| /* |
| * Copyright 2002-2005, Instant802 Networks, Inc. |
| * Copyright 2005, Devicescape Software, Inc. |
| * Copyright 2007, Mattias Nissler <mattias.nissler@gmx.de> |
| * Copyright 2007-2008, Stefano Brivio <stefano.brivio@polimi.it> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/netdevice.h> |
| #include <linux/types.h> |
| #include <linux/skbuff.h> |
| #include <linux/debugfs.h> |
| #include <net/mac80211.h> |
| #include "rate.h" |
| #include "mesh.h" |
| #include "rc80211_pid.h" |
| |
| |
| /* This is an implementation of a TX rate control algorithm that uses a PID |
| * controller. Given a target failed frames rate, the controller decides about |
| * TX rate changes to meet the target failed frames rate. |
| * |
| * The controller basically computes the following: |
| * |
| * adj = CP * err + CI * err_avg + CD * (err - last_err) * (1 + sharpening) |
| * |
| * where |
| * adj adjustment value that is used to switch TX rate (see below) |
| * err current error: target vs. current failed frames percentage |
| * last_err last error |
| * err_avg average (i.e. poor man's integral) of recent errors |
| * sharpening non-zero when fast response is needed (i.e. right after |
| * association or no frames sent for a long time), heading |
| * to zero over time |
| * CP Proportional coefficient |
| * CI Integral coefficient |
| * CD Derivative coefficient |
| * |
| * CP, CI, CD are subject to careful tuning. |
| * |
| * The integral component uses a exponential moving average approach instead of |
| * an actual sliding window. The advantage is that we don't need to keep an |
| * array of the last N error values and computation is easier. |
| * |
| * Once we have the adj value, we map it to a rate by means of a learning |
| * algorithm. This algorithm keeps the state of the percentual failed frames |
| * difference between rates. The behaviour of the lowest available rate is kept |
| * as a reference value, and every time we switch between two rates, we compute |
| * the difference between the failed frames each rate exhibited. By doing so, |
| * we compare behaviours which different rates exhibited in adjacent timeslices, |
| * thus the comparison is minimally affected by external conditions. This |
| * difference gets propagated to the whole set of measurements, so that the |
| * reference is always the same. Periodically, we normalize this set so that |
| * recent events weigh the most. By comparing the adj value with this set, we |
| * avoid pejorative switches to lower rates and allow for switches to higher |
| * rates if they behaved well. |
| * |
| * Note that for the computations we use a fixed-point representation to avoid |
| * floating point arithmetic. Hence, all values are shifted left by |
| * RC_PID_ARITH_SHIFT. |
| */ |
| |
| |
| /* Adjust the rate while ensuring that we won't switch to a lower rate if it |
| * exhibited a worse failed frames behaviour and we'll choose the highest rate |
| * whose failed frames behaviour is not worse than the one of the original rate |
| * target. While at it, check that the new rate is valid. */ |
| static void rate_control_pid_adjust_rate(struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, |
| struct rc_pid_sta_info *spinfo, int adj, |
| struct rc_pid_rateinfo *rinfo) |
| { |
| int cur_sorted, new_sorted, probe, tmp, n_bitrates, band; |
| int cur = spinfo->txrate_idx; |
| |
| band = sband->band; |
| n_bitrates = sband->n_bitrates; |
| |
| /* Map passed arguments to sorted values. */ |
| cur_sorted = rinfo[cur].rev_index; |
| new_sorted = cur_sorted + adj; |
| |
| /* Check limits. */ |
| if (new_sorted < 0) |
| new_sorted = rinfo[0].rev_index; |
| else if (new_sorted >= n_bitrates) |
| new_sorted = rinfo[n_bitrates - 1].rev_index; |
| |
| tmp = new_sorted; |
| |
| if (adj < 0) { |
| /* Ensure that the rate decrease isn't disadvantageous. */ |
| for (probe = cur_sorted; probe >= new_sorted; probe--) |
| if (rinfo[probe].diff <= rinfo[cur_sorted].diff && |
| rate_supported(sta, band, rinfo[probe].index)) |
| tmp = probe; |
| } else { |
| /* Look for rate increase with zero (or below) cost. */ |
| for (probe = new_sorted + 1; probe < n_bitrates; probe++) |
| if (rinfo[probe].diff <= rinfo[new_sorted].diff && |
| rate_supported(sta, band, rinfo[probe].index)) |
| tmp = probe; |
| } |
| |
| /* Fit the rate found to the nearest supported rate. */ |
| do { |
| if (rate_supported(sta, band, rinfo[tmp].index)) { |
| spinfo->txrate_idx = rinfo[tmp].index; |
| break; |
| } |
| if (adj < 0) |
| tmp--; |
| else |
| tmp++; |
| } while (tmp < n_bitrates && tmp >= 0); |
| |
| #ifdef CONFIG_MAC80211_DEBUGFS |
| rate_control_pid_event_rate_change(&spinfo->events, |
| spinfo->txrate_idx, |
| sband->bitrates[spinfo->txrate_idx].bitrate); |
| #endif |
| } |
| |
| /* Normalize the failed frames per-rate differences. */ |
| static void rate_control_pid_normalize(struct rc_pid_info *pinfo, int l) |
| { |
| int i, norm_offset = pinfo->norm_offset; |
| struct rc_pid_rateinfo *r = pinfo->rinfo; |
| |
| if (r[0].diff > norm_offset) |
| r[0].diff -= norm_offset; |
| else if (r[0].diff < -norm_offset) |
| r[0].diff += norm_offset; |
| for (i = 0; i < l - 1; i++) |
| if (r[i + 1].diff > r[i].diff + norm_offset) |
| r[i + 1].diff -= norm_offset; |
| else if (r[i + 1].diff <= r[i].diff) |
| r[i + 1].diff += norm_offset; |
| } |
| |
| static void rate_control_pid_sample(struct rc_pid_info *pinfo, |
| struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, |
| struct rc_pid_sta_info *spinfo) |
| { |
| struct rc_pid_rateinfo *rinfo = pinfo->rinfo; |
| u32 pf; |
| s32 err_avg; |
| u32 err_prop; |
| u32 err_int; |
| u32 err_der; |
| int adj, i, j, tmp; |
| unsigned long period; |
| |
| /* In case nothing happened during the previous control interval, turn |
| * the sharpening factor on. */ |
| period = (HZ * pinfo->sampling_period + 500) / 1000; |
| if (!period) |
| period = 1; |
| if (jiffies - spinfo->last_sample > 2 * period) |
| spinfo->sharp_cnt = pinfo->sharpen_duration; |
| |
| spinfo->last_sample = jiffies; |
| |
| /* This should never happen, but in case, we assume the old sample is |
| * still a good measurement and copy it. */ |
| if (unlikely(spinfo->tx_num_xmit == 0)) |
| pf = spinfo->last_pf; |
| else |
| pf = spinfo->tx_num_failed * 100 / spinfo->tx_num_xmit; |
| |
| spinfo->tx_num_xmit = 0; |
| spinfo->tx_num_failed = 0; |
| |
| /* If we just switched rate, update the rate behaviour info. */ |
| if (pinfo->oldrate != spinfo->txrate_idx) { |
| |
| i = rinfo[pinfo->oldrate].rev_index; |
| j = rinfo[spinfo->txrate_idx].rev_index; |
| |
| tmp = (pf - spinfo->last_pf); |
| tmp = RC_PID_DO_ARITH_RIGHT_SHIFT(tmp, RC_PID_ARITH_SHIFT); |
| |
| rinfo[j].diff = rinfo[i].diff + tmp; |
| pinfo->oldrate = spinfo->txrate_idx; |
| } |
| rate_control_pid_normalize(pinfo, sband->n_bitrates); |
| |
| /* Compute the proportional, integral and derivative errors. */ |
| err_prop = (pinfo->target << RC_PID_ARITH_SHIFT) - pf; |
| |
| err_avg = spinfo->err_avg_sc >> pinfo->smoothing_shift; |
| spinfo->err_avg_sc = spinfo->err_avg_sc - err_avg + err_prop; |
| err_int = spinfo->err_avg_sc >> pinfo->smoothing_shift; |
| |
| err_der = (pf - spinfo->last_pf) * |
| (1 + pinfo->sharpen_factor * spinfo->sharp_cnt); |
| spinfo->last_pf = pf; |
| if (spinfo->sharp_cnt) |
| spinfo->sharp_cnt--; |
| |
| #ifdef CONFIG_MAC80211_DEBUGFS |
| rate_control_pid_event_pf_sample(&spinfo->events, pf, err_prop, err_int, |
| err_der); |
| #endif |
| |
| /* Compute the controller output. */ |
| adj = (err_prop * pinfo->coeff_p + err_int * pinfo->coeff_i |
| + err_der * pinfo->coeff_d); |
| adj = RC_PID_DO_ARITH_RIGHT_SHIFT(adj, 2 * RC_PID_ARITH_SHIFT); |
| |
| /* Change rate. */ |
| if (adj) |
| rate_control_pid_adjust_rate(sband, sta, spinfo, adj, rinfo); |
| } |
| |
| static void rate_control_pid_tx_status(void *priv, struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, void *priv_sta, |
| struct sk_buff *skb) |
| { |
| struct rc_pid_info *pinfo = priv; |
| struct rc_pid_sta_info *spinfo = priv_sta; |
| unsigned long period; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| |
| if (!spinfo) |
| return; |
| |
| /* Ignore all frames that were sent with a different rate than the rate |
| * we currently advise mac80211 to use. */ |
| if (info->status.rates[0].idx != spinfo->txrate_idx) |
| return; |
| |
| spinfo->tx_num_xmit++; |
| |
| #ifdef CONFIG_MAC80211_DEBUGFS |
| rate_control_pid_event_tx_status(&spinfo->events, info); |
| #endif |
| |
| /* We count frames that totally failed to be transmitted as two bad |
| * frames, those that made it out but had some retries as one good and |
| * one bad frame. */ |
| if (!(info->flags & IEEE80211_TX_STAT_ACK)) { |
| spinfo->tx_num_failed += 2; |
| spinfo->tx_num_xmit++; |
| } else if (info->status.rates[0].count > 1) { |
| spinfo->tx_num_failed++; |
| spinfo->tx_num_xmit++; |
| } |
| |
| /* Update PID controller state. */ |
| period = (HZ * pinfo->sampling_period + 500) / 1000; |
| if (!period) |
| period = 1; |
| if (time_after(jiffies, spinfo->last_sample + period)) |
| rate_control_pid_sample(pinfo, sband, sta, spinfo); |
| } |
| |
| static void |
| rate_control_pid_get_rate(void *priv, struct ieee80211_sta *sta, |
| void *priv_sta, |
| struct ieee80211_tx_rate_control *txrc) |
| { |
| struct sk_buff *skb = txrc->skb; |
| struct ieee80211_supported_band *sband = txrc->sband; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct rc_pid_sta_info *spinfo = priv_sta; |
| int rateidx; |
| |
| if (txrc->rts) |
| info->control.rates[0].count = |
| txrc->hw->conf.long_frame_max_tx_count; |
| else |
| info->control.rates[0].count = |
| txrc->hw->conf.short_frame_max_tx_count; |
| |
| /* Send management frames and NO_ACK data using lowest rate. */ |
| if (rate_control_send_low(sta, priv_sta, txrc)) |
| return; |
| |
| rateidx = spinfo->txrate_idx; |
| |
| if (rateidx >= sband->n_bitrates) |
| rateidx = sband->n_bitrates - 1; |
| |
| info->control.rates[0].idx = rateidx; |
| |
| #ifdef CONFIG_MAC80211_DEBUGFS |
| rate_control_pid_event_tx_rate(&spinfo->events, |
| rateidx, sband->bitrates[rateidx].bitrate); |
| #endif |
| } |
| |
| static void |
| rate_control_pid_rate_init(void *priv, struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, void *priv_sta) |
| { |
| struct rc_pid_sta_info *spinfo = priv_sta; |
| struct rc_pid_info *pinfo = priv; |
| struct rc_pid_rateinfo *rinfo = pinfo->rinfo; |
| struct sta_info *si; |
| int i, j, tmp; |
| bool s; |
| |
| /* TODO: This routine should consider using RSSI from previous packets |
| * as we need to have IEEE 802.1X auth succeed immediately after assoc.. |
| * Until that method is implemented, we will use the lowest supported |
| * rate as a workaround. */ |
| |
| /* Sort the rates. This is optimized for the most common case (i.e. |
| * almost-sorted CCK+OFDM rates). Kind of bubble-sort with reversed |
| * mapping too. */ |
| for (i = 0; i < sband->n_bitrates; i++) { |
| rinfo[i].index = i; |
| rinfo[i].rev_index = i; |
| if (RC_PID_FAST_START) |
| rinfo[i].diff = 0; |
| else |
| rinfo[i].diff = i * pinfo->norm_offset; |
| } |
| for (i = 1; i < sband->n_bitrates; i++) { |
| s = 0; |
| for (j = 0; j < sband->n_bitrates - i; j++) |
| if (unlikely(sband->bitrates[rinfo[j].index].bitrate > |
| sband->bitrates[rinfo[j + 1].index].bitrate)) { |
| tmp = rinfo[j].index; |
| rinfo[j].index = rinfo[j + 1].index; |
| rinfo[j + 1].index = tmp; |
| rinfo[rinfo[j].index].rev_index = j; |
| rinfo[rinfo[j + 1].index].rev_index = j + 1; |
| s = 1; |
| } |
| if (!s) |
| break; |
| } |
| |
| spinfo->txrate_idx = rate_lowest_index(sband, sta); |
| } |
| |
| static void *rate_control_pid_alloc(struct ieee80211_hw *hw, |
| struct dentry *debugfsdir) |
| { |
| struct rc_pid_info *pinfo; |
| struct rc_pid_rateinfo *rinfo; |
| struct ieee80211_supported_band *sband; |
| int i, max_rates = 0; |
| #ifdef CONFIG_MAC80211_DEBUGFS |
| struct rc_pid_debugfs_entries *de; |
| #endif |
| |
| pinfo = kmalloc(sizeof(*pinfo), GFP_ATOMIC); |
| if (!pinfo) |
| return NULL; |
| |
| for (i = 0; i < IEEE80211_NUM_BANDS; i++) { |
| sband = hw->wiphy->bands[i]; |
| if (sband && sband->n_bitrates > max_rates) |
| max_rates = sband->n_bitrates; |
| } |
| |
| rinfo = kmalloc(sizeof(*rinfo) * max_rates, GFP_ATOMIC); |
| if (!rinfo) { |
| kfree(pinfo); |
| return NULL; |
| } |
| |
| pinfo->target = RC_PID_TARGET_PF; |
| pinfo->sampling_period = RC_PID_INTERVAL; |
| pinfo->coeff_p = RC_PID_COEFF_P; |
| pinfo->coeff_i = RC_PID_COEFF_I; |
| pinfo->coeff_d = RC_PID_COEFF_D; |
| pinfo->smoothing_shift = RC_PID_SMOOTHING_SHIFT; |
| pinfo->sharpen_factor = RC_PID_SHARPENING_FACTOR; |
| pinfo->sharpen_duration = RC_PID_SHARPENING_DURATION; |
| pinfo->norm_offset = RC_PID_NORM_OFFSET; |
| pinfo->rinfo = rinfo; |
| pinfo->oldrate = 0; |
| |
| #ifdef CONFIG_MAC80211_DEBUGFS |
| de = &pinfo->dentries; |
| de->target = debugfs_create_u32("target_pf", S_IRUSR | S_IWUSR, |
| debugfsdir, &pinfo->target); |
| de->sampling_period = debugfs_create_u32("sampling_period", |
| S_IRUSR | S_IWUSR, debugfsdir, |
| &pinfo->sampling_period); |
| de->coeff_p = debugfs_create_u32("coeff_p", S_IRUSR | S_IWUSR, |
| debugfsdir, (u32 *)&pinfo->coeff_p); |
| de->coeff_i = debugfs_create_u32("coeff_i", S_IRUSR | S_IWUSR, |
| debugfsdir, (u32 *)&pinfo->coeff_i); |
| de->coeff_d = debugfs_create_u32("coeff_d", S_IRUSR | S_IWUSR, |
| debugfsdir, (u32 *)&pinfo->coeff_d); |
| de->smoothing_shift = debugfs_create_u32("smoothing_shift", |
| S_IRUSR | S_IWUSR, debugfsdir, |
| &pinfo->smoothing_shift); |
| de->sharpen_factor = debugfs_create_u32("sharpen_factor", |
| S_IRUSR | S_IWUSR, debugfsdir, |
| &pinfo->sharpen_factor); |
| de->sharpen_duration = debugfs_create_u32("sharpen_duration", |
| S_IRUSR | S_IWUSR, debugfsdir, |
| &pinfo->sharpen_duration); |
| de->norm_offset = debugfs_create_u32("norm_offset", |
| S_IRUSR | S_IWUSR, debugfsdir, |
| &pinfo->norm_offset); |
| #endif |
| |
| return pinfo; |
| } |
| |
| static void rate_control_pid_free(void *priv) |
| { |
| struct rc_pid_info *pinfo = priv; |
| #ifdef CONFIG_MAC80211_DEBUGFS |
| struct rc_pid_debugfs_entries *de = &pinfo->dentries; |
| |
| debugfs_remove(de->norm_offset); |
| debugfs_remove(de->sharpen_duration); |
| debugfs_remove(de->sharpen_factor); |
| debugfs_remove(de->smoothing_shift); |
| debugfs_remove(de->coeff_d); |
| debugfs_remove(de->coeff_i); |
| debugfs_remove(de->coeff_p); |
| debugfs_remove(de->sampling_period); |
| debugfs_remove(de->target); |
| #endif |
| |
| kfree(pinfo->rinfo); |
| kfree(pinfo); |
| } |
| |
| static void *rate_control_pid_alloc_sta(void *priv, struct ieee80211_sta *sta, |
| gfp_t gfp) |
| { |
| struct rc_pid_sta_info *spinfo; |
| |
| spinfo = kzalloc(sizeof(*spinfo), gfp); |
| if (spinfo == NULL) |
| return NULL; |
| |
| spinfo->last_sample = jiffies; |
| |
| #ifdef CONFIG_MAC80211_DEBUGFS |
| spin_lock_init(&spinfo->events.lock); |
| init_waitqueue_head(&spinfo->events.waitqueue); |
| #endif |
| |
| return spinfo; |
| } |
| |
| static void rate_control_pid_free_sta(void *priv, struct ieee80211_sta *sta, |
| void *priv_sta) |
| { |
| kfree(priv_sta); |
| } |
| |
| static struct rate_control_ops mac80211_rcpid = { |
| .name = "pid", |
| .tx_status = rate_control_pid_tx_status, |
| .get_rate = rate_control_pid_get_rate, |
| .rate_init = rate_control_pid_rate_init, |
| .alloc = rate_control_pid_alloc, |
| .free = rate_control_pid_free, |
| .alloc_sta = rate_control_pid_alloc_sta, |
| .free_sta = rate_control_pid_free_sta, |
| #ifdef CONFIG_MAC80211_DEBUGFS |
| .add_sta_debugfs = rate_control_pid_add_sta_debugfs, |
| .remove_sta_debugfs = rate_control_pid_remove_sta_debugfs, |
| #endif |
| }; |
| |
| int __init rc80211_pid_init(void) |
| { |
| return ieee80211_rate_control_register(&mac80211_rcpid); |
| } |
| |
| void rc80211_pid_exit(void) |
| { |
| ieee80211_rate_control_unregister(&mac80211_rcpid); |
| } |