| /* |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Derived from "arch/i386/mm/fault.c" |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * |
| * Modified by Cort Dougan and Paul Mackerras. |
| * |
| * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/ptrace.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/highmem.h> |
| #include <linux/module.h> |
| #include <linux/kprobes.h> |
| #include <linux/kdebug.h> |
| #include <linux/perf_event.h> |
| #include <linux/magic.h> |
| #include <linux/ratelimit.h> |
| |
| #include <asm/firmware.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu.h> |
| #include <asm/mmu_context.h> |
| #include <asm/uaccess.h> |
| #include <asm/tlbflush.h> |
| #include <asm/siginfo.h> |
| #include <asm/debug.h> |
| #include <mm/mmu_decl.h> |
| |
| #include "icswx.h" |
| |
| #ifdef CONFIG_KPROBES |
| static inline int notify_page_fault(struct pt_regs *regs) |
| { |
| int ret = 0; |
| |
| /* kprobe_running() needs smp_processor_id() */ |
| if (!user_mode(regs)) { |
| preempt_disable(); |
| if (kprobe_running() && kprobe_fault_handler(regs, 11)) |
| ret = 1; |
| preempt_enable(); |
| } |
| |
| return ret; |
| } |
| #else |
| static inline int notify_page_fault(struct pt_regs *regs) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Check whether the instruction at regs->nip is a store using |
| * an update addressing form which will update r1. |
| */ |
| static int store_updates_sp(struct pt_regs *regs) |
| { |
| unsigned int inst; |
| |
| if (get_user(inst, (unsigned int __user *)regs->nip)) |
| return 0; |
| /* check for 1 in the rA field */ |
| if (((inst >> 16) & 0x1f) != 1) |
| return 0; |
| /* check major opcode */ |
| switch (inst >> 26) { |
| case 37: /* stwu */ |
| case 39: /* stbu */ |
| case 45: /* sthu */ |
| case 53: /* stfsu */ |
| case 55: /* stfdu */ |
| return 1; |
| case 62: /* std or stdu */ |
| return (inst & 3) == 1; |
| case 31: |
| /* check minor opcode */ |
| switch ((inst >> 1) & 0x3ff) { |
| case 181: /* stdux */ |
| case 183: /* stwux */ |
| case 247: /* stbux */ |
| case 439: /* sthux */ |
| case 695: /* stfsux */ |
| case 759: /* stfdux */ |
| return 1; |
| } |
| } |
| return 0; |
| } |
| /* |
| * do_page_fault error handling helpers |
| */ |
| |
| #define MM_FAULT_RETURN 0 |
| #define MM_FAULT_CONTINUE -1 |
| #define MM_FAULT_ERR(sig) (sig) |
| |
| static int do_sigbus(struct pt_regs *regs, unsigned long address) |
| { |
| siginfo_t info; |
| |
| up_read(¤t->mm->mmap_sem); |
| |
| if (user_mode(regs)) { |
| current->thread.trap_nr = BUS_ADRERR; |
| info.si_signo = SIGBUS; |
| info.si_errno = 0; |
| info.si_code = BUS_ADRERR; |
| info.si_addr = (void __user *)address; |
| force_sig_info(SIGBUS, &info, current); |
| return MM_FAULT_RETURN; |
| } |
| return MM_FAULT_ERR(SIGBUS); |
| } |
| |
| static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault) |
| { |
| /* |
| * Pagefault was interrupted by SIGKILL. We have no reason to |
| * continue the pagefault. |
| */ |
| if (fatal_signal_pending(current)) { |
| /* |
| * If we have retry set, the mmap semaphore will have |
| * alrady been released in __lock_page_or_retry(). Else |
| * we release it now. |
| */ |
| if (!(fault & VM_FAULT_RETRY)) |
| up_read(¤t->mm->mmap_sem); |
| /* Coming from kernel, we need to deal with uaccess fixups */ |
| if (user_mode(regs)) |
| return MM_FAULT_RETURN; |
| return MM_FAULT_ERR(SIGKILL); |
| } |
| |
| /* No fault: be happy */ |
| if (!(fault & VM_FAULT_ERROR)) |
| return MM_FAULT_CONTINUE; |
| |
| /* Out of memory */ |
| if (fault & VM_FAULT_OOM) { |
| up_read(¤t->mm->mmap_sem); |
| |
| /* |
| * We ran out of memory, or some other thing happened to us that |
| * made us unable to handle the page fault gracefully. |
| */ |
| if (!user_mode(regs)) |
| return MM_FAULT_ERR(SIGKILL); |
| pagefault_out_of_memory(); |
| return MM_FAULT_RETURN; |
| } |
| |
| /* Bus error. x86 handles HWPOISON here, we'll add this if/when |
| * we support the feature in HW |
| */ |
| if (fault & VM_FAULT_SIGBUS) |
| return do_sigbus(regs, addr); |
| |
| /* We don't understand the fault code, this is fatal */ |
| BUG(); |
| return MM_FAULT_CONTINUE; |
| } |
| |
| /* |
| * For 600- and 800-family processors, the error_code parameter is DSISR |
| * for a data fault, SRR1 for an instruction fault. For 400-family processors |
| * the error_code parameter is ESR for a data fault, 0 for an instruction |
| * fault. |
| * For 64-bit processors, the error_code parameter is |
| * - DSISR for a non-SLB data access fault, |
| * - SRR1 & 0x08000000 for a non-SLB instruction access fault |
| * - 0 any SLB fault. |
| * |
| * The return value is 0 if the fault was handled, or the signal |
| * number if this is a kernel fault that can't be handled here. |
| */ |
| int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address, |
| unsigned long error_code) |
| { |
| struct vm_area_struct * vma; |
| struct mm_struct *mm = current->mm; |
| unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
| int code = SEGV_MAPERR; |
| int is_write = 0; |
| int trap = TRAP(regs); |
| int is_exec = trap == 0x400; |
| int fault; |
| |
| #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) |
| /* |
| * Fortunately the bit assignments in SRR1 for an instruction |
| * fault and DSISR for a data fault are mostly the same for the |
| * bits we are interested in. But there are some bits which |
| * indicate errors in DSISR but can validly be set in SRR1. |
| */ |
| if (trap == 0x400) |
| error_code &= 0x48200000; |
| else |
| is_write = error_code & DSISR_ISSTORE; |
| #else |
| is_write = error_code & ESR_DST; |
| #endif /* CONFIG_4xx || CONFIG_BOOKE */ |
| |
| if (is_write) |
| flags |= FAULT_FLAG_WRITE; |
| |
| #ifdef CONFIG_PPC_ICSWX |
| /* |
| * we need to do this early because this "data storage |
| * interrupt" does not update the DAR/DEAR so we don't want to |
| * look at it |
| */ |
| if (error_code & ICSWX_DSI_UCT) { |
| int rc = acop_handle_fault(regs, address, error_code); |
| if (rc) |
| return rc; |
| } |
| #endif /* CONFIG_PPC_ICSWX */ |
| |
| if (notify_page_fault(regs)) |
| return 0; |
| |
| if (unlikely(debugger_fault_handler(regs))) |
| return 0; |
| |
| /* On a kernel SLB miss we can only check for a valid exception entry */ |
| if (!user_mode(regs) && (address >= TASK_SIZE)) |
| return SIGSEGV; |
| |
| #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \ |
| defined(CONFIG_PPC_BOOK3S_64)) |
| if (error_code & DSISR_DABRMATCH) { |
| /* breakpoint match */ |
| do_break(regs, address, error_code); |
| return 0; |
| } |
| #endif |
| |
| /* We restore the interrupt state now */ |
| if (!arch_irq_disabled_regs(regs)) |
| local_irq_enable(); |
| |
| if (in_atomic() || mm == NULL) { |
| if (!user_mode(regs)) |
| return SIGSEGV; |
| /* in_atomic() in user mode is really bad, |
| as is current->mm == NULL. */ |
| printk(KERN_EMERG "Page fault in user mode with " |
| "in_atomic() = %d mm = %p\n", in_atomic(), mm); |
| printk(KERN_EMERG "NIP = %lx MSR = %lx\n", |
| regs->nip, regs->msr); |
| die("Weird page fault", regs, SIGSEGV); |
| } |
| |
| perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); |
| |
| /* When running in the kernel we expect faults to occur only to |
| * addresses in user space. All other faults represent errors in the |
| * kernel and should generate an OOPS. Unfortunately, in the case of an |
| * erroneous fault occurring in a code path which already holds mmap_sem |
| * we will deadlock attempting to validate the fault against the |
| * address space. Luckily the kernel only validly references user |
| * space from well defined areas of code, which are listed in the |
| * exceptions table. |
| * |
| * As the vast majority of faults will be valid we will only perform |
| * the source reference check when there is a possibility of a deadlock. |
| * Attempt to lock the address space, if we cannot we then validate the |
| * source. If this is invalid we can skip the address space check, |
| * thus avoiding the deadlock. |
| */ |
| if (!down_read_trylock(&mm->mmap_sem)) { |
| if (!user_mode(regs) && !search_exception_tables(regs->nip)) |
| goto bad_area_nosemaphore; |
| |
| retry: |
| down_read(&mm->mmap_sem); |
| } else { |
| /* |
| * The above down_read_trylock() might have succeeded in |
| * which case we'll have missed the might_sleep() from |
| * down_read(): |
| */ |
| might_sleep(); |
| } |
| |
| vma = find_vma(mm, address); |
| if (!vma) |
| goto bad_area; |
| if (vma->vm_start <= address) |
| goto good_area; |
| if (!(vma->vm_flags & VM_GROWSDOWN)) |
| goto bad_area; |
| |
| /* |
| * N.B. The POWER/Open ABI allows programs to access up to |
| * 288 bytes below the stack pointer. |
| * The kernel signal delivery code writes up to about 1.5kB |
| * below the stack pointer (r1) before decrementing it. |
| * The exec code can write slightly over 640kB to the stack |
| * before setting the user r1. Thus we allow the stack to |
| * expand to 1MB without further checks. |
| */ |
| if (address + 0x100000 < vma->vm_end) { |
| /* get user regs even if this fault is in kernel mode */ |
| struct pt_regs *uregs = current->thread.regs; |
| if (uregs == NULL) |
| goto bad_area; |
| |
| /* |
| * A user-mode access to an address a long way below |
| * the stack pointer is only valid if the instruction |
| * is one which would update the stack pointer to the |
| * address accessed if the instruction completed, |
| * i.e. either stwu rs,n(r1) or stwux rs,r1,rb |
| * (or the byte, halfword, float or double forms). |
| * |
| * If we don't check this then any write to the area |
| * between the last mapped region and the stack will |
| * expand the stack rather than segfaulting. |
| */ |
| if (address + 2048 < uregs->gpr[1] |
| && (!user_mode(regs) || !store_updates_sp(regs))) |
| goto bad_area; |
| } |
| if (expand_stack(vma, address)) |
| goto bad_area; |
| |
| good_area: |
| code = SEGV_ACCERR; |
| #if defined(CONFIG_6xx) |
| if (error_code & 0x95700000) |
| /* an error such as lwarx to I/O controller space, |
| address matching DABR, eciwx, etc. */ |
| goto bad_area; |
| #endif /* CONFIG_6xx */ |
| #if defined(CONFIG_8xx) |
| /* 8xx sometimes need to load a invalid/non-present TLBs. |
| * These must be invalidated separately as linux mm don't. |
| */ |
| if (error_code & 0x40000000) /* no translation? */ |
| _tlbil_va(address, 0, 0, 0); |
| |
| /* The MPC8xx seems to always set 0x80000000, which is |
| * "undefined". Of those that can be set, this is the only |
| * one which seems bad. |
| */ |
| if (error_code & 0x10000000) |
| /* Guarded storage error. */ |
| goto bad_area; |
| #endif /* CONFIG_8xx */ |
| |
| if (is_exec) { |
| #ifdef CONFIG_PPC_STD_MMU |
| /* Protection fault on exec go straight to failure on |
| * Hash based MMUs as they either don't support per-page |
| * execute permission, or if they do, it's handled already |
| * at the hash level. This test would probably have to |
| * be removed if we change the way this works to make hash |
| * processors use the same I/D cache coherency mechanism |
| * as embedded. |
| */ |
| if (error_code & DSISR_PROTFAULT) |
| goto bad_area; |
| #endif /* CONFIG_PPC_STD_MMU */ |
| |
| /* |
| * Allow execution from readable areas if the MMU does not |
| * provide separate controls over reading and executing. |
| * |
| * Note: That code used to not be enabled for 4xx/BookE. |
| * It is now as I/D cache coherency for these is done at |
| * set_pte_at() time and I see no reason why the test |
| * below wouldn't be valid on those processors. This -may- |
| * break programs compiled with a really old ABI though. |
| */ |
| if (!(vma->vm_flags & VM_EXEC) && |
| (cpu_has_feature(CPU_FTR_NOEXECUTE) || |
| !(vma->vm_flags & (VM_READ | VM_WRITE)))) |
| goto bad_area; |
| /* a write */ |
| } else if (is_write) { |
| if (!(vma->vm_flags & VM_WRITE)) |
| goto bad_area; |
| /* a read */ |
| } else { |
| /* protection fault */ |
| if (error_code & 0x08000000) |
| goto bad_area; |
| if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) |
| goto bad_area; |
| } |
| |
| /* |
| * If for any reason at all we couldn't handle the fault, |
| * make sure we exit gracefully rather than endlessly redo |
| * the fault. |
| */ |
| fault = handle_mm_fault(mm, vma, address, flags); |
| if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) { |
| int rc = mm_fault_error(regs, address, fault); |
| if (rc >= MM_FAULT_RETURN) |
| return rc; |
| } |
| |
| /* |
| * Major/minor page fault accounting is only done on the |
| * initial attempt. If we go through a retry, it is extremely |
| * likely that the page will be found in page cache at that point. |
| */ |
| if (flags & FAULT_FLAG_ALLOW_RETRY) { |
| if (fault & VM_FAULT_MAJOR) { |
| current->maj_flt++; |
| perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, |
| regs, address); |
| #ifdef CONFIG_PPC_SMLPAR |
| if (firmware_has_feature(FW_FEATURE_CMO)) { |
| preempt_disable(); |
| get_lppaca()->page_ins += (1 << PAGE_FACTOR); |
| preempt_enable(); |
| } |
| #endif /* CONFIG_PPC_SMLPAR */ |
| } else { |
| current->min_flt++; |
| perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, |
| regs, address); |
| } |
| if (fault & VM_FAULT_RETRY) { |
| /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk |
| * of starvation. */ |
| flags &= ~FAULT_FLAG_ALLOW_RETRY; |
| flags |= FAULT_FLAG_TRIED; |
| goto retry; |
| } |
| } |
| |
| up_read(&mm->mmap_sem); |
| return 0; |
| |
| bad_area: |
| up_read(&mm->mmap_sem); |
| |
| bad_area_nosemaphore: |
| /* User mode accesses cause a SIGSEGV */ |
| if (user_mode(regs)) { |
| _exception(SIGSEGV, regs, code, address); |
| return 0; |
| } |
| |
| if (is_exec && (error_code & DSISR_PROTFAULT)) |
| printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected" |
| " page (%lx) - exploit attempt? (uid: %d)\n", |
| address, from_kuid(&init_user_ns, current_uid())); |
| |
| return SIGSEGV; |
| |
| } |
| |
| /* |
| * bad_page_fault is called when we have a bad access from the kernel. |
| * It is called from the DSI and ISI handlers in head.S and from some |
| * of the procedures in traps.c. |
| */ |
| void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) |
| { |
| const struct exception_table_entry *entry; |
| unsigned long *stackend; |
| |
| /* Are we prepared to handle this fault? */ |
| if ((entry = search_exception_tables(regs->nip)) != NULL) { |
| regs->nip = entry->fixup; |
| return; |
| } |
| |
| /* kernel has accessed a bad area */ |
| |
| switch (regs->trap) { |
| case 0x300: |
| case 0x380: |
| printk(KERN_ALERT "Unable to handle kernel paging request for " |
| "data at address 0x%08lx\n", regs->dar); |
| break; |
| case 0x400: |
| case 0x480: |
| printk(KERN_ALERT "Unable to handle kernel paging request for " |
| "instruction fetch\n"); |
| break; |
| default: |
| printk(KERN_ALERT "Unable to handle kernel paging request for " |
| "unknown fault\n"); |
| break; |
| } |
| printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", |
| regs->nip); |
| |
| stackend = end_of_stack(current); |
| if (current != &init_task && *stackend != STACK_END_MAGIC) |
| printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); |
| |
| die("Kernel access of bad area", regs, sig); |
| } |