| /* |
| * User-space Probes (UProbes) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) IBM Corporation, 2008-2012 |
| * Authors: |
| * Srikar Dronamraju |
| * Jim Keniston |
| * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/highmem.h> |
| #include <linux/pagemap.h> /* read_mapping_page */ |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/rmap.h> /* anon_vma_prepare */ |
| #include <linux/mmu_notifier.h> /* set_pte_at_notify */ |
| #include <linux/swap.h> /* try_to_free_swap */ |
| #include <linux/ptrace.h> /* user_enable_single_step */ |
| #include <linux/kdebug.h> /* notifier mechanism */ |
| #include "../../mm/internal.h" /* munlock_vma_page */ |
| |
| #include <linux/uprobes.h> |
| |
| #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) |
| #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE |
| |
| static struct rb_root uprobes_tree = RB_ROOT; |
| |
| static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ |
| |
| #define UPROBES_HASH_SZ 13 |
| |
| /* |
| * We need separate register/unregister and mmap/munmap lock hashes because |
| * of mmap_sem nesting. |
| * |
| * uprobe_register() needs to install probes on (potentially) all processes |
| * and thus needs to acquire multiple mmap_sems (consequtively, not |
| * concurrently), whereas uprobe_mmap() is called while holding mmap_sem |
| * for the particular process doing the mmap. |
| * |
| * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem |
| * because of lock order against i_mmap_mutex. This means there's a hole in |
| * the register vma iteration where a mmap() can happen. |
| * |
| * Thus uprobe_register() can race with uprobe_mmap() and we can try and |
| * install a probe where one is already installed. |
| */ |
| |
| /* serialize (un)register */ |
| static struct mutex uprobes_mutex[UPROBES_HASH_SZ]; |
| |
| #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) |
| |
| /* serialize uprobe->pending_list */ |
| static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; |
| #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) |
| |
| /* |
| * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe |
| * events active at this time. Probably a fine grained per inode count is |
| * better? |
| */ |
| static atomic_t uprobe_events = ATOMIC_INIT(0); |
| |
| struct uprobe { |
| struct rb_node rb_node; /* node in the rb tree */ |
| atomic_t ref; |
| struct rw_semaphore consumer_rwsem; |
| struct list_head pending_list; |
| struct uprobe_consumer *consumers; |
| struct inode *inode; /* Also hold a ref to inode */ |
| loff_t offset; |
| int flags; |
| struct arch_uprobe arch; |
| }; |
| |
| /* |
| * valid_vma: Verify if the specified vma is an executable vma |
| * Relax restrictions while unregistering: vm_flags might have |
| * changed after breakpoint was inserted. |
| * - is_register: indicates if we are in register context. |
| * - Return 1 if the specified virtual address is in an |
| * executable vma. |
| */ |
| static bool valid_vma(struct vm_area_struct *vma, bool is_register) |
| { |
| if (!vma->vm_file) |
| return false; |
| |
| if (!is_register) |
| return true; |
| |
| if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) |
| == (VM_READ|VM_EXEC)) |
| return true; |
| |
| return false; |
| } |
| |
| static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) |
| { |
| return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); |
| } |
| |
| static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) |
| { |
| return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); |
| } |
| |
| /** |
| * __replace_page - replace page in vma by new page. |
| * based on replace_page in mm/ksm.c |
| * |
| * @vma: vma that holds the pte pointing to page |
| * @addr: address the old @page is mapped at |
| * @page: the cowed page we are replacing by kpage |
| * @kpage: the modified page we replace page by |
| * |
| * Returns 0 on success, -EFAULT on failure. |
| */ |
| static int __replace_page(struct vm_area_struct *vma, unsigned long addr, |
| struct page *page, struct page *kpage) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| spinlock_t *ptl; |
| pte_t *ptep; |
| int err; |
| |
| /* For try_to_free_swap() and munlock_vma_page() below */ |
| lock_page(page); |
| |
| err = -EAGAIN; |
| ptep = page_check_address(page, mm, addr, &ptl, 0); |
| if (!ptep) |
| goto unlock; |
| |
| get_page(kpage); |
| page_add_new_anon_rmap(kpage, vma, addr); |
| |
| if (!PageAnon(page)) { |
| dec_mm_counter(mm, MM_FILEPAGES); |
| inc_mm_counter(mm, MM_ANONPAGES); |
| } |
| |
| flush_cache_page(vma, addr, pte_pfn(*ptep)); |
| ptep_clear_flush(vma, addr, ptep); |
| set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); |
| |
| page_remove_rmap(page); |
| if (!page_mapped(page)) |
| try_to_free_swap(page); |
| pte_unmap_unlock(ptep, ptl); |
| |
| if (vma->vm_flags & VM_LOCKED) |
| munlock_vma_page(page); |
| put_page(page); |
| |
| err = 0; |
| unlock: |
| unlock_page(page); |
| return err; |
| } |
| |
| /** |
| * is_swbp_insn - check if instruction is breakpoint instruction. |
| * @insn: instruction to be checked. |
| * Default implementation of is_swbp_insn |
| * Returns true if @insn is a breakpoint instruction. |
| */ |
| bool __weak is_swbp_insn(uprobe_opcode_t *insn) |
| { |
| return *insn == UPROBE_SWBP_INSN; |
| } |
| |
| /* |
| * NOTE: |
| * Expect the breakpoint instruction to be the smallest size instruction for |
| * the architecture. If an arch has variable length instruction and the |
| * breakpoint instruction is not of the smallest length instruction |
| * supported by that architecture then we need to modify read_opcode / |
| * write_opcode accordingly. This would never be a problem for archs that |
| * have fixed length instructions. |
| */ |
| |
| /* |
| * write_opcode - write the opcode at a given virtual address. |
| * @auprobe: arch breakpointing information. |
| * @mm: the probed process address space. |
| * @vaddr: the virtual address to store the opcode. |
| * @opcode: opcode to be written at @vaddr. |
| * |
| * Called with mm->mmap_sem held (for read and with a reference to |
| * mm). |
| * |
| * For mm @mm, write the opcode at @vaddr. |
| * Return 0 (success) or a negative errno. |
| */ |
| static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, |
| unsigned long vaddr, uprobe_opcode_t opcode) |
| { |
| struct page *old_page, *new_page; |
| void *vaddr_old, *vaddr_new; |
| struct vm_area_struct *vma; |
| int ret; |
| |
| retry: |
| /* Read the page with vaddr into memory */ |
| ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma); |
| if (ret <= 0) |
| return ret; |
| |
| ret = -ENOMEM; |
| new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); |
| if (!new_page) |
| goto put_old; |
| |
| __SetPageUptodate(new_page); |
| |
| /* copy the page now that we've got it stable */ |
| vaddr_old = kmap_atomic(old_page); |
| vaddr_new = kmap_atomic(new_page); |
| |
| memcpy(vaddr_new, vaddr_old, PAGE_SIZE); |
| memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE); |
| |
| kunmap_atomic(vaddr_new); |
| kunmap_atomic(vaddr_old); |
| |
| ret = anon_vma_prepare(vma); |
| if (ret) |
| goto put_new; |
| |
| ret = __replace_page(vma, vaddr, old_page, new_page); |
| |
| put_new: |
| page_cache_release(new_page); |
| put_old: |
| put_page(old_page); |
| |
| if (unlikely(ret == -EAGAIN)) |
| goto retry; |
| return ret; |
| } |
| |
| /** |
| * read_opcode - read the opcode at a given virtual address. |
| * @mm: the probed process address space. |
| * @vaddr: the virtual address to read the opcode. |
| * @opcode: location to store the read opcode. |
| * |
| * Called with mm->mmap_sem held (for read and with a reference to |
| * mm. |
| * |
| * For mm @mm, read the opcode at @vaddr and store it in @opcode. |
| * Return 0 (success) or a negative errno. |
| */ |
| static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode) |
| { |
| struct page *page; |
| void *vaddr_new; |
| int ret; |
| |
| ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL); |
| if (ret <= 0) |
| return ret; |
| |
| lock_page(page); |
| vaddr_new = kmap_atomic(page); |
| vaddr &= ~PAGE_MASK; |
| memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE); |
| kunmap_atomic(vaddr_new); |
| unlock_page(page); |
| |
| put_page(page); |
| |
| return 0; |
| } |
| |
| static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr) |
| { |
| uprobe_opcode_t opcode; |
| int result; |
| |
| if (current->mm == mm) { |
| pagefault_disable(); |
| result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr, |
| sizeof(opcode)); |
| pagefault_enable(); |
| |
| if (likely(result == 0)) |
| goto out; |
| } |
| |
| result = read_opcode(mm, vaddr, &opcode); |
| if (result) |
| return result; |
| out: |
| if (is_swbp_insn(&opcode)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /** |
| * set_swbp - store breakpoint at a given address. |
| * @auprobe: arch specific probepoint information. |
| * @mm: the probed process address space. |
| * @vaddr: the virtual address to insert the opcode. |
| * |
| * For mm @mm, store the breakpoint instruction at @vaddr. |
| * Return 0 (success) or a negative errno. |
| */ |
| int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) |
| { |
| int result; |
| /* |
| * See the comment near uprobes_hash(). |
| */ |
| result = is_swbp_at_addr(mm, vaddr); |
| if (result == 1) |
| return -EEXIST; |
| |
| if (result) |
| return result; |
| |
| return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); |
| } |
| |
| /** |
| * set_orig_insn - Restore the original instruction. |
| * @mm: the probed process address space. |
| * @auprobe: arch specific probepoint information. |
| * @vaddr: the virtual address to insert the opcode. |
| * @verify: if true, verify existance of breakpoint instruction. |
| * |
| * For mm @mm, restore the original opcode (opcode) at @vaddr. |
| * Return 0 (success) or a negative errno. |
| */ |
| int __weak |
| set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify) |
| { |
| if (verify) { |
| int result; |
| |
| result = is_swbp_at_addr(mm, vaddr); |
| if (!result) |
| return -EINVAL; |
| |
| if (result != 1) |
| return result; |
| } |
| return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn); |
| } |
| |
| static int match_uprobe(struct uprobe *l, struct uprobe *r) |
| { |
| if (l->inode < r->inode) |
| return -1; |
| |
| if (l->inode > r->inode) |
| return 1; |
| |
| if (l->offset < r->offset) |
| return -1; |
| |
| if (l->offset > r->offset) |
| return 1; |
| |
| return 0; |
| } |
| |
| static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) |
| { |
| struct uprobe u = { .inode = inode, .offset = offset }; |
| struct rb_node *n = uprobes_tree.rb_node; |
| struct uprobe *uprobe; |
| int match; |
| |
| while (n) { |
| uprobe = rb_entry(n, struct uprobe, rb_node); |
| match = match_uprobe(&u, uprobe); |
| if (!match) { |
| atomic_inc(&uprobe->ref); |
| return uprobe; |
| } |
| |
| if (match < 0) |
| n = n->rb_left; |
| else |
| n = n->rb_right; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Find a uprobe corresponding to a given inode:offset |
| * Acquires uprobes_treelock |
| */ |
| static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) |
| { |
| struct uprobe *uprobe; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&uprobes_treelock, flags); |
| uprobe = __find_uprobe(inode, offset); |
| spin_unlock_irqrestore(&uprobes_treelock, flags); |
| |
| return uprobe; |
| } |
| |
| static struct uprobe *__insert_uprobe(struct uprobe *uprobe) |
| { |
| struct rb_node **p = &uprobes_tree.rb_node; |
| struct rb_node *parent = NULL; |
| struct uprobe *u; |
| int match; |
| |
| while (*p) { |
| parent = *p; |
| u = rb_entry(parent, struct uprobe, rb_node); |
| match = match_uprobe(uprobe, u); |
| if (!match) { |
| atomic_inc(&u->ref); |
| return u; |
| } |
| |
| if (match < 0) |
| p = &parent->rb_left; |
| else |
| p = &parent->rb_right; |
| |
| } |
| |
| u = NULL; |
| rb_link_node(&uprobe->rb_node, parent, p); |
| rb_insert_color(&uprobe->rb_node, &uprobes_tree); |
| /* get access + creation ref */ |
| atomic_set(&uprobe->ref, 2); |
| |
| return u; |
| } |
| |
| /* |
| * Acquire uprobes_treelock. |
| * Matching uprobe already exists in rbtree; |
| * increment (access refcount) and return the matching uprobe. |
| * |
| * No matching uprobe; insert the uprobe in rb_tree; |
| * get a double refcount (access + creation) and return NULL. |
| */ |
| static struct uprobe *insert_uprobe(struct uprobe *uprobe) |
| { |
| unsigned long flags; |
| struct uprobe *u; |
| |
| spin_lock_irqsave(&uprobes_treelock, flags); |
| u = __insert_uprobe(uprobe); |
| spin_unlock_irqrestore(&uprobes_treelock, flags); |
| |
| /* For now assume that the instruction need not be single-stepped */ |
| uprobe->flags |= UPROBE_SKIP_SSTEP; |
| |
| return u; |
| } |
| |
| static void put_uprobe(struct uprobe *uprobe) |
| { |
| if (atomic_dec_and_test(&uprobe->ref)) |
| kfree(uprobe); |
| } |
| |
| static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) |
| { |
| struct uprobe *uprobe, *cur_uprobe; |
| |
| uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); |
| if (!uprobe) |
| return NULL; |
| |
| uprobe->inode = igrab(inode); |
| uprobe->offset = offset; |
| init_rwsem(&uprobe->consumer_rwsem); |
| |
| /* add to uprobes_tree, sorted on inode:offset */ |
| cur_uprobe = insert_uprobe(uprobe); |
| |
| /* a uprobe exists for this inode:offset combination */ |
| if (cur_uprobe) { |
| kfree(uprobe); |
| uprobe = cur_uprobe; |
| iput(inode); |
| } else { |
| atomic_inc(&uprobe_events); |
| } |
| |
| return uprobe; |
| } |
| |
| static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) |
| { |
| struct uprobe_consumer *uc; |
| |
| if (!(uprobe->flags & UPROBE_RUN_HANDLER)) |
| return; |
| |
| down_read(&uprobe->consumer_rwsem); |
| for (uc = uprobe->consumers; uc; uc = uc->next) { |
| if (!uc->filter || uc->filter(uc, current)) |
| uc->handler(uc, regs); |
| } |
| up_read(&uprobe->consumer_rwsem); |
| } |
| |
| /* Returns the previous consumer */ |
| static struct uprobe_consumer * |
| consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) |
| { |
| down_write(&uprobe->consumer_rwsem); |
| uc->next = uprobe->consumers; |
| uprobe->consumers = uc; |
| up_write(&uprobe->consumer_rwsem); |
| |
| return uc->next; |
| } |
| |
| /* |
| * For uprobe @uprobe, delete the consumer @uc. |
| * Return true if the @uc is deleted successfully |
| * or return false. |
| */ |
| static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) |
| { |
| struct uprobe_consumer **con; |
| bool ret = false; |
| |
| down_write(&uprobe->consumer_rwsem); |
| for (con = &uprobe->consumers; *con; con = &(*con)->next) { |
| if (*con == uc) { |
| *con = uc->next; |
| ret = true; |
| break; |
| } |
| } |
| up_write(&uprobe->consumer_rwsem); |
| |
| return ret; |
| } |
| |
| static int |
| __copy_insn(struct address_space *mapping, struct file *filp, char *insn, |
| unsigned long nbytes, loff_t offset) |
| { |
| struct page *page; |
| void *vaddr; |
| unsigned long off; |
| pgoff_t idx; |
| |
| if (!filp) |
| return -EINVAL; |
| |
| if (!mapping->a_ops->readpage) |
| return -EIO; |
| |
| idx = offset >> PAGE_CACHE_SHIFT; |
| off = offset & ~PAGE_MASK; |
| |
| /* |
| * Ensure that the page that has the original instruction is |
| * populated and in page-cache. |
| */ |
| page = read_mapping_page(mapping, idx, filp); |
| if (IS_ERR(page)) |
| return PTR_ERR(page); |
| |
| vaddr = kmap_atomic(page); |
| memcpy(insn, vaddr + off, nbytes); |
| kunmap_atomic(vaddr); |
| page_cache_release(page); |
| |
| return 0; |
| } |
| |
| static int copy_insn(struct uprobe *uprobe, struct file *filp) |
| { |
| struct address_space *mapping; |
| unsigned long nbytes; |
| int bytes; |
| |
| nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK); |
| mapping = uprobe->inode->i_mapping; |
| |
| /* Instruction at end of binary; copy only available bytes */ |
| if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size) |
| bytes = uprobe->inode->i_size - uprobe->offset; |
| else |
| bytes = MAX_UINSN_BYTES; |
| |
| /* Instruction at the page-boundary; copy bytes in second page */ |
| if (nbytes < bytes) { |
| int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes, |
| bytes - nbytes, uprobe->offset + nbytes); |
| if (err) |
| return err; |
| bytes = nbytes; |
| } |
| return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset); |
| } |
| |
| /* |
| * How mm->uprobes_state.count gets updated |
| * uprobe_mmap() increments the count if |
| * - it successfully adds a breakpoint. |
| * - it cannot add a breakpoint, but sees that there is a underlying |
| * breakpoint (via a is_swbp_at_addr()). |
| * |
| * uprobe_munmap() decrements the count if |
| * - it sees a underlying breakpoint, (via is_swbp_at_addr) |
| * (Subsequent uprobe_unregister wouldnt find the breakpoint |
| * unless a uprobe_mmap kicks in, since the old vma would be |
| * dropped just after uprobe_munmap.) |
| * |
| * uprobe_register increments the count if: |
| * - it successfully adds a breakpoint. |
| * |
| * uprobe_unregister decrements the count if: |
| * - it sees a underlying breakpoint and removes successfully. |
| * (via is_swbp_at_addr) |
| * (Subsequent uprobe_munmap wouldnt find the breakpoint |
| * since there is no underlying breakpoint after the |
| * breakpoint removal.) |
| */ |
| static int |
| install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, |
| struct vm_area_struct *vma, unsigned long vaddr) |
| { |
| int ret; |
| |
| /* |
| * If probe is being deleted, unregister thread could be done with |
| * the vma-rmap-walk through. Adding a probe now can be fatal since |
| * nobody will be able to cleanup. Also we could be from fork or |
| * mremap path, where the probe might have already been inserted. |
| * Hence behave as if probe already existed. |
| */ |
| if (!uprobe->consumers) |
| return -EEXIST; |
| |
| if (!(uprobe->flags & UPROBE_COPY_INSN)) { |
| ret = copy_insn(uprobe, vma->vm_file); |
| if (ret) |
| return ret; |
| |
| if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn)) |
| return -ENOTSUPP; |
| |
| ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); |
| if (ret) |
| return ret; |
| |
| /* write_opcode() assumes we don't cross page boundary */ |
| BUG_ON((uprobe->offset & ~PAGE_MASK) + |
| UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); |
| |
| uprobe->flags |= UPROBE_COPY_INSN; |
| } |
| |
| /* |
| * Ideally, should be updating the probe count after the breakpoint |
| * has been successfully inserted. However a thread could hit the |
| * breakpoint we just inserted even before the probe count is |
| * incremented. If this is the first breakpoint placed, breakpoint |
| * notifier might ignore uprobes and pass the trap to the thread. |
| * Hence increment before and decrement on failure. |
| */ |
| atomic_inc(&mm->uprobes_state.count); |
| ret = set_swbp(&uprobe->arch, mm, vaddr); |
| if (ret) |
| atomic_dec(&mm->uprobes_state.count); |
| |
| return ret; |
| } |
| |
| static void |
| remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) |
| { |
| if (!set_orig_insn(&uprobe->arch, mm, vaddr, true)) |
| atomic_dec(&mm->uprobes_state.count); |
| } |
| |
| /* |
| * There could be threads that have already hit the breakpoint. They |
| * will recheck the current insn and restart if find_uprobe() fails. |
| * See find_active_uprobe(). |
| */ |
| static void delete_uprobe(struct uprobe *uprobe) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&uprobes_treelock, flags); |
| rb_erase(&uprobe->rb_node, &uprobes_tree); |
| spin_unlock_irqrestore(&uprobes_treelock, flags); |
| iput(uprobe->inode); |
| put_uprobe(uprobe); |
| atomic_dec(&uprobe_events); |
| } |
| |
| struct map_info { |
| struct map_info *next; |
| struct mm_struct *mm; |
| unsigned long vaddr; |
| }; |
| |
| static inline struct map_info *free_map_info(struct map_info *info) |
| { |
| struct map_info *next = info->next; |
| kfree(info); |
| return next; |
| } |
| |
| static struct map_info * |
| build_map_info(struct address_space *mapping, loff_t offset, bool is_register) |
| { |
| unsigned long pgoff = offset >> PAGE_SHIFT; |
| struct prio_tree_iter iter; |
| struct vm_area_struct *vma; |
| struct map_info *curr = NULL; |
| struct map_info *prev = NULL; |
| struct map_info *info; |
| int more = 0; |
| |
| again: |
| mutex_lock(&mapping->i_mmap_mutex); |
| vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
| if (!valid_vma(vma, is_register)) |
| continue; |
| |
| if (!prev && !more) { |
| /* |
| * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through |
| * reclaim. This is optimistic, no harm done if it fails. |
| */ |
| prev = kmalloc(sizeof(struct map_info), |
| GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); |
| if (prev) |
| prev->next = NULL; |
| } |
| if (!prev) { |
| more++; |
| continue; |
| } |
| |
| if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) |
| continue; |
| |
| info = prev; |
| prev = prev->next; |
| info->next = curr; |
| curr = info; |
| |
| info->mm = vma->vm_mm; |
| info->vaddr = offset_to_vaddr(vma, offset); |
| } |
| mutex_unlock(&mapping->i_mmap_mutex); |
| |
| if (!more) |
| goto out; |
| |
| prev = curr; |
| while (curr) { |
| mmput(curr->mm); |
| curr = curr->next; |
| } |
| |
| do { |
| info = kmalloc(sizeof(struct map_info), GFP_KERNEL); |
| if (!info) { |
| curr = ERR_PTR(-ENOMEM); |
| goto out; |
| } |
| info->next = prev; |
| prev = info; |
| } while (--more); |
| |
| goto again; |
| out: |
| while (prev) |
| prev = free_map_info(prev); |
| return curr; |
| } |
| |
| static int register_for_each_vma(struct uprobe *uprobe, bool is_register) |
| { |
| struct map_info *info; |
| int err = 0; |
| |
| info = build_map_info(uprobe->inode->i_mapping, |
| uprobe->offset, is_register); |
| if (IS_ERR(info)) |
| return PTR_ERR(info); |
| |
| while (info) { |
| struct mm_struct *mm = info->mm; |
| struct vm_area_struct *vma; |
| |
| if (err) |
| goto free; |
| |
| down_write(&mm->mmap_sem); |
| vma = find_vma(mm, info->vaddr); |
| if (!vma || !valid_vma(vma, is_register) || |
| vma->vm_file->f_mapping->host != uprobe->inode) |
| goto unlock; |
| |
| if (vma->vm_start > info->vaddr || |
| vaddr_to_offset(vma, info->vaddr) != uprobe->offset) |
| goto unlock; |
| |
| if (is_register) { |
| err = install_breakpoint(uprobe, mm, vma, info->vaddr); |
| /* |
| * We can race against uprobe_mmap(), see the |
| * comment near uprobe_hash(). |
| */ |
| if (err == -EEXIST) |
| err = 0; |
| } else { |
| remove_breakpoint(uprobe, mm, info->vaddr); |
| } |
| unlock: |
| up_write(&mm->mmap_sem); |
| free: |
| mmput(mm); |
| info = free_map_info(info); |
| } |
| |
| return err; |
| } |
| |
| static int __uprobe_register(struct uprobe *uprobe) |
| { |
| return register_for_each_vma(uprobe, true); |
| } |
| |
| static void __uprobe_unregister(struct uprobe *uprobe) |
| { |
| if (!register_for_each_vma(uprobe, false)) |
| delete_uprobe(uprobe); |
| |
| /* TODO : cant unregister? schedule a worker thread */ |
| } |
| |
| /* |
| * uprobe_register - register a probe |
| * @inode: the file in which the probe has to be placed. |
| * @offset: offset from the start of the file. |
| * @uc: information on howto handle the probe.. |
| * |
| * Apart from the access refcount, uprobe_register() takes a creation |
| * refcount (thro alloc_uprobe) if and only if this @uprobe is getting |
| * inserted into the rbtree (i.e first consumer for a @inode:@offset |
| * tuple). Creation refcount stops uprobe_unregister from freeing the |
| * @uprobe even before the register operation is complete. Creation |
| * refcount is released when the last @uc for the @uprobe |
| * unregisters. |
| * |
| * Return errno if it cannot successully install probes |
| * else return 0 (success) |
| */ |
| int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) |
| { |
| struct uprobe *uprobe; |
| int ret; |
| |
| if (!inode || !uc || uc->next) |
| return -EINVAL; |
| |
| if (offset > i_size_read(inode)) |
| return -EINVAL; |
| |
| ret = 0; |
| mutex_lock(uprobes_hash(inode)); |
| uprobe = alloc_uprobe(inode, offset); |
| |
| if (uprobe && !consumer_add(uprobe, uc)) { |
| ret = __uprobe_register(uprobe); |
| if (ret) { |
| uprobe->consumers = NULL; |
| __uprobe_unregister(uprobe); |
| } else { |
| uprobe->flags |= UPROBE_RUN_HANDLER; |
| } |
| } |
| |
| mutex_unlock(uprobes_hash(inode)); |
| put_uprobe(uprobe); |
| |
| return ret; |
| } |
| |
| /* |
| * uprobe_unregister - unregister a already registered probe. |
| * @inode: the file in which the probe has to be removed. |
| * @offset: offset from the start of the file. |
| * @uc: identify which probe if multiple probes are colocated. |
| */ |
| void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) |
| { |
| struct uprobe *uprobe; |
| |
| if (!inode || !uc) |
| return; |
| |
| uprobe = find_uprobe(inode, offset); |
| if (!uprobe) |
| return; |
| |
| mutex_lock(uprobes_hash(inode)); |
| |
| if (consumer_del(uprobe, uc)) { |
| if (!uprobe->consumers) { |
| __uprobe_unregister(uprobe); |
| uprobe->flags &= ~UPROBE_RUN_HANDLER; |
| } |
| } |
| |
| mutex_unlock(uprobes_hash(inode)); |
| if (uprobe) |
| put_uprobe(uprobe); |
| } |
| |
| static struct rb_node * |
| find_node_in_range(struct inode *inode, loff_t min, loff_t max) |
| { |
| struct rb_node *n = uprobes_tree.rb_node; |
| |
| while (n) { |
| struct uprobe *u = rb_entry(n, struct uprobe, rb_node); |
| |
| if (inode < u->inode) { |
| n = n->rb_left; |
| } else if (inode > u->inode) { |
| n = n->rb_right; |
| } else { |
| if (max < u->offset) |
| n = n->rb_left; |
| else if (min > u->offset) |
| n = n->rb_right; |
| else |
| break; |
| } |
| } |
| |
| return n; |
| } |
| |
| /* |
| * For a given range in vma, build a list of probes that need to be inserted. |
| */ |
| static void build_probe_list(struct inode *inode, |
| struct vm_area_struct *vma, |
| unsigned long start, unsigned long end, |
| struct list_head *head) |
| { |
| loff_t min, max; |
| unsigned long flags; |
| struct rb_node *n, *t; |
| struct uprobe *u; |
| |
| INIT_LIST_HEAD(head); |
| min = vaddr_to_offset(vma, start); |
| max = min + (end - start) - 1; |
| |
| spin_lock_irqsave(&uprobes_treelock, flags); |
| n = find_node_in_range(inode, min, max); |
| if (n) { |
| for (t = n; t; t = rb_prev(t)) { |
| u = rb_entry(t, struct uprobe, rb_node); |
| if (u->inode != inode || u->offset < min) |
| break; |
| list_add(&u->pending_list, head); |
| atomic_inc(&u->ref); |
| } |
| for (t = n; (t = rb_next(t)); ) { |
| u = rb_entry(t, struct uprobe, rb_node); |
| if (u->inode != inode || u->offset > max) |
| break; |
| list_add(&u->pending_list, head); |
| atomic_inc(&u->ref); |
| } |
| } |
| spin_unlock_irqrestore(&uprobes_treelock, flags); |
| } |
| |
| /* |
| * Called from mmap_region. |
| * called with mm->mmap_sem acquired. |
| * |
| * Return -ve no if we fail to insert probes and we cannot |
| * bail-out. |
| * Return 0 otherwise. i.e: |
| * |
| * - successful insertion of probes |
| * - (or) no possible probes to be inserted. |
| * - (or) insertion of probes failed but we can bail-out. |
| */ |
| int uprobe_mmap(struct vm_area_struct *vma) |
| { |
| struct list_head tmp_list; |
| struct uprobe *uprobe, *u; |
| struct inode *inode; |
| int ret, count; |
| |
| if (!atomic_read(&uprobe_events) || !valid_vma(vma, true)) |
| return 0; |
| |
| inode = vma->vm_file->f_mapping->host; |
| if (!inode) |
| return 0; |
| |
| mutex_lock(uprobes_mmap_hash(inode)); |
| build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); |
| |
| ret = 0; |
| count = 0; |
| |
| list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { |
| if (!ret) { |
| unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); |
| |
| ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); |
| /* |
| * We can race against uprobe_register(), see the |
| * comment near uprobe_hash(). |
| */ |
| if (ret == -EEXIST) { |
| ret = 0; |
| |
| if (!is_swbp_at_addr(vma->vm_mm, vaddr)) |
| continue; |
| |
| /* |
| * Unable to insert a breakpoint, but |
| * breakpoint lies underneath. Increment the |
| * probe count. |
| */ |
| atomic_inc(&vma->vm_mm->uprobes_state.count); |
| } |
| |
| if (!ret) |
| count++; |
| } |
| put_uprobe(uprobe); |
| } |
| |
| mutex_unlock(uprobes_mmap_hash(inode)); |
| |
| if (ret) |
| atomic_sub(count, &vma->vm_mm->uprobes_state.count); |
| |
| return ret; |
| } |
| |
| /* |
| * Called in context of a munmap of a vma. |
| */ |
| void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| { |
| struct list_head tmp_list; |
| struct uprobe *uprobe, *u; |
| struct inode *inode; |
| |
| if (!atomic_read(&uprobe_events) || !valid_vma(vma, false)) |
| return; |
| |
| if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ |
| return; |
| |
| if (!atomic_read(&vma->vm_mm->uprobes_state.count)) |
| return; |
| |
| inode = vma->vm_file->f_mapping->host; |
| if (!inode) |
| return; |
| |
| mutex_lock(uprobes_mmap_hash(inode)); |
| build_probe_list(inode, vma, start, end, &tmp_list); |
| |
| list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { |
| unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); |
| /* |
| * An unregister could have removed the probe before |
| * unmap. So check before we decrement the count. |
| */ |
| if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1) |
| atomic_dec(&vma->vm_mm->uprobes_state.count); |
| put_uprobe(uprobe); |
| } |
| mutex_unlock(uprobes_mmap_hash(inode)); |
| } |
| |
| /* Slot allocation for XOL */ |
| static int xol_add_vma(struct xol_area *area) |
| { |
| struct mm_struct *mm; |
| int ret; |
| |
| area->page = alloc_page(GFP_HIGHUSER); |
| if (!area->page) |
| return -ENOMEM; |
| |
| ret = -EALREADY; |
| mm = current->mm; |
| |
| down_write(&mm->mmap_sem); |
| if (mm->uprobes_state.xol_area) |
| goto fail; |
| |
| ret = -ENOMEM; |
| |
| /* Try to map as high as possible, this is only a hint. */ |
| area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0); |
| if (area->vaddr & ~PAGE_MASK) { |
| ret = area->vaddr; |
| goto fail; |
| } |
| |
| ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE, |
| VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page); |
| if (ret) |
| goto fail; |
| |
| smp_wmb(); /* pairs with get_xol_area() */ |
| mm->uprobes_state.xol_area = area; |
| ret = 0; |
| |
| fail: |
| up_write(&mm->mmap_sem); |
| if (ret) |
| __free_page(area->page); |
| |
| return ret; |
| } |
| |
| static struct xol_area *get_xol_area(struct mm_struct *mm) |
| { |
| struct xol_area *area; |
| |
| area = mm->uprobes_state.xol_area; |
| smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ |
| |
| return area; |
| } |
| |
| /* |
| * xol_alloc_area - Allocate process's xol_area. |
| * This area will be used for storing instructions for execution out of |
| * line. |
| * |
| * Returns the allocated area or NULL. |
| */ |
| static struct xol_area *xol_alloc_area(void) |
| { |
| struct xol_area *area; |
| |
| area = kzalloc(sizeof(*area), GFP_KERNEL); |
| if (unlikely(!area)) |
| return NULL; |
| |
| area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); |
| |
| if (!area->bitmap) |
| goto fail; |
| |
| init_waitqueue_head(&area->wq); |
| if (!xol_add_vma(area)) |
| return area; |
| |
| fail: |
| kfree(area->bitmap); |
| kfree(area); |
| |
| return get_xol_area(current->mm); |
| } |
| |
| /* |
| * uprobe_clear_state - Free the area allocated for slots. |
| */ |
| void uprobe_clear_state(struct mm_struct *mm) |
| { |
| struct xol_area *area = mm->uprobes_state.xol_area; |
| |
| if (!area) |
| return; |
| |
| put_page(area->page); |
| kfree(area->bitmap); |
| kfree(area); |
| } |
| |
| /* |
| * uprobe_reset_state - Free the area allocated for slots. |
| */ |
| void uprobe_reset_state(struct mm_struct *mm) |
| { |
| mm->uprobes_state.xol_area = NULL; |
| atomic_set(&mm->uprobes_state.count, 0); |
| } |
| |
| /* |
| * - search for a free slot. |
| */ |
| static unsigned long xol_take_insn_slot(struct xol_area *area) |
| { |
| unsigned long slot_addr; |
| int slot_nr; |
| |
| do { |
| slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); |
| if (slot_nr < UINSNS_PER_PAGE) { |
| if (!test_and_set_bit(slot_nr, area->bitmap)) |
| break; |
| |
| slot_nr = UINSNS_PER_PAGE; |
| continue; |
| } |
| wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); |
| } while (slot_nr >= UINSNS_PER_PAGE); |
| |
| slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); |
| atomic_inc(&area->slot_count); |
| |
| return slot_addr; |
| } |
| |
| /* |
| * xol_get_insn_slot - If was not allocated a slot, then |
| * allocate a slot. |
| * Returns the allocated slot address or 0. |
| */ |
| static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr) |
| { |
| struct xol_area *area; |
| unsigned long offset; |
| void *vaddr; |
| |
| area = get_xol_area(current->mm); |
| if (!area) { |
| area = xol_alloc_area(); |
| if (!area) |
| return 0; |
| } |
| current->utask->xol_vaddr = xol_take_insn_slot(area); |
| |
| /* |
| * Initialize the slot if xol_vaddr points to valid |
| * instruction slot. |
| */ |
| if (unlikely(!current->utask->xol_vaddr)) |
| return 0; |
| |
| current->utask->vaddr = slot_addr; |
| offset = current->utask->xol_vaddr & ~PAGE_MASK; |
| vaddr = kmap_atomic(area->page); |
| memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES); |
| kunmap_atomic(vaddr); |
| |
| return current->utask->xol_vaddr; |
| } |
| |
| /* |
| * xol_free_insn_slot - If slot was earlier allocated by |
| * @xol_get_insn_slot(), make the slot available for |
| * subsequent requests. |
| */ |
| static void xol_free_insn_slot(struct task_struct *tsk) |
| { |
| struct xol_area *area; |
| unsigned long vma_end; |
| unsigned long slot_addr; |
| |
| if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) |
| return; |
| |
| slot_addr = tsk->utask->xol_vaddr; |
| |
| if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr))) |
| return; |
| |
| area = tsk->mm->uprobes_state.xol_area; |
| vma_end = area->vaddr + PAGE_SIZE; |
| if (area->vaddr <= slot_addr && slot_addr < vma_end) { |
| unsigned long offset; |
| int slot_nr; |
| |
| offset = slot_addr - area->vaddr; |
| slot_nr = offset / UPROBE_XOL_SLOT_BYTES; |
| if (slot_nr >= UINSNS_PER_PAGE) |
| return; |
| |
| clear_bit(slot_nr, area->bitmap); |
| atomic_dec(&area->slot_count); |
| if (waitqueue_active(&area->wq)) |
| wake_up(&area->wq); |
| |
| tsk->utask->xol_vaddr = 0; |
| } |
| } |
| |
| /** |
| * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs |
| * @regs: Reflects the saved state of the task after it has hit a breakpoint |
| * instruction. |
| * Return the address of the breakpoint instruction. |
| */ |
| unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) |
| { |
| return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; |
| } |
| |
| /* |
| * Called with no locks held. |
| * Called in context of a exiting or a exec-ing thread. |
| */ |
| void uprobe_free_utask(struct task_struct *t) |
| { |
| struct uprobe_task *utask = t->utask; |
| |
| if (!utask) |
| return; |
| |
| if (utask->active_uprobe) |
| put_uprobe(utask->active_uprobe); |
| |
| xol_free_insn_slot(t); |
| kfree(utask); |
| t->utask = NULL; |
| } |
| |
| /* |
| * Called in context of a new clone/fork from copy_process. |
| */ |
| void uprobe_copy_process(struct task_struct *t) |
| { |
| t->utask = NULL; |
| } |
| |
| /* |
| * Allocate a uprobe_task object for the task. |
| * Called when the thread hits a breakpoint for the first time. |
| * |
| * Returns: |
| * - pointer to new uprobe_task on success |
| * - NULL otherwise |
| */ |
| static struct uprobe_task *add_utask(void) |
| { |
| struct uprobe_task *utask; |
| |
| utask = kzalloc(sizeof *utask, GFP_KERNEL); |
| if (unlikely(!utask)) |
| return NULL; |
| |
| current->utask = utask; |
| return utask; |
| } |
| |
| /* Prepare to single-step probed instruction out of line. */ |
| static int |
| pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr) |
| { |
| if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs)) |
| return 0; |
| |
| return -EFAULT; |
| } |
| |
| /* |
| * If we are singlestepping, then ensure this thread is not connected to |
| * non-fatal signals until completion of singlestep. When xol insn itself |
| * triggers the signal, restart the original insn even if the task is |
| * already SIGKILL'ed (since coredump should report the correct ip). This |
| * is even more important if the task has a handler for SIGSEGV/etc, The |
| * _same_ instruction should be repeated again after return from the signal |
| * handler, and SSTEP can never finish in this case. |
| */ |
| bool uprobe_deny_signal(void) |
| { |
| struct task_struct *t = current; |
| struct uprobe_task *utask = t->utask; |
| |
| if (likely(!utask || !utask->active_uprobe)) |
| return false; |
| |
| WARN_ON_ONCE(utask->state != UTASK_SSTEP); |
| |
| if (signal_pending(t)) { |
| spin_lock_irq(&t->sighand->siglock); |
| clear_tsk_thread_flag(t, TIF_SIGPENDING); |
| spin_unlock_irq(&t->sighand->siglock); |
| |
| if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { |
| utask->state = UTASK_SSTEP_TRAPPED; |
| set_tsk_thread_flag(t, TIF_UPROBE); |
| set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); |
| } |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Avoid singlestepping the original instruction if the original instruction |
| * is a NOP or can be emulated. |
| */ |
| static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs) |
| { |
| if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) |
| return true; |
| |
| uprobe->flags &= ~UPROBE_SKIP_SSTEP; |
| return false; |
| } |
| |
| static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) |
| { |
| struct mm_struct *mm = current->mm; |
| struct uprobe *uprobe = NULL; |
| struct vm_area_struct *vma; |
| |
| down_read(&mm->mmap_sem); |
| vma = find_vma(mm, bp_vaddr); |
| if (vma && vma->vm_start <= bp_vaddr) { |
| if (valid_vma(vma, false)) { |
| struct inode *inode = vma->vm_file->f_mapping->host; |
| loff_t offset = vaddr_to_offset(vma, bp_vaddr); |
| |
| uprobe = find_uprobe(inode, offset); |
| } |
| |
| if (!uprobe) |
| *is_swbp = is_swbp_at_addr(mm, bp_vaddr); |
| } else { |
| *is_swbp = -EFAULT; |
| } |
| up_read(&mm->mmap_sem); |
| |
| return uprobe; |
| } |
| |
| /* |
| * Run handler and ask thread to singlestep. |
| * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. |
| */ |
| static void handle_swbp(struct pt_regs *regs) |
| { |
| struct uprobe_task *utask; |
| struct uprobe *uprobe; |
| unsigned long bp_vaddr; |
| int uninitialized_var(is_swbp); |
| |
| bp_vaddr = uprobe_get_swbp_addr(regs); |
| uprobe = find_active_uprobe(bp_vaddr, &is_swbp); |
| |
| if (!uprobe) { |
| if (is_swbp > 0) { |
| /* No matching uprobe; signal SIGTRAP. */ |
| send_sig(SIGTRAP, current, 0); |
| } else { |
| /* |
| * Either we raced with uprobe_unregister() or we can't |
| * access this memory. The latter is only possible if |
| * another thread plays with our ->mm. In both cases |
| * we can simply restart. If this vma was unmapped we |
| * can pretend this insn was not executed yet and get |
| * the (correct) SIGSEGV after restart. |
| */ |
| instruction_pointer_set(regs, bp_vaddr); |
| } |
| return; |
| } |
| |
| utask = current->utask; |
| if (!utask) { |
| utask = add_utask(); |
| /* Cannot allocate; re-execute the instruction. */ |
| if (!utask) |
| goto cleanup_ret; |
| } |
| utask->active_uprobe = uprobe; |
| handler_chain(uprobe, regs); |
| if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs)) |
| goto cleanup_ret; |
| |
| utask->state = UTASK_SSTEP; |
| if (!pre_ssout(uprobe, regs, bp_vaddr)) { |
| user_enable_single_step(current); |
| return; |
| } |
| |
| cleanup_ret: |
| if (utask) { |
| utask->active_uprobe = NULL; |
| utask->state = UTASK_RUNNING; |
| } |
| if (uprobe) { |
| if (!(uprobe->flags & UPROBE_SKIP_SSTEP)) |
| |
| /* |
| * cannot singlestep; cannot skip instruction; |
| * re-execute the instruction. |
| */ |
| instruction_pointer_set(regs, bp_vaddr); |
| |
| put_uprobe(uprobe); |
| } |
| } |
| |
| /* |
| * Perform required fix-ups and disable singlestep. |
| * Allow pending signals to take effect. |
| */ |
| static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) |
| { |
| struct uprobe *uprobe; |
| |
| uprobe = utask->active_uprobe; |
| if (utask->state == UTASK_SSTEP_ACK) |
| arch_uprobe_post_xol(&uprobe->arch, regs); |
| else if (utask->state == UTASK_SSTEP_TRAPPED) |
| arch_uprobe_abort_xol(&uprobe->arch, regs); |
| else |
| WARN_ON_ONCE(1); |
| |
| put_uprobe(uprobe); |
| utask->active_uprobe = NULL; |
| utask->state = UTASK_RUNNING; |
| user_disable_single_step(current); |
| xol_free_insn_slot(current); |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| recalc_sigpending(); /* see uprobe_deny_signal() */ |
| spin_unlock_irq(¤t->sighand->siglock); |
| } |
| |
| /* |
| * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on |
| * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and |
| * allows the thread to return from interrupt. |
| * |
| * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and |
| * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from |
| * interrupt. |
| * |
| * While returning to userspace, thread notices the TIF_UPROBE flag and calls |
| * uprobe_notify_resume(). |
| */ |
| void uprobe_notify_resume(struct pt_regs *regs) |
| { |
| struct uprobe_task *utask; |
| |
| utask = current->utask; |
| if (!utask || utask->state == UTASK_BP_HIT) |
| handle_swbp(regs); |
| else |
| handle_singlestep(utask, regs); |
| } |
| |
| /* |
| * uprobe_pre_sstep_notifier gets called from interrupt context as part of |
| * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. |
| */ |
| int uprobe_pre_sstep_notifier(struct pt_regs *regs) |
| { |
| struct uprobe_task *utask; |
| |
| if (!current->mm || !atomic_read(¤t->mm->uprobes_state.count)) |
| /* task is currently not uprobed */ |
| return 0; |
| |
| utask = current->utask; |
| if (utask) |
| utask->state = UTASK_BP_HIT; |
| |
| set_thread_flag(TIF_UPROBE); |
| |
| return 1; |
| } |
| |
| /* |
| * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier |
| * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. |
| */ |
| int uprobe_post_sstep_notifier(struct pt_regs *regs) |
| { |
| struct uprobe_task *utask = current->utask; |
| |
| if (!current->mm || !utask || !utask->active_uprobe) |
| /* task is currently not uprobed */ |
| return 0; |
| |
| utask->state = UTASK_SSTEP_ACK; |
| set_thread_flag(TIF_UPROBE); |
| return 1; |
| } |
| |
| static struct notifier_block uprobe_exception_nb = { |
| .notifier_call = arch_uprobe_exception_notify, |
| .priority = INT_MAX-1, /* notified after kprobes, kgdb */ |
| }; |
| |
| static int __init init_uprobes(void) |
| { |
| int i; |
| |
| for (i = 0; i < UPROBES_HASH_SZ; i++) { |
| mutex_init(&uprobes_mutex[i]); |
| mutex_init(&uprobes_mmap_mutex[i]); |
| } |
| |
| return register_die_notifier(&uprobe_exception_nb); |
| } |
| module_init(init_uprobes); |
| |
| static void __exit exit_uprobes(void) |
| { |
| } |
| module_exit(exit_uprobes); |