| #ifndef _ASM_X86_SPINLOCK_H |
| #define _ASM_X86_SPINLOCK_H |
| |
| #include <linux/atomic.h> |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| #include <linux/compiler.h> |
| #include <asm/paravirt.h> |
| /* |
| * Your basic SMP spinlocks, allowing only a single CPU anywhere |
| * |
| * Simple spin lock operations. There are two variants, one clears IRQ's |
| * on the local processor, one does not. |
| * |
| * These are fair FIFO ticket locks, which support up to 2^16 CPUs. |
| * |
| * (the type definitions are in asm/spinlock_types.h) |
| */ |
| |
| #ifdef CONFIG_X86_32 |
| # define LOCK_PTR_REG "a" |
| #else |
| # define LOCK_PTR_REG "D" |
| #endif |
| |
| #if defined(CONFIG_X86_32) && \ |
| (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE)) |
| /* |
| * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock |
| * (PPro errata 66, 92) |
| */ |
| # define UNLOCK_LOCK_PREFIX LOCK_PREFIX |
| #else |
| # define UNLOCK_LOCK_PREFIX |
| #endif |
| |
| /* |
| * Ticket locks are conceptually two parts, one indicating the current head of |
| * the queue, and the other indicating the current tail. The lock is acquired |
| * by atomically noting the tail and incrementing it by one (thus adding |
| * ourself to the queue and noting our position), then waiting until the head |
| * becomes equal to the the initial value of the tail. |
| * |
| * We use an xadd covering *both* parts of the lock, to increment the tail and |
| * also load the position of the head, which takes care of memory ordering |
| * issues and should be optimal for the uncontended case. Note the tail must be |
| * in the high part, because a wide xadd increment of the low part would carry |
| * up and contaminate the high part. |
| */ |
| static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock) |
| { |
| register struct __raw_tickets inc = { .tail = 1 }; |
| |
| inc = xadd(&lock->tickets, inc); |
| |
| for (;;) { |
| if (inc.head == inc.tail) |
| break; |
| cpu_relax(); |
| inc.head = ACCESS_ONCE(lock->tickets.head); |
| } |
| barrier(); /* make sure nothing creeps before the lock is taken */ |
| } |
| |
| static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock) |
| { |
| arch_spinlock_t old, new; |
| |
| old.tickets = ACCESS_ONCE(lock->tickets); |
| if (old.tickets.head != old.tickets.tail) |
| return 0; |
| |
| new.head_tail = old.head_tail + (1 << TICKET_SHIFT); |
| |
| /* cmpxchg is a full barrier, so nothing can move before it */ |
| return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail; |
| } |
| |
| static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock) |
| { |
| __add(&lock->tickets.head, 1, UNLOCK_LOCK_PREFIX); |
| } |
| |
| static inline int __ticket_spin_is_locked(arch_spinlock_t *lock) |
| { |
| struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets); |
| |
| return tmp.tail != tmp.head; |
| } |
| |
| static inline int __ticket_spin_is_contended(arch_spinlock_t *lock) |
| { |
| struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets); |
| |
| return (__ticket_t)(tmp.tail - tmp.head) > 1; |
| } |
| |
| #ifndef CONFIG_PARAVIRT_SPINLOCKS |
| |
| static inline int arch_spin_is_locked(arch_spinlock_t *lock) |
| { |
| return __ticket_spin_is_locked(lock); |
| } |
| |
| static inline int arch_spin_is_contended(arch_spinlock_t *lock) |
| { |
| return __ticket_spin_is_contended(lock); |
| } |
| #define arch_spin_is_contended arch_spin_is_contended |
| |
| static __always_inline void arch_spin_lock(arch_spinlock_t *lock) |
| { |
| __ticket_spin_lock(lock); |
| } |
| |
| static __always_inline int arch_spin_trylock(arch_spinlock_t *lock) |
| { |
| return __ticket_spin_trylock(lock); |
| } |
| |
| static __always_inline void arch_spin_unlock(arch_spinlock_t *lock) |
| { |
| __ticket_spin_unlock(lock); |
| } |
| |
| static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock, |
| unsigned long flags) |
| { |
| arch_spin_lock(lock); |
| } |
| |
| #endif /* CONFIG_PARAVIRT_SPINLOCKS */ |
| |
| static inline void arch_spin_unlock_wait(arch_spinlock_t *lock) |
| { |
| while (arch_spin_is_locked(lock)) |
| cpu_relax(); |
| } |
| |
| /* |
| * Read-write spinlocks, allowing multiple readers |
| * but only one writer. |
| * |
| * NOTE! it is quite common to have readers in interrupts |
| * but no interrupt writers. For those circumstances we |
| * can "mix" irq-safe locks - any writer needs to get a |
| * irq-safe write-lock, but readers can get non-irqsafe |
| * read-locks. |
| * |
| * On x86, we implement read-write locks as a 32-bit counter |
| * with the high bit (sign) being the "contended" bit. |
| */ |
| |
| /** |
| * read_can_lock - would read_trylock() succeed? |
| * @lock: the rwlock in question. |
| */ |
| static inline int arch_read_can_lock(arch_rwlock_t *lock) |
| { |
| return lock->lock > 0; |
| } |
| |
| /** |
| * write_can_lock - would write_trylock() succeed? |
| * @lock: the rwlock in question. |
| */ |
| static inline int arch_write_can_lock(arch_rwlock_t *lock) |
| { |
| return lock->write == WRITE_LOCK_CMP; |
| } |
| |
| static inline void arch_read_lock(arch_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t" |
| "jns 1f\n" |
| "call __read_lock_failed\n\t" |
| "1:\n" |
| ::LOCK_PTR_REG (rw) : "memory"); |
| } |
| |
| static inline void arch_write_lock(arch_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t" |
| "jz 1f\n" |
| "call __write_lock_failed\n\t" |
| "1:\n" |
| ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS) |
| : "memory"); |
| } |
| |
| static inline int arch_read_trylock(arch_rwlock_t *lock) |
| { |
| READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock; |
| |
| if (READ_LOCK_ATOMIC(dec_return)(count) >= 0) |
| return 1; |
| READ_LOCK_ATOMIC(inc)(count); |
| return 0; |
| } |
| |
| static inline int arch_write_trylock(arch_rwlock_t *lock) |
| { |
| atomic_t *count = (atomic_t *)&lock->write; |
| |
| if (atomic_sub_and_test(WRITE_LOCK_CMP, count)) |
| return 1; |
| atomic_add(WRITE_LOCK_CMP, count); |
| return 0; |
| } |
| |
| static inline void arch_read_unlock(arch_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0" |
| :"+m" (rw->lock) : : "memory"); |
| } |
| |
| static inline void arch_write_unlock(arch_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0" |
| : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory"); |
| } |
| |
| #define arch_read_lock_flags(lock, flags) arch_read_lock(lock) |
| #define arch_write_lock_flags(lock, flags) arch_write_lock(lock) |
| |
| #undef READ_LOCK_SIZE |
| #undef READ_LOCK_ATOMIC |
| #undef WRITE_LOCK_ADD |
| #undef WRITE_LOCK_SUB |
| #undef WRITE_LOCK_CMP |
| |
| #define arch_spin_relax(lock) cpu_relax() |
| #define arch_read_relax(lock) cpu_relax() |
| #define arch_write_relax(lock) cpu_relax() |
| |
| /* The {read|write|spin}_lock() on x86 are full memory barriers. */ |
| static inline void smp_mb__after_lock(void) { } |
| #define ARCH_HAS_SMP_MB_AFTER_LOCK |
| |
| #endif /* _ASM_X86_SPINLOCK_H */ |