25P80_QUAD_READ) }, |
| { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, M25P80_QUAD_READ) }, |
| { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, |
| { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, |
| { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, |
| { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) }, |
| { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) }, |
| { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, |
| { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, |
| { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, |
| { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, |
| { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, |
| { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) }, |
| { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, |
| |
| /* SST -- large erase sizes are "overlays", "sectors" are 4K */ |
| { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, |
| { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, |
| { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) }, |
| { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) }, |
| { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) }, |
| { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) }, |
| { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) }, |
| { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) }, |
| { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, |
| |
| /* ST Microelectronics -- newer production may have feature updates */ |
| { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, |
| { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, |
| { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, |
| { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, |
| { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, |
| { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, |
| { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, |
| { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, |
| { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, |
| { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) }, |
| |
| { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, |
| { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, |
| { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, |
| { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, |
| { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, |
| { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, |
| { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, |
| { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, |
| { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, |
| |
| { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, |
| { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, |
| { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, |
| |
| { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) }, |
| { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, |
| { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, |
| |
| { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) }, |
| { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) }, |
| { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) }, |
| { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) }, |
| { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, |
| |
| /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ |
| { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, |
| { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, |
| { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, |
| { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, |
| { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, |
| { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, |
| { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, |
| { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) }, |
| { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, |
| { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, |
| { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, |
| { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, |
| { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, |
| { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, |
| { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) }, |
| |
| /* Catalyst / On Semiconductor -- non-JEDEC */ |
| { "cat25c11", CAT25_INFO( 16, 8, 16, 1, M25P_NO_ERASE | M25P_NO_FR) }, |
| { "cat25c03", CAT25_INFO( 32, 8, 16, 2, M25P_NO_ERASE | M25P_NO_FR) }, |
| { "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) }, |
| { "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) }, |
| { "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE | M25P_NO_FR) }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(spi, m25p_ids); |
| |
| static const struct spi_device_id *jedec_probe(struct spi_device *spi) |
| { |
| int tmp; |
| u8 code = OPCODE_RDID; |
| u8 id[5]; |
| u32 jedec; |
| u16 ext_jedec; |
| struct flash_info *info; |
| |
| /* JEDEC also defines an optional "extended device information" |
| * string for after vendor-specific data, after the three bytes |
| * we use here. Supporting some chips might require using it. |
| */ |
| tmp = spi_write_then_read(spi, &code, 1, id, 5); |
| if (tmp < 0) { |
| pr_debug("%s: error %d reading JEDEC ID\n", |
| dev_name(&spi->dev), tmp); |
| return ERR_PTR(tmp); |
| } |
| jedec = id[0]; |
| jedec = jedec << 8; |
| jedec |= id[1]; |
| jedec = jedec << 8; |
| jedec |= id[2]; |
| |
| ext_jedec = id[3] << 8 | id[4]; |
| |
| for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) { |
| info = (void *)m25p_ids[tmp].driver_data; |
| if (info->jedec_id == jedec) { |
| if (info->ext_id != 0 && info->ext_id != ext_jedec) |
| continue; |
| return &m25p_ids[tmp]; |
| } |
| } |
| dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec); |
| return ERR_PTR(-ENODEV); |
| } |
| |
| |
| /* |
| * board specific setup should have ensured the SPI clock used here |
| * matches what the READ command supports, at least until this driver |
| * understands FAST_READ (for clocks over 25 MHz). |
| */ |
| static int m25p_probe(struct spi_device *spi) |
| { |
| const struct spi_device_id *id = spi_get_device_id(spi); |
| struct flash_platform_data *data; |
| struct m25p *flash; |
| struct flash_info *info; |
| unsigned i; |
| struct mtd_part_parser_data ppdata; |
| struct device_node *np = spi->dev.of_node; |
| int ret; |
| |
| /* Platform data helps sort out which chip type we have, as |
| * well as how this board partitions it. If we don't have |
| * a chip ID, try the JEDEC id commands; they'll work for most |
| * newer chips, even if we don't recognize the particular chip. |
| */ |
| data = dev_get_platdata(&spi->dev); |
| if (data && data->type) { |
| const struct spi_device_id *plat_id; |
| |
| for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) { |
| plat_id = &m25p_ids[i]; |
| if (strcmp(data->type, plat_id->name)) |
| continue; |
| break; |
| } |
| |
| if (i < ARRAY_SIZE(m25p_ids) - 1) |
| id = plat_id; |
| else |
| dev_warn(&spi->dev, "unrecognized id %s\n", data->type); |
| } |
| |
| info = (void *)id->driver_data; |
| |
| if (info->jedec_id) { |
| const struct spi_device_id *jid; |
| |
| jid = jedec_probe(spi); |
| if (IS_ERR(jid)) { |
| return PTR_ERR(jid); |
| } else if (jid != id) { |
| /* |
| * JEDEC knows better, so overwrite platform ID. We |
| * can't trust partitions any longer, but we'll let |
| * mtd apply them anyway, since some partitions may be |
| * marked read-only, and we don't want to lose that |
| * information, even if it's not 100% accurate. |
| */ |
| dev_warn(&spi->dev, "found %s, expected %s\n", |
| jid->name, id->name); |
| id = jid; |
| info = (void *)jid->driver_data; |
| } |
| } |
| |
| flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL); |
| if (!flash) |
| return -ENOMEM; |
| |
| flash->command = devm_kzalloc(&spi->dev, MAX_CMD_SIZE, GFP_KERNEL); |
| if (!flash->command) |
| return -ENOMEM; |
| |
| flash->spi = spi; |
| mutex_init(&flash->lock); |
| spi_set_drvdata(spi, flash); |
| |
| /* |
| * Atmel, SST and Intel/Numonyx serial flash tend to power |
| * up with the software protection bits set |
| */ |
| |
| if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL || |
| JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL || |
| JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) { |
| write_enable(flash); |
| write_sr(flash, 0); |
| } |
| |
| if (data && data->name) |
| flash->mtd.name = data->name; |
| else |
| flash->mtd.name = dev_name(&spi->dev); |
| |
| flash->mtd.type = MTD_NORFLASH; |
| flash->mtd.writesize = 1; |
| flash->mtd.flags = MTD_CAP_NORFLASH; |
| flash->mtd.size = info->sector_size * info->n_sectors; |
| flash->mtd._erase = m25p80_erase; |
| flash->mtd._read = m25p80_read; |
| |
| /* flash protection support for STmicro chips */ |
| if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) { |
| flash->mtd._lock = m25p80_lock; |
| flash->mtd._unlock = m25p80_unlock; |
| } |
| |
| /* sst flash chips use AAI word program */ |
| if (info->flags & SST_WRITE) |
| flash->mtd._write = sst_write; |
| else |
| flash->mtd._write = m25p80_write; |
| |
| /* prefer "small sector" erase if possible */ |
| if (info->flags & SECT_4K) { |
| flash->erase_opcode = OPCODE_BE_4K; |
| flash->mtd.erasesize = 4096; |
| } else if (info->flags & SECT_4K_PMC) { |
| flash->erase_opcode = OPCODE_BE_4K_PMC; |
| flash->mtd.erasesize = 4096; |
| } else { |
| flash->erase_opcode = OPCODE_SE; |
| flash->mtd.erasesize = info->sector_size; |
| } |
| |
| if (info->flags & M25P_NO_ERASE) |
| flash->mtd.flags |= MTD_NO_ERASE; |
| |
| ppdata.of_node = spi->dev.of_node; |
| flash->mtd.dev.parent = &spi->dev; |
| flash->page_size = info->page_size; |
| flash->mtd.writebufsize = flash->page_size; |
| |
| if (np) { |
| /* If we were instantiated by DT, use it */ |
| if (of_property_read_bool(np, "m25p,fast-read")) |
| flash->flash_read = M25P80_FAST; |
| else |
| flash->flash_read = M25P80_NORMAL; |
| } else { |
| /* If we weren't instantiated by DT, default to fast-read */ |
| flash->flash_read = M25P80_FAST; |
| } |
| |
| /* Some devices cannot do fast-read, no matter what DT tells us */ |
| if (info->flags & M25P_NO_FR) |
| flash->flash_read = M25P80_NORMAL; |
| |
| /* Quad-read mode takes precedence over fast/normal */ |
| if (spi->mode & SPI_RX_QUAD && info->flags & M25P80_QUAD_READ) { |
| ret = set_quad_mode(flash, info->jedec_id); |
| if (ret) { |
| dev_err(&flash->spi->dev, "quad mode not supported\n"); |
| return ret; |
| } |
| flash->flash_read = M25P80_QUAD; |
| } |
| |
| /* Default commands */ |
| switch (flash->flash_read) { |
| case M25P80_QUAD: |
| flash->read_opcode = OPCODE_QUAD_READ; |
| break; |
| case M25P80_FAST: |
| flash->read_opcode = OPCODE_FAST_READ; |
| break; |
| case M25P80_NORMAL: |
| flash->read_opcode = OPCODE_NORM_READ; |
| break; |
| default: |
| dev_err(&flash->spi->dev, "No Read opcode defined\n"); |
| return -EINVAL; |
| } |
| |
| flash->program_opcode = OPCODE_PP; |
| |
| if (info->addr_width) |
| flash->addr_width = info->addr_width; |
| else if (flash->mtd.size > 0x1000000) { |
| /* enable 4-byte addressing if the device exceeds 16MiB */ |
| flash->addr_width = 4; |
| if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) { |
| /* Dedicated 4-byte command set */ |
| switch (flash->flash_read) { |
| case M25P80_QUAD: |
| flash->read_opcode = OPCODE_QUAD_READ_4B; |
| break; |
| case M25P80_FAST: |
| flash->read_opcode = OPCODE_FAST_READ_4B; |
| break; |
| case M25P80_NORMAL: |
| flash->read_opcode = OPCODE_NORM_READ_4B; |
| break; |
| } |
| flash->program_opcode = OPCODE_PP_4B; |
| /* No small sector erase for 4-byte command set */ |
| flash->erase_opcode = OPCODE_SE_4B; |
| flash->mtd.erasesize = info->sector_size; |
| } else |
| set_4byte(flash, info->jedec_id, 1); |
| } else { |
| flash->addr_width = 3; |
| } |
| |
| dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name, |
| (long long)flash->mtd.size >> 10); |
| |
| pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) " |
| ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", |
| flash->mtd.name, |
| (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20), |
| flash->mtd.erasesize, flash->mtd.erasesize / 1024, |
| flash->mtd.numeraseregions); |
| |
| if (flash->mtd.numeraseregions) |
| for (i = 0; i < flash->mtd.numeraseregions; i++) |
| pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, " |
| ".erasesize = 0x%.8x (%uKiB), " |
| ".numblocks = %d }\n", |
| i, (long long)flash->mtd.eraseregions[i].offset, |
| flash->mtd.eraseregions[i].erasesize, |
| flash->mtd.eraseregions[i].erasesize / 1024, |
| flash->mtd.eraseregions[i].numblocks); |
| |
| |
| /* partitions should match sector boundaries; and it may be good to |
| * use readonly partitions for writeprotected sectors (BP2..BP0). |
| */ |
| return mtd_device_parse_register(&flash->mtd, NULL, &ppdata, |
| data ? data->parts : NULL, |
| data ? data->nr_parts : 0); |
| } |
| |
| |
| static int m25p_remove(struct spi_device *spi) |
| { |
| struct m25p *flash = spi_get_drvdata(spi); |
| |
| /* Clean up MTD stuff. */ |
| return mtd_device_unregister(&flash->mtd); |
| } |
| |
| |
| static struct spi_driver m25p80_driver = { |
| .driver = { |
| .name = "m25p80", |
| .owner = THIS_MODULE, |
| }, |
| .id_table = m25p_ids, |
| .probe = m25p_probe, |
| .remove = m25p_remove, |
| |
| /* REVISIT: many of these chips have deep power-down modes, which |
| * should clearly be entered on suspend() to minimize power use. |
| * And also when they're otherwise idle... |
| */ |
| }; |
| |
| module_spi_driver(m25p80_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Mike Lavender"); |
| MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips"); |