| /* |
| * linux/arch/arm/vfp/vfpsingle.c |
| * |
| * This code is derived in part from John R. Housers softfloat library, which |
| * carries the following notice: |
| * |
| * =========================================================================== |
| * This C source file is part of the SoftFloat IEC/IEEE Floating-point |
| * Arithmetic Package, Release 2. |
| * |
| * Written by John R. Hauser. This work was made possible in part by the |
| * International Computer Science Institute, located at Suite 600, 1947 Center |
| * Street, Berkeley, California 94704. Funding was partially provided by the |
| * National Science Foundation under grant MIP-9311980. The original version |
| * of this code was written as part of a project to build a fixed-point vector |
| * processor in collaboration with the University of California at Berkeley, |
| * overseen by Profs. Nelson Morgan and John Wawrzynek. More information |
| * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ |
| * arithmetic/softfloat.html'. |
| * |
| * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort |
| * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT |
| * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO |
| * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY |
| * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. |
| * |
| * Derivative works are acceptable, even for commercial purposes, so long as |
| * (1) they include prominent notice that the work is derivative, and (2) they |
| * include prominent notice akin to these three paragraphs for those parts of |
| * this code that are retained. |
| * =========================================================================== |
| */ |
| #include <linux/kernel.h> |
| #include <linux/bitops.h> |
| #include <asm/ptrace.h> |
| #include <asm/vfp.h> |
| |
| #include "vfpinstr.h" |
| #include "vfp.h" |
| |
| static struct vfp_single vfp_single_default_qnan = { |
| .exponent = 255, |
| .sign = 0, |
| .significand = VFP_SINGLE_SIGNIFICAND_QNAN, |
| }; |
| |
| static void vfp_single_dump(const char *str, struct vfp_single *s) |
| { |
| pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n", |
| str, s->sign != 0, s->exponent, s->significand); |
| } |
| |
| static void vfp_single_normalise_denormal(struct vfp_single *vs) |
| { |
| int bits = 31 - fls(vs->significand); |
| |
| vfp_single_dump("normalise_denormal: in", vs); |
| |
| if (bits) { |
| vs->exponent -= bits - 1; |
| vs->significand <<= bits; |
| } |
| |
| vfp_single_dump("normalise_denormal: out", vs); |
| } |
| |
| #ifndef DEBUG |
| #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except) |
| u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions) |
| #else |
| u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func) |
| #endif |
| { |
| u32 significand, incr, rmode; |
| int exponent, shift, underflow; |
| |
| vfp_single_dump("pack: in", vs); |
| |
| /* |
| * Infinities and NaNs are a special case. |
| */ |
| if (vs->exponent == 255 && (vs->significand == 0 || exceptions)) |
| goto pack; |
| |
| /* |
| * Special-case zero. |
| */ |
| if (vs->significand == 0) { |
| vs->exponent = 0; |
| goto pack; |
| } |
| |
| exponent = vs->exponent; |
| significand = vs->significand; |
| |
| /* |
| * Normalise first. Note that we shift the significand up to |
| * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least |
| * significant bit. |
| */ |
| shift = 32 - fls(significand); |
| if (shift < 32 && shift) { |
| exponent -= shift; |
| significand <<= shift; |
| } |
| |
| #ifdef DEBUG |
| vs->exponent = exponent; |
| vs->significand = significand; |
| vfp_single_dump("pack: normalised", vs); |
| #endif |
| |
| /* |
| * Tiny number? |
| */ |
| underflow = exponent < 0; |
| if (underflow) { |
| significand = vfp_shiftright32jamming(significand, -exponent); |
| exponent = 0; |
| #ifdef DEBUG |
| vs->exponent = exponent; |
| vs->significand = significand; |
| vfp_single_dump("pack: tiny number", vs); |
| #endif |
| if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))) |
| underflow = 0; |
| } |
| |
| /* |
| * Select rounding increment. |
| */ |
| incr = 0; |
| rmode = fpscr & FPSCR_RMODE_MASK; |
| |
| if (rmode == FPSCR_ROUND_NEAREST) { |
| incr = 1 << VFP_SINGLE_LOW_BITS; |
| if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0) |
| incr -= 1; |
| } else if (rmode == FPSCR_ROUND_TOZERO) { |
| incr = 0; |
| } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0)) |
| incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1; |
| |
| pr_debug("VFP: rounding increment = 0x%08x\n", incr); |
| |
| /* |
| * Is our rounding going to overflow? |
| */ |
| if ((significand + incr) < significand) { |
| exponent += 1; |
| significand = (significand >> 1) | (significand & 1); |
| incr >>= 1; |
| #ifdef DEBUG |
| vs->exponent = exponent; |
| vs->significand = significand; |
| vfp_single_dump("pack: overflow", vs); |
| #endif |
| } |
| |
| /* |
| * If any of the low bits (which will be shifted out of the |
| * number) are non-zero, the result is inexact. |
| */ |
| if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)) |
| exceptions |= FPSCR_IXC; |
| |
| /* |
| * Do our rounding. |
| */ |
| significand += incr; |
| |
| /* |
| * Infinity? |
| */ |
| if (exponent >= 254) { |
| exceptions |= FPSCR_OFC | FPSCR_IXC; |
| if (incr == 0) { |
| vs->exponent = 253; |
| vs->significand = 0x7fffffff; |
| } else { |
| vs->exponent = 255; /* infinity */ |
| vs->significand = 0; |
| } |
| } else { |
| if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0) |
| exponent = 0; |
| if (exponent || significand > 0x80000000) |
| underflow = 0; |
| if (underflow) |
| exceptions |= FPSCR_UFC; |
| vs->exponent = exponent; |
| vs->significand = significand >> 1; |
| } |
| |
| pack: |
| vfp_single_dump("pack: final", vs); |
| { |
| s32 d = vfp_single_pack(vs); |
| pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func, |
| sd, d, exceptions); |
| vfp_put_float(sd, d); |
| } |
| |
| return exceptions & ~VFP_NAN_FLAG; |
| } |
| |
| /* |
| * Propagate the NaN, setting exceptions if it is signalling. |
| * 'n' is always a NaN. 'm' may be a number, NaN or infinity. |
| */ |
| static u32 |
| vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn, |
| struct vfp_single *vsm, u32 fpscr) |
| { |
| struct vfp_single *nan; |
| int tn, tm = 0; |
| |
| tn = vfp_single_type(vsn); |
| |
| if (vsm) |
| tm = vfp_single_type(vsm); |
| |
| if (fpscr & FPSCR_DEFAULT_NAN) |
| /* |
| * Default NaN mode - always returns a quiet NaN |
| */ |
| nan = &vfp_single_default_qnan; |
| else { |
| /* |
| * Contemporary mode - select the first signalling |
| * NAN, or if neither are signalling, the first |
| * quiet NAN. |
| */ |
| if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) |
| nan = vsn; |
| else |
| nan = vsm; |
| /* |
| * Make the NaN quiet. |
| */ |
| nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN; |
| } |
| |
| *vsd = *nan; |
| |
| /* |
| * If one was a signalling NAN, raise invalid operation. |
| */ |
| return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; |
| } |
| |
| |
| /* |
| * Extended operations |
| */ |
| static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr) |
| { |
| vfp_put_float(sd, vfp_single_packed_abs(m)); |
| return 0; |
| } |
| |
| static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr) |
| { |
| vfp_put_float(sd, m); |
| return 0; |
| } |
| |
| static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr) |
| { |
| vfp_put_float(sd, vfp_single_packed_negate(m)); |
| return 0; |
| } |
| |
| static const u16 sqrt_oddadjust[] = { |
| 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0, |
| 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67 |
| }; |
| |
| static const u16 sqrt_evenadjust[] = { |
| 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e, |
| 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002 |
| }; |
| |
| u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand) |
| { |
| int index; |
| u32 z, a; |
| |
| if ((significand & 0xc0000000) != 0x40000000) { |
| printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n"); |
| } |
| |
| a = significand << 1; |
| index = (a >> 27) & 15; |
| if (exponent & 1) { |
| z = 0x4000 + (a >> 17) - sqrt_oddadjust[index]; |
| z = ((a / z) << 14) + (z << 15); |
| a >>= 1; |
| } else { |
| z = 0x8000 + (a >> 17) - sqrt_evenadjust[index]; |
| z = a / z + z; |
| z = (z >= 0x20000) ? 0xffff8000 : (z << 15); |
| if (z <= a) |
| return (s32)a >> 1; |
| } |
| return (u32)(((u64)a << 31) / z) + (z >> 1); |
| } |
| |
| static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr) |
| { |
| struct vfp_single vsm, vsd; |
| int ret, tm; |
| |
| vfp_single_unpack(&vsm, m); |
| tm = vfp_single_type(&vsm); |
| if (tm & (VFP_NAN|VFP_INFINITY)) { |
| struct vfp_single *vsp = &vsd; |
| |
| if (tm & VFP_NAN) |
| ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr); |
| else if (vsm.sign == 0) { |
| sqrt_copy: |
| vsp = &vsm; |
| ret = 0; |
| } else { |
| sqrt_invalid: |
| vsp = &vfp_single_default_qnan; |
| ret = FPSCR_IOC; |
| } |
| vfp_put_float(sd, vfp_single_pack(vsp)); |
| return ret; |
| } |
| |
| /* |
| * sqrt(+/- 0) == +/- 0 |
| */ |
| if (tm & VFP_ZERO) |
| goto sqrt_copy; |
| |
| /* |
| * Normalise a denormalised number |
| */ |
| if (tm & VFP_DENORMAL) |
| vfp_single_normalise_denormal(&vsm); |
| |
| /* |
| * sqrt(<0) = invalid |
| */ |
| if (vsm.sign) |
| goto sqrt_invalid; |
| |
| vfp_single_dump("sqrt", &vsm); |
| |
| /* |
| * Estimate the square root. |
| */ |
| vsd.sign = 0; |
| vsd.exponent = ((vsm.exponent - 127) >> 1) + 127; |
| vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2; |
| |
| vfp_single_dump("sqrt estimate", &vsd); |
| |
| /* |
| * And now adjust. |
| */ |
| if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) { |
| if (vsd.significand < 2) { |
| vsd.significand = 0xffffffff; |
| } else { |
| u64 term; |
| s64 rem; |
| vsm.significand <<= !(vsm.exponent & 1); |
| term = (u64)vsd.significand * vsd.significand; |
| rem = ((u64)vsm.significand << 32) - term; |
| |
| pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem); |
| |
| while (rem < 0) { |
| vsd.significand -= 1; |
| rem += ((u64)vsd.significand << 1) | 1; |
| } |
| vsd.significand |= rem != 0; |
| } |
| } |
| vsd.significand = vfp_shiftright32jamming(vsd.significand, 1); |
| |
| return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt"); |
| } |
| |
| /* |
| * Equal := ZC |
| * Less than := N |
| * Greater than := C |
| * Unordered := CV |
| */ |
| static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr) |
| { |
| s32 d; |
| u32 ret = 0; |
| |
| d = vfp_get_float(sd); |
| if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) { |
| ret |= FPSCR_C | FPSCR_V; |
| if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) |
| /* |
| * Signalling NaN, or signalling on quiet NaN |
| */ |
| ret |= FPSCR_IOC; |
| } |
| |
| if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) { |
| ret |= FPSCR_C | FPSCR_V; |
| if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) |
| /* |
| * Signalling NaN, or signalling on quiet NaN |
| */ |
| ret |= FPSCR_IOC; |
| } |
| |
| if (ret == 0) { |
| if (d == m || vfp_single_packed_abs(d | m) == 0) { |
| /* |
| * equal |
| */ |
| ret |= FPSCR_Z | FPSCR_C; |
| } else if (vfp_single_packed_sign(d ^ m)) { |
| /* |
| * different signs |
| */ |
| if (vfp_single_packed_sign(d)) |
| /* |
| * d is negative, so d < m |
| */ |
| ret |= FPSCR_N; |
| else |
| /* |
| * d is positive, so d > m |
| */ |
| ret |= FPSCR_C; |
| } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) { |
| /* |
| * d < m |
| */ |
| ret |= FPSCR_N; |
| } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) { |
| /* |
| * d > m |
| */ |
| ret |= FPSCR_C; |
| } |
| } |
| return ret; |
| } |
| |
| static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr) |
| { |
| return vfp_compare(sd, 0, m, fpscr); |
| } |
| |
| static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr) |
| { |
| return vfp_compare(sd, 1, m, fpscr); |
| } |
| |
| static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr) |
| { |
| return vfp_compare(sd, 0, 0, fpscr); |
| } |
| |
| static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr) |
| { |
| return vfp_compare(sd, 1, 0, fpscr); |
| } |
| |
| static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr) |
| { |
| struct vfp_single vsm; |
| struct vfp_double vdd; |
| int tm; |
| u32 exceptions = 0; |
| |
| vfp_single_unpack(&vsm, m); |
| |
| tm = vfp_single_type(&vsm); |
| |
| /* |
| * If we have a signalling NaN, signal invalid operation. |
| */ |
| if (tm == VFP_SNAN) |
| exceptions = FPSCR_IOC; |
| |
| if (tm & VFP_DENORMAL) |
| vfp_single_normalise_denormal(&vsm); |
| |
| vdd.sign = vsm.sign; |
| vdd.significand = (u64)vsm.significand << 32; |
| |
| /* |
| * If we have an infinity or NaN, the exponent must be 2047. |
| */ |
| if (tm & (VFP_INFINITY|VFP_NAN)) { |
| vdd.exponent = 2047; |
| if (tm & VFP_NAN) |
| vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; |
| goto pack_nan; |
| } else if (tm & VFP_ZERO) |
| vdd.exponent = 0; |
| else |
| vdd.exponent = vsm.exponent + (1023 - 127); |
| |
| /* |
| * Technically, if bit 0 of dd is set, this is an invalid |
| * instruction. However, we ignore this for efficiency. |
| */ |
| return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd"); |
| |
| pack_nan: |
| vfp_put_double(dd, vfp_double_pack(&vdd)); |
| return exceptions; |
| } |
| |
| static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr) |
| { |
| struct vfp_single vs; |
| |
| vs.sign = 0; |
| vs.exponent = 127 + 31 - 1; |
| vs.significand = (u32)m; |
| |
| return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito"); |
| } |
| |
| static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr) |
| { |
| struct vfp_single vs; |
| |
| vs.sign = (m & 0x80000000) >> 16; |
| vs.exponent = 127 + 31 - 1; |
| vs.significand = vs.sign ? -m : m; |
| |
| return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito"); |
| } |
| |
| static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr) |
| { |
| struct vfp_single vsm; |
| u32 d, exceptions = 0; |
| int rmode = fpscr & FPSCR_RMODE_MASK; |
| int tm; |
| |
| vfp_single_unpack(&vsm, m); |
| vfp_single_dump("VSM", &vsm); |
| |
| /* |
| * Do we have a denormalised number? |
| */ |
| tm = vfp_single_type(&vsm); |
| if (tm & VFP_DENORMAL) |
| exceptions |= FPSCR_IDC; |
| |
| if (tm & VFP_NAN) |
| vsm.sign = 0; |
| |
| if (vsm.exponent >= 127 + 32) { |
| d = vsm.sign ? 0 : 0xffffffff; |
| exceptions = FPSCR_IOC; |
| } else if (vsm.exponent >= 127 - 1) { |
| int shift = 127 + 31 - vsm.exponent; |
| u32 rem, incr = 0; |
| |
| /* |
| * 2^0 <= m < 2^32-2^8 |
| */ |
| d = (vsm.significand << 1) >> shift; |
| rem = vsm.significand << (33 - shift); |
| |
| if (rmode == FPSCR_ROUND_NEAREST) { |
| incr = 0x80000000; |
| if ((d & 1) == 0) |
| incr -= 1; |
| } else if (rmode == FPSCR_ROUND_TOZERO) { |
| incr = 0; |
| } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { |
| incr = ~0; |
| } |
| |
| if ((rem + incr) < rem) { |
| if (d < 0xffffffff) |
| d += 1; |
| else |
| exceptions |= FPSCR_IOC; |
| } |
| |
| if (d && vsm.sign) { |
| d = 0; |
| exceptions |= FPSCR_IOC; |
| } else if (rem) |
| exceptions |= FPSCR_IXC; |
| } else { |
| d = 0; |
| if (vsm.exponent | vsm.significand) { |
| exceptions |= FPSCR_IXC; |
| if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) |
| d = 1; |
| else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) { |
| d = 0; |
| exceptions |= FPSCR_IOC; |
| } |
| } |
| } |
| |
| pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); |
| |
| vfp_put_float(sd, d); |
| |
| return exceptions; |
| } |
| |
| static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr) |
| { |
| return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO); |
| } |
| |
| static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr) |
| { |
| struct vfp_single vsm; |
| u32 d, exceptions = 0; |
| int rmode = fpscr & FPSCR_RMODE_MASK; |
| |
| vfp_single_unpack(&vsm, m); |
| vfp_single_dump("VSM", &vsm); |
| |
| /* |
| * Do we have a denormalised number? |
| */ |
| if (vfp_single_type(&vsm) & VFP_DENORMAL) |
| exceptions |= FPSCR_IDC; |
| |
| if (vsm.exponent >= 127 + 32) { |
| /* |
| * m >= 2^31-2^7: invalid |
| */ |
| d = 0x7fffffff; |
| if (vsm.sign) |
| d = ~d; |
| exceptions |= FPSCR_IOC; |
| } else if (vsm.exponent >= 127 - 1) { |
| int shift = 127 + 31 - vsm.exponent; |
| u32 rem, incr = 0; |
| |
| /* 2^0 <= m <= 2^31-2^7 */ |
| d = (vsm.significand << 1) >> shift; |
| rem = vsm.significand << (33 - shift); |
| |
| if (rmode == FPSCR_ROUND_NEAREST) { |
| incr = 0x80000000; |
| if ((d & 1) == 0) |
| incr -= 1; |
| } else if (rmode == FPSCR_ROUND_TOZERO) { |
| incr = 0; |
| } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { |
| incr = ~0; |
| } |
| |
| if ((rem + incr) < rem && d < 0xffffffff) |
| d += 1; |
| if (d > 0x7fffffff + (vsm.sign != 0)) { |
| d = 0x7fffffff + (vsm.sign != 0); |
| exceptions |= FPSCR_IOC; |
| } else if (rem) |
| exceptions |= FPSCR_IXC; |
| |
| if (vsm.sign) |
| d = -d; |
| } else { |
| d = 0; |
| if (vsm.exponent | vsm.significand) { |
| exceptions |= FPSCR_IXC; |
| if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) |
| d = 1; |
| else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) |
| d = -1; |
| } |
| } |
| |
| pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); |
| |
| vfp_put_float(sd, (s32)d); |
| |
| return exceptions; |
| } |
| |
| static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr) |
| { |
| return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO); |
| } |
| |
| static u32 (* const fop_extfns[32])(int sd, int unused, s32 m, u32 fpscr) = { |
| [FEXT_TO_IDX(FEXT_FCPY)] = vfp_single_fcpy, |
| [FEXT_TO_IDX(FEXT_FABS)] = vfp_single_fabs, |
| [FEXT_TO_IDX(FEXT_FNEG)] = vfp_single_fneg, |
| [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_single_fsqrt, |
| [FEXT_TO_IDX(FEXT_FCMP)] = vfp_single_fcmp, |
| [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_single_fcmpe, |
| [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_single_fcmpz, |
| [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_single_fcmpez, |
| [FEXT_TO_IDX(FEXT_FCVT)] = vfp_single_fcvtd, |
| [FEXT_TO_IDX(FEXT_FUITO)] = vfp_single_fuito, |
| [FEXT_TO_IDX(FEXT_FSITO)] = vfp_single_fsito, |
| [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_single_ftoui, |
| [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_single_ftouiz, |
| [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_single_ftosi, |
| [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_single_ftosiz, |
| }; |
| |
| |
| |
| |
| |
| static u32 |
| vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn, |
| struct vfp_single *vsm, u32 fpscr) |
| { |
| struct vfp_single *vsp; |
| u32 exceptions = 0; |
| int tn, tm; |
| |
| tn = vfp_single_type(vsn); |
| tm = vfp_single_type(vsm); |
| |
| if (tn & tm & VFP_INFINITY) { |
| /* |
| * Two infinities. Are they different signs? |
| */ |
| if (vsn->sign ^ vsm->sign) { |
| /* |
| * different signs -> invalid |
| */ |
| exceptions = FPSCR_IOC; |
| vsp = &vfp_single_default_qnan; |
| } else { |
| /* |
| * same signs -> valid |
| */ |
| vsp = vsn; |
| } |
| } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { |
| /* |
| * One infinity and one number -> infinity |
| */ |
| vsp = vsn; |
| } else { |
| /* |
| * 'n' is a NaN of some type |
| */ |
| return vfp_propagate_nan(vsd, vsn, vsm, fpscr); |
| } |
| *vsd = *vsp; |
| return exceptions; |
| } |
| |
| static u32 |
| vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn, |
| struct vfp_single *vsm, u32 fpscr) |
| { |
| u32 exp_diff, m_sig; |
| |
| if (vsn->significand & 0x80000000 || |
| vsm->significand & 0x80000000) { |
| pr_info("VFP: bad FP values in %s\n", __func__); |
| vfp_single_dump("VSN", vsn); |
| vfp_single_dump("VSM", vsm); |
| } |
| |
| /* |
| * Ensure that 'n' is the largest magnitude number. Note that |
| * if 'n' and 'm' have equal exponents, we do not swap them. |
| * This ensures that NaN propagation works correctly. |
| */ |
| if (vsn->exponent < vsm->exponent) { |
| struct vfp_single *t = vsn; |
| vsn = vsm; |
| vsm = t; |
| } |
| |
| /* |
| * Is 'n' an infinity or a NaN? Note that 'm' may be a number, |
| * infinity or a NaN here. |
| */ |
| if (vsn->exponent == 255) |
| return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr); |
| |
| /* |
| * We have two proper numbers, where 'vsn' is the larger magnitude. |
| * |
| * Copy 'n' to 'd' before doing the arithmetic. |
| */ |
| *vsd = *vsn; |
| |
| /* |
| * Align both numbers. |
| */ |
| exp_diff = vsn->exponent - vsm->exponent; |
| m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff); |
| |
| /* |
| * If the signs are different, we are really subtracting. |
| */ |
| if (vsn->sign ^ vsm->sign) { |
| m_sig = vsn->significand - m_sig; |
| if ((s32)m_sig < 0) { |
| vsd->sign = vfp_sign_negate(vsd->sign); |
| m_sig = -m_sig; |
| } else if (m_sig == 0) { |
| vsd->sign = (fpscr & FPSCR_RMODE_MASK) == |
| FPSCR_ROUND_MINUSINF ? 0x8000 : 0; |
| } |
| } else { |
| m_sig = vsn->significand + m_sig; |
| } |
| vsd->significand = m_sig; |
| |
| return 0; |
| } |
| |
| static u32 |
| vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr) |
| { |
| vfp_single_dump("VSN", vsn); |
| vfp_single_dump("VSM", vsm); |
| |
| /* |
| * Ensure that 'n' is the largest magnitude number. Note that |
| * if 'n' and 'm' have equal exponents, we do not swap them. |
| * This ensures that NaN propagation works correctly. |
| */ |
| if (vsn->exponent < vsm->exponent) { |
| struct vfp_single *t = vsn; |
| vsn = vsm; |
| vsm = t; |
| pr_debug("VFP: swapping M <-> N\n"); |
| } |
| |
| vsd->sign = vsn->sign ^ vsm->sign; |
| |
| /* |
| * If 'n' is an infinity or NaN, handle it. 'm' may be anything. |
| */ |
| if (vsn->exponent == 255) { |
| if (vsn->significand || (vsm->exponent == 255 && vsm->significand)) |
| return vfp_propagate_nan(vsd, vsn, vsm, fpscr); |
| if ((vsm->exponent | vsm->significand) == 0) { |
| *vsd = vfp_single_default_qnan; |
| return FPSCR_IOC; |
| } |
| vsd->exponent = vsn->exponent; |
| vsd->significand = 0; |
| return 0; |
| } |
| |
| /* |
| * If 'm' is zero, the result is always zero. In this case, |
| * 'n' may be zero or a number, but it doesn't matter which. |
| */ |
| if ((vsm->exponent | vsm->significand) == 0) { |
| vsd->exponent = 0; |
| vsd->significand = 0; |
| return 0; |
| } |
| |
| /* |
| * We add 2 to the destination exponent for the same reason as |
| * the addition case - though this time we have +1 from each |
| * input operand. |
| */ |
| vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2; |
| vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand); |
| |
| vfp_single_dump("VSD", vsd); |
| return 0; |
| } |
| |
| #define NEG_MULTIPLY (1 << 0) |
| #define NEG_SUBTRACT (1 << 1) |
| |
| static u32 |
| vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func) |
| { |
| struct vfp_single vsd, vsp, vsn, vsm; |
| u32 exceptions; |
| s32 v; |
| |
| v = vfp_get_float(sn); |
| pr_debug("VFP: s%u = %08x\n", sn, v); |
| vfp_single_unpack(&vsn, v); |
| if (vsn.exponent == 0 && vsn.significand) |
| vfp_single_normalise_denormal(&vsn); |
| |
| vfp_single_unpack(&vsm, m); |
| if (vsm.exponent == 0 && vsm.significand) |
| vfp_single_normalise_denormal(&vsm); |
| |
| exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr); |
| if (negate & NEG_MULTIPLY) |
| vsp.sign = vfp_sign_negate(vsp.sign); |
| |
| v = vfp_get_float(sd); |
| pr_debug("VFP: s%u = %08x\n", sd, v); |
| vfp_single_unpack(&vsn, v); |
| if (negate & NEG_SUBTRACT) |
| vsn.sign = vfp_sign_negate(vsn.sign); |
| |
| exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr); |
| |
| return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func); |
| } |
| |
| /* |
| * Standard operations |
| */ |
| |
| /* |
| * sd = sd + (sn * sm) |
| */ |
| static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr) |
| { |
| return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac"); |
| } |
| |
| /* |
| * sd = sd - (sn * sm) |
| */ |
| static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr) |
| { |
| return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac"); |
| } |
| |
| /* |
| * sd = -sd + (sn * sm) |
| */ |
| static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr) |
| { |
| return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc"); |
| } |
| |
| /* |
| * sd = -sd - (sn * sm) |
| */ |
| static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr) |
| { |
| return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc"); |
| } |
| |
| /* |
| * sd = sn * sm |
| */ |
| static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr) |
| { |
| struct vfp_single vsd, vsn, vsm; |
| u32 exceptions; |
| s32 n = vfp_get_float(sn); |
| |
| pr_debug("VFP: s%u = %08x\n", sn, n); |
| |
| vfp_single_unpack(&vsn, n); |
| if (vsn.exponent == 0 && vsn.significand) |
| vfp_single_normalise_denormal(&vsn); |
| |
| vfp_single_unpack(&vsm, m); |
| if (vsm.exponent == 0 && vsm.significand) |
| vfp_single_normalise_denormal(&vsm); |
| |
| exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); |
| return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul"); |
| } |
| |
| /* |
| * sd = -(sn * sm) |
| */ |
| static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr) |
| { |
| struct vfp_single vsd, vsn, vsm; |
| u32 exceptions; |
| s32 n = vfp_get_float(sn); |
| |
| pr_debug("VFP: s%u = %08x\n", sn, n); |
| |
| vfp_single_unpack(&vsn, n); |
| if (vsn.exponent == 0 && vsn.significand) |
| vfp_single_normalise_denormal(&vsn); |
| |
| vfp_single_unpack(&vsm, m); |
| if (vsm.exponent == 0 && vsm.significand) |
| vfp_single_normalise_denormal(&vsm); |
| |
| exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); |
| vsd.sign = vfp_sign_negate(vsd.sign); |
| return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul"); |
| } |
| |
| /* |
| * sd = sn + sm |
| */ |
| static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr) |
| { |
| struct vfp_single vsd, vsn, vsm; |
| u32 exceptions; |
| s32 n = vfp_get_float(sn); |
| |
| pr_debug("VFP: s%u = %08x\n", sn, n); |
| |
| /* |
| * Unpack and normalise denormals. |
| */ |
| vfp_single_unpack(&vsn, n); |
| if (vsn.exponent == 0 && vsn.significand) |
| vfp_single_normalise_denormal(&vsn); |
| |
| vfp_single_unpack(&vsm, m); |
| if (vsm.exponent == 0 && vsm.significand) |
| vfp_single_normalise_denormal(&vsm); |
| |
| exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr); |
| |
| return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd"); |
| } |
| |
| /* |
| * sd = sn - sm |
| */ |
| static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr) |
| { |
| /* |
| * Subtraction is addition with one sign inverted. |
| */ |
| return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr); |
| } |
| |
| /* |
| * sd = sn / sm |
| */ |
| static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr) |
| { |
| struct vfp_single vsd, vsn, vsm; |
| u32 exceptions = 0; |
| s32 n = vfp_get_float(sn); |
| int tm, tn; |
| |
| pr_debug("VFP: s%u = %08x\n", sn, n); |
| |
| vfp_single_unpack(&vsn, n); |
| vfp_single_unpack(&vsm, m); |
| |
| vsd.sign = vsn.sign ^ vsm.sign; |
| |
| tn = vfp_single_type(&vsn); |
| tm = vfp_single_type(&vsm); |
| |
| /* |
| * Is n a NAN? |
| */ |
| if (tn & VFP_NAN) |
| goto vsn_nan; |
| |
| /* |
| * Is m a NAN? |
| */ |
| if (tm & VFP_NAN) |
| goto vsm_nan; |
| |
| /* |
| * If n and m are infinity, the result is invalid |
| * If n and m are zero, the result is invalid |
| */ |
| if (tm & tn & (VFP_INFINITY|VFP_ZERO)) |
| goto invalid; |
| |
| /* |
| * If n is infinity, the result is infinity |
| */ |
| if (tn & VFP_INFINITY) |
| goto infinity; |
| |
| /* |
| * If m is zero, raise div0 exception |
| */ |
| if (tm & VFP_ZERO) |
| goto divzero; |
| |
| /* |
| * If m is infinity, or n is zero, the result is zero |
| */ |
| if (tm & VFP_INFINITY || tn & VFP_ZERO) |
| goto zero; |
| |
| if (tn & VFP_DENORMAL) |
| vfp_single_normalise_denormal(&vsn); |
| if (tm & VFP_DENORMAL) |
| vfp_single_normalise_denormal(&vsm); |
| |
| /* |
| * Ok, we have two numbers, we can perform division. |
| */ |
| vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1; |
| vsm.significand <<= 1; |
| if (vsm.significand <= (2 * vsn.significand)) { |
| vsn.significand >>= 1; |
| vsd.exponent++; |
| } |
| vsd.significand = ((u64)vsn.significand << 32) / vsm.significand; |
| if ((vsd.significand & 0x3f) == 0) |
| vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32); |
| |
| return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv"); |
| |
| vsn_nan: |
| exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr); |
| pack: |
| vfp_put_float(sd, vfp_single_pack(&vsd)); |
| return exceptions; |
| |
| vsm_nan: |
| exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr); |
| goto pack; |
| |
| zero: |
| vsd.exponent = 0; |
| vsd.significand = 0; |
| goto pack; |
| |
| divzero: |
| exceptions = FPSCR_DZC; |
| infinity: |
| vsd.exponent = 255; |
| vsd.significand = 0; |
| goto pack; |
| |
| invalid: |
| vfp_put_float(sd, vfp_single_pack(&vfp_single_default_qnan)); |
| return FPSCR_IOC; |
| } |
| |
| static u32 (* const fop_fns[16])(int sd, int sn, s32 m, u32 fpscr) = { |
| [FOP_TO_IDX(FOP_FMAC)] = vfp_single_fmac, |
| [FOP_TO_IDX(FOP_FNMAC)] = vfp_single_fnmac, |
| [FOP_TO_IDX(FOP_FMSC)] = vfp_single_fmsc, |
| [FOP_TO_IDX(FOP_FNMSC)] = vfp_single_fnmsc, |
| [FOP_TO_IDX(FOP_FMUL)] = vfp_single_fmul, |
| [FOP_TO_IDX(FOP_FNMUL)] = vfp_single_fnmul, |
| [FOP_TO_IDX(FOP_FADD)] = vfp_single_fadd, |
| [FOP_TO_IDX(FOP_FSUB)] = vfp_single_fsub, |
| [FOP_TO_IDX(FOP_FDIV)] = vfp_single_fdiv, |
| }; |
| |
| #define FREG_BANK(x) ((x) & 0x18) |
| #define FREG_IDX(x) ((x) & 7) |
| |
| u32 vfp_single_cpdo(u32 inst, u32 fpscr) |
| { |
| u32 op = inst & FOP_MASK; |
| u32 exceptions = 0; |
| unsigned int sd = vfp_get_sd(inst); |
| unsigned int sn = vfp_get_sn(inst); |
| unsigned int sm = vfp_get_sm(inst); |
| unsigned int vecitr, veclen, vecstride; |
| u32 (*fop)(int, int, s32, u32); |
| |
| veclen = fpscr & FPSCR_LENGTH_MASK; |
| vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK); |
| |
| /* |
| * If destination bank is zero, vector length is always '1'. |
| * ARM DDI0100F C5.1.3, C5.3.2. |
| */ |
| if (FREG_BANK(sd) == 0) |
| veclen = 0; |
| |
| pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride, |
| (veclen >> FPSCR_LENGTH_BIT) + 1); |
| |
| fop = (op == FOP_EXT) ? fop_extfns[sn] : fop_fns[FOP_TO_IDX(op)]; |
| if (!fop) |
| goto invalid; |
| |
| for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) { |
| s32 m = vfp_get_float(sm); |
| u32 except; |
| |
| if (op == FOP_EXT) |
| pr_debug("VFP: itr%d (s%u) = op[%u] (s%u=%08x)\n", |
| vecitr >> FPSCR_LENGTH_BIT, sd, sn, sm, m); |
| else |
| pr_debug("VFP: itr%d (s%u) = (s%u) op[%u] (s%u=%08x)\n", |
| vecitr >> FPSCR_LENGTH_BIT, sd, sn, |
| FOP_TO_IDX(op), sm, m); |
| |
| except = fop(sd, sn, m, fpscr); |
| pr_debug("VFP: itr%d: exceptions=%08x\n", |
| vecitr >> FPSCR_LENGTH_BIT, except); |
| |
| exceptions |= except; |
| |
| /* |
| * This ensures that comparisons only operate on scalars; |
| * comparisons always return with one FPSCR status bit set. |
| */ |
| if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) |
| break; |
| |
| /* |
| * CHECK: It appears to be undefined whether we stop when |
| * we encounter an exception. We continue. |
| */ |
| |
| sd = FREG_BANK(sd) + ((FREG_IDX(sd) + vecstride) & 7); |
| sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7); |
| if (FREG_BANK(sm) != 0) |
| sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7); |
| } |
| return exceptions; |
| |
| invalid: |
| return (u32)-1; |
| } |