| /* |
| * Procedures for maintaining information about logical memory blocks. |
| * |
| * Peter Bergner, IBM Corp. June 2001. |
| * Copyright (C) 2001 Peter Bergner. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/bitops.h> |
| #include <linux/lmb.h> |
| |
| #undef DEBUG |
| |
| #ifdef DEBUG |
| #define DBG(fmt...) LMB_DBG(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| #define LMB_ALLOC_ANYWHERE 0 |
| |
| struct lmb lmb; |
| |
| void lmb_dump_all(void) |
| { |
| #ifdef DEBUG |
| unsigned long i; |
| |
| DBG("lmb_dump_all:\n"); |
| DBG(" memory.cnt = 0x%lx\n", lmb.memory.cnt); |
| DBG(" memory.size = 0x%llx\n", |
| (unsigned long long)lmb.memory.size); |
| for (i=0; i < lmb.memory.cnt ;i++) { |
| DBG(" memory.region[0x%x].base = 0x%llx\n", |
| i, (unsigned long long)lmb.memory.region[i].base); |
| DBG(" .size = 0x%llx\n", |
| (unsigned long long)lmb.memory.region[i].size); |
| } |
| |
| DBG("\n reserved.cnt = 0x%lx\n", lmb.reserved.cnt); |
| DBG(" reserved.size = 0x%lx\n", lmb.reserved.size); |
| for (i=0; i < lmb.reserved.cnt ;i++) { |
| DBG(" reserved.region[0x%x].base = 0x%llx\n", |
| i, (unsigned long long)lmb.reserved.region[i].base); |
| DBG(" .size = 0x%llx\n", |
| (unsigned long long)lmb.reserved.region[i].size); |
| } |
| #endif /* DEBUG */ |
| } |
| |
| static unsigned long __init lmb_addrs_overlap(u64 base1, |
| u64 size1, u64 base2, u64 size2) |
| { |
| return ((base1 < (base2+size2)) && (base2 < (base1+size1))); |
| } |
| |
| static long __init lmb_addrs_adjacent(u64 base1, u64 size1, |
| u64 base2, u64 size2) |
| { |
| if (base2 == base1 + size1) |
| return 1; |
| else if (base1 == base2 + size2) |
| return -1; |
| |
| return 0; |
| } |
| |
| static long __init lmb_regions_adjacent(struct lmb_region *rgn, |
| unsigned long r1, unsigned long r2) |
| { |
| u64 base1 = rgn->region[r1].base; |
| u64 size1 = rgn->region[r1].size; |
| u64 base2 = rgn->region[r2].base; |
| u64 size2 = rgn->region[r2].size; |
| |
| return lmb_addrs_adjacent(base1, size1, base2, size2); |
| } |
| |
| static void __init lmb_remove_region(struct lmb_region *rgn, unsigned long r) |
| { |
| unsigned long i; |
| |
| for (i = r; i < rgn->cnt - 1; i++) { |
| rgn->region[i].base = rgn->region[i + 1].base; |
| rgn->region[i].size = rgn->region[i + 1].size; |
| } |
| rgn->cnt--; |
| } |
| |
| /* Assumption: base addr of region 1 < base addr of region 2 */ |
| static void __init lmb_coalesce_regions(struct lmb_region *rgn, |
| unsigned long r1, unsigned long r2) |
| { |
| rgn->region[r1].size += rgn->region[r2].size; |
| lmb_remove_region(rgn, r2); |
| } |
| |
| /* This routine called with relocation disabled. */ |
| void __init lmb_init(void) |
| { |
| /* Create a dummy zero size LMB which will get coalesced away later. |
| * This simplifies the lmb_add() code below... |
| */ |
| lmb.memory.region[0].base = 0; |
| lmb.memory.region[0].size = 0; |
| lmb.memory.cnt = 1; |
| |
| /* Ditto. */ |
| lmb.reserved.region[0].base = 0; |
| lmb.reserved.region[0].size = 0; |
| lmb.reserved.cnt = 1; |
| } |
| |
| /* This routine may be called with relocation disabled. */ |
| void __init lmb_analyze(void) |
| { |
| int i; |
| |
| lmb.memory.size = 0; |
| |
| for (i = 0; i < lmb.memory.cnt; i++) |
| lmb.memory.size += lmb.memory.region[i].size; |
| } |
| |
| /* This routine called with relocation disabled. */ |
| static long __init lmb_add_region(struct lmb_region *rgn, u64 base, u64 size) |
| { |
| unsigned long coalesced = 0; |
| long adjacent, i; |
| |
| if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) { |
| rgn->region[0].base = base; |
| rgn->region[0].size = size; |
| return 0; |
| } |
| |
| /* First try and coalesce this LMB with another. */ |
| for (i=0; i < rgn->cnt; i++) { |
| u64 rgnbase = rgn->region[i].base; |
| u64 rgnsize = rgn->region[i].size; |
| |
| if ((rgnbase == base) && (rgnsize == size)) |
| /* Already have this region, so we're done */ |
| return 0; |
| |
| adjacent = lmb_addrs_adjacent(base,size,rgnbase,rgnsize); |
| if ( adjacent > 0 ) { |
| rgn->region[i].base -= size; |
| rgn->region[i].size += size; |
| coalesced++; |
| break; |
| } |
| else if ( adjacent < 0 ) { |
| rgn->region[i].size += size; |
| coalesced++; |
| break; |
| } |
| } |
| |
| if ((i < rgn->cnt-1) && lmb_regions_adjacent(rgn, i, i+1) ) { |
| lmb_coalesce_regions(rgn, i, i+1); |
| coalesced++; |
| } |
| |
| if (coalesced) |
| return coalesced; |
| if (rgn->cnt >= MAX_LMB_REGIONS) |
| return -1; |
| |
| /* Couldn't coalesce the LMB, so add it to the sorted table. */ |
| for (i = rgn->cnt-1; i >= 0; i--) { |
| if (base < rgn->region[i].base) { |
| rgn->region[i+1].base = rgn->region[i].base; |
| rgn->region[i+1].size = rgn->region[i].size; |
| } else { |
| rgn->region[i+1].base = base; |
| rgn->region[i+1].size = size; |
| break; |
| } |
| } |
| |
| if (base < rgn->region[0].base) { |
| rgn->region[0].base = base; |
| rgn->region[0].size = size; |
| } |
| rgn->cnt++; |
| |
| return 0; |
| } |
| |
| /* This routine may be called with relocation disabled. */ |
| long __init lmb_add(u64 base, u64 size) |
| { |
| struct lmb_region *_rgn = &(lmb.memory); |
| |
| /* On pSeries LPAR systems, the first LMB is our RMO region. */ |
| if (base == 0) |
| lmb.rmo_size = size; |
| |
| return lmb_add_region(_rgn, base, size); |
| |
| } |
| |
| long __init lmb_reserve(u64 base, u64 size) |
| { |
| struct lmb_region *_rgn = &(lmb.reserved); |
| |
| BUG_ON(0 == size); |
| |
| return lmb_add_region(_rgn, base, size); |
| } |
| |
| long __init lmb_overlaps_region(struct lmb_region *rgn, u64 base, |
| u64 size) |
| { |
| unsigned long i; |
| |
| for (i=0; i < rgn->cnt; i++) { |
| u64 rgnbase = rgn->region[i].base; |
| u64 rgnsize = rgn->region[i].size; |
| if ( lmb_addrs_overlap(base,size,rgnbase,rgnsize) ) { |
| break; |
| } |
| } |
| |
| return (i < rgn->cnt) ? i : -1; |
| } |
| |
| static u64 lmb_align_down(u64 addr, u64 size) |
| { |
| return addr & ~(size - 1); |
| } |
| |
| static u64 lmb_align_up(u64 addr, u64 size) |
| { |
| return (addr + (size - 1)) & ~(size - 1); |
| } |
| |
| static u64 __init lmb_alloc_nid_unreserved(u64 start, u64 end, |
| u64 size, u64 align) |
| { |
| u64 base; |
| long j; |
| |
| base = lmb_align_down((end - size), align); |
| while (start <= base && |
| ((j = lmb_overlaps_region(&lmb.reserved, base, size)) >= 0)) |
| base = lmb_align_down(lmb.reserved.region[j].base - size, |
| align); |
| |
| if (base != 0 && start <= base) { |
| if (lmb_add_region(&lmb.reserved, base, |
| lmb_align_up(size, align)) < 0) |
| base = ~(u64)0; |
| return base; |
| } |
| |
| return ~(u64)0; |
| } |
| |
| static u64 __init lmb_alloc_nid_region(struct lmb_property *mp, |
| u64 (*nid_range)(u64, u64, int *), |
| u64 size, u64 align, int nid) |
| { |
| u64 start, end; |
| |
| start = mp->base; |
| end = start + mp->size; |
| |
| start = lmb_align_up(start, align); |
| while (start < end) { |
| u64 this_end; |
| int this_nid; |
| |
| this_end = nid_range(start, end, &this_nid); |
| if (this_nid == nid) { |
| u64 ret = lmb_alloc_nid_unreserved(start, this_end, |
| size, align); |
| if (ret != ~(u64)0) |
| return ret; |
| } |
| start = this_end; |
| } |
| |
| return ~(u64)0; |
| } |
| |
| u64 __init lmb_alloc_nid(u64 size, u64 align, int nid, |
| u64 (*nid_range)(u64 start, u64 end, int *nid)) |
| { |
| struct lmb_region *mem = &lmb.memory; |
| int i; |
| |
| for (i = 0; i < mem->cnt; i++) { |
| u64 ret = lmb_alloc_nid_region(&mem->region[i], |
| nid_range, |
| size, align, nid); |
| if (ret != ~(u64)0) |
| return ret; |
| } |
| |
| return lmb_alloc(size, align); |
| } |
| |
| u64 __init lmb_alloc(u64 size, u64 align) |
| { |
| return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE); |
| } |
| |
| u64 __init lmb_alloc_base(u64 size, u64 align, u64 max_addr) |
| { |
| u64 alloc; |
| |
| alloc = __lmb_alloc_base(size, align, max_addr); |
| |
| if (alloc == 0) |
| panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", |
| (unsigned long long) size, (unsigned long long) max_addr); |
| |
| return alloc; |
| } |
| |
| u64 __init __lmb_alloc_base(u64 size, u64 align, u64 max_addr) |
| { |
| long i, j; |
| u64 base = 0; |
| |
| BUG_ON(0 == size); |
| |
| /* On some platforms, make sure we allocate lowmem */ |
| if (max_addr == LMB_ALLOC_ANYWHERE) |
| max_addr = LMB_REAL_LIMIT; |
| |
| for (i = lmb.memory.cnt-1; i >= 0; i--) { |
| u64 lmbbase = lmb.memory.region[i].base; |
| u64 lmbsize = lmb.memory.region[i].size; |
| |
| if (max_addr == LMB_ALLOC_ANYWHERE) |
| base = lmb_align_down(lmbbase + lmbsize - size, align); |
| else if (lmbbase < max_addr) { |
| base = min(lmbbase + lmbsize, max_addr); |
| base = lmb_align_down(base - size, align); |
| } else |
| continue; |
| |
| while ((lmbbase <= base) && |
| ((j = lmb_overlaps_region(&lmb.reserved, base, size)) >= 0) ) |
| base = lmb_align_down(lmb.reserved.region[j].base - size, |
| align); |
| |
| if ((base != 0) && (lmbbase <= base)) |
| break; |
| } |
| |
| if (i < 0) |
| return 0; |
| |
| if (lmb_add_region(&lmb.reserved, base, lmb_align_up(size, align)) < 0) |
| return 0; |
| |
| return base; |
| } |
| |
| /* You must call lmb_analyze() before this. */ |
| u64 __init lmb_phys_mem_size(void) |
| { |
| return lmb.memory.size; |
| } |
| |
| u64 __init lmb_end_of_DRAM(void) |
| { |
| int idx = lmb.memory.cnt - 1; |
| |
| return (lmb.memory.region[idx].base + lmb.memory.region[idx].size); |
| } |
| |
| /* You must call lmb_analyze() after this. */ |
| void __init lmb_enforce_memory_limit(u64 memory_limit) |
| { |
| unsigned long i; |
| u64 limit; |
| struct lmb_property *p; |
| |
| if (! memory_limit) |
| return; |
| |
| /* Truncate the lmb regions to satisfy the memory limit. */ |
| limit = memory_limit; |
| for (i = 0; i < lmb.memory.cnt; i++) { |
| if (limit > lmb.memory.region[i].size) { |
| limit -= lmb.memory.region[i].size; |
| continue; |
| } |
| |
| lmb.memory.region[i].size = limit; |
| lmb.memory.cnt = i + 1; |
| break; |
| } |
| |
| if (lmb.memory.region[0].size < lmb.rmo_size) |
| lmb.rmo_size = lmb.memory.region[0].size; |
| |
| /* And truncate any reserves above the limit also. */ |
| for (i = 0; i < lmb.reserved.cnt; i++) { |
| p = &lmb.reserved.region[i]; |
| |
| if (p->base > memory_limit) |
| p->size = 0; |
| else if ((p->base + p->size) > memory_limit) |
| p->size = memory_limit - p->base; |
| |
| if (p->size == 0) { |
| lmb_remove_region(&lmb.reserved, i); |
| i--; |
| } |
| } |
| } |
| |
| int __init lmb_is_reserved(u64 addr) |
| { |
| int i; |
| |
| for (i = 0; i < lmb.reserved.cnt; i++) { |
| u64 upper = lmb.reserved.region[i].base + |
| lmb.reserved.region[i].size - 1; |
| if ((addr >= lmb.reserved.region[i].base) && (addr <= upper)) |
| return 1; |
| } |
| return 0; |
| } |