| /* |
| * Ethernet driver for Motorola MPC8260. |
| * Copyright (c) 1999 Dan Malek (dmalek@jlc.net) |
| * Copyright (c) 2000 MontaVista Software Inc. (source@mvista.com) |
| * 2.3.99 Updates |
| * |
| * I copied this from the 8xx CPM Ethernet driver, so follow the |
| * credits back through that. |
| * |
| * This version of the driver is somewhat selectable for the different |
| * processor/board combinations. It works for the boards I know about |
| * now, and should be easily modified to include others. Some of the |
| * configuration information is contained in <asm/commproc.h> and the |
| * remainder is here. |
| * |
| * Buffer descriptors are kept in the CPM dual port RAM, and the frame |
| * buffers are in the host memory. |
| * |
| * Right now, I am very watseful with the buffers. I allocate memory |
| * pages and then divide them into 2K frame buffers. This way I know I |
| * have buffers large enough to hold one frame within one buffer descriptor. |
| * Once I get this working, I will use 64 or 128 byte CPM buffers, which |
| * will be much more memory efficient and will easily handle lots of |
| * small packets. |
| * |
| */ |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/string.h> |
| #include <linux/ptrace.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/spinlock.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/immap_cpm2.h> |
| #include <asm/pgtable.h> |
| #include <asm/mpc8260.h> |
| #include <asm/uaccess.h> |
| #include <asm/cpm2.h> |
| #include <asm/irq.h> |
| |
| /* |
| * Theory of Operation |
| * |
| * The MPC8260 CPM performs the Ethernet processing on an SCC. It can use |
| * an aribtrary number of buffers on byte boundaries, but must have at |
| * least two receive buffers to prevent constant overrun conditions. |
| * |
| * The buffer descriptors are allocated from the CPM dual port memory |
| * with the data buffers allocated from host memory, just like all other |
| * serial communication protocols. The host memory buffers are allocated |
| * from the free page pool, and then divided into smaller receive and |
| * transmit buffers. The size of the buffers should be a power of two, |
| * since that nicely divides the page. This creates a ring buffer |
| * structure similar to the LANCE and other controllers. |
| * |
| * Like the LANCE driver: |
| * The driver runs as two independent, single-threaded flows of control. One |
| * is the send-packet routine, which enforces single-threaded use by the |
| * cep->tx_busy flag. The other thread is the interrupt handler, which is |
| * single threaded by the hardware and other software. |
| */ |
| |
| /* The transmitter timeout |
| */ |
| #define TX_TIMEOUT (2*HZ) |
| |
| /* The number of Tx and Rx buffers. These are allocated from the page |
| * pool. The code may assume these are power of two, so it is best |
| * to keep them that size. |
| * We don't need to allocate pages for the transmitter. We just use |
| * the skbuffer directly. |
| */ |
| #define CPM_ENET_RX_PAGES 4 |
| #define CPM_ENET_RX_FRSIZE 2048 |
| #define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE) |
| #define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES) |
| #define TX_RING_SIZE 8 /* Must be power of two */ |
| #define TX_RING_MOD_MASK 7 /* for this to work */ |
| |
| /* The CPM stores dest/src/type, data, and checksum for receive packets. |
| */ |
| #define PKT_MAXBUF_SIZE 1518 |
| #define PKT_MINBUF_SIZE 64 |
| #define PKT_MAXBLR_SIZE 1520 |
| |
| /* The CPM buffer descriptors track the ring buffers. The rx_bd_base and |
| * tx_bd_base always point to the base of the buffer descriptors. The |
| * cur_rx and cur_tx point to the currently available buffer. |
| * The dirty_tx tracks the current buffer that is being sent by the |
| * controller. The cur_tx and dirty_tx are equal under both completely |
| * empty and completely full conditions. The empty/ready indicator in |
| * the buffer descriptor determines the actual condition. |
| */ |
| struct scc_enet_private { |
| /* The saved address of a sent-in-place packet/buffer, for skfree(). */ |
| struct sk_buff* tx_skbuff[TX_RING_SIZE]; |
| ushort skb_cur; |
| ushort skb_dirty; |
| |
| /* CPM dual port RAM relative addresses. |
| */ |
| cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ |
| cbd_t *tx_bd_base; |
| cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ |
| cbd_t *dirty_tx; /* The ring entries to be free()ed. */ |
| scc_t *sccp; |
| struct net_device_stats stats; |
| uint tx_full; |
| spinlock_t lock; |
| }; |
| |
| static int scc_enet_open(struct net_device *dev); |
| static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); |
| static int scc_enet_rx(struct net_device *dev); |
| static irqreturn_t scc_enet_interrupt(int irq, void *dev_id); |
| static int scc_enet_close(struct net_device *dev); |
| static struct net_device_stats *scc_enet_get_stats(struct net_device *dev); |
| static void set_multicast_list(struct net_device *dev); |
| |
| /* These will be configurable for the SCC choice. |
| */ |
| #define CPM_ENET_BLOCK CPM_CR_SCC1_SBLOCK |
| #define CPM_ENET_PAGE CPM_CR_SCC1_PAGE |
| #define PROFF_ENET PROFF_SCC1 |
| #define SCC_ENET 0 |
| #define SIU_INT_ENET SIU_INT_SCC1 |
| |
| /* These are both board and SCC dependent.... |
| */ |
| #define PD_ENET_RXD ((uint)0x00000001) |
| #define PD_ENET_TXD ((uint)0x00000002) |
| #define PD_ENET_TENA ((uint)0x00000004) |
| #define PC_ENET_RENA ((uint)0x00020000) |
| #define PC_ENET_CLSN ((uint)0x00000004) |
| #define PC_ENET_TXCLK ((uint)0x00000800) |
| #define PC_ENET_RXCLK ((uint)0x00000400) |
| #define CMX_CLK_ROUTE ((uint)0x25000000) |
| #define CMX_CLK_MASK ((uint)0xff000000) |
| |
| /* Specific to a board. |
| */ |
| #define PC_EST8260_ENET_LOOPBACK ((uint)0x80000000) |
| #define PC_EST8260_ENET_SQE ((uint)0x40000000) |
| #define PC_EST8260_ENET_NOTFD ((uint)0x20000000) |
| |
| static int |
| scc_enet_open(struct net_device *dev) |
| { |
| |
| /* I should reset the ring buffers here, but I don't yet know |
| * a simple way to do that. |
| */ |
| netif_start_queue(dev); |
| return 0; /* Always succeed */ |
| } |
| |
| static int |
| scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; |
| volatile cbd_t *bdp; |
| |
| |
| /* Fill in a Tx ring entry */ |
| bdp = cep->cur_tx; |
| |
| #ifndef final_version |
| if (bdp->cbd_sc & BD_ENET_TX_READY) { |
| /* Ooops. All transmit buffers are full. Bail out. |
| * This should not happen, since cep->tx_full should be set. |
| */ |
| printk("%s: tx queue full!.\n", dev->name); |
| return 1; |
| } |
| #endif |
| |
| /* Clear all of the status flags. |
| */ |
| bdp->cbd_sc &= ~BD_ENET_TX_STATS; |
| |
| /* If the frame is short, tell CPM to pad it. |
| */ |
| if (skb->len <= ETH_ZLEN) |
| bdp->cbd_sc |= BD_ENET_TX_PAD; |
| else |
| bdp->cbd_sc &= ~BD_ENET_TX_PAD; |
| |
| /* Set buffer length and buffer pointer. |
| */ |
| bdp->cbd_datlen = skb->len; |
| bdp->cbd_bufaddr = __pa(skb->data); |
| |
| /* Save skb pointer. |
| */ |
| cep->tx_skbuff[cep->skb_cur] = skb; |
| |
| cep->stats.tx_bytes += skb->len; |
| cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK; |
| |
| spin_lock_irq(&cep->lock); |
| |
| /* Send it on its way. Tell CPM its ready, interrupt when done, |
| * its the last BD of the frame, and to put the CRC on the end. |
| */ |
| bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); |
| |
| dev->trans_start = jiffies; |
| |
| /* If this was the last BD in the ring, start at the beginning again. |
| */ |
| if (bdp->cbd_sc & BD_ENET_TX_WRAP) |
| bdp = cep->tx_bd_base; |
| else |
| bdp++; |
| |
| if (bdp->cbd_sc & BD_ENET_TX_READY) { |
| netif_stop_queue(dev); |
| cep->tx_full = 1; |
| } |
| |
| cep->cur_tx = (cbd_t *)bdp; |
| |
| spin_unlock_irq(&cep->lock); |
| |
| return 0; |
| } |
| |
| static void |
| scc_enet_timeout(struct net_device *dev) |
| { |
| struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; |
| |
| printk("%s: transmit timed out.\n", dev->name); |
| cep->stats.tx_errors++; |
| #ifndef final_version |
| { |
| int i; |
| cbd_t *bdp; |
| printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n", |
| cep->cur_tx, cep->tx_full ? " (full)" : "", |
| cep->cur_rx); |
| bdp = cep->tx_bd_base; |
| printk(" Tx @base %p :\n", bdp); |
| for (i = 0 ; i < TX_RING_SIZE; i++, bdp++) |
| printk("%04x %04x %08x\n", |
| bdp->cbd_sc, |
| bdp->cbd_datlen, |
| bdp->cbd_bufaddr); |
| bdp = cep->rx_bd_base; |
| printk(" Rx @base %p :\n", bdp); |
| for (i = 0 ; i < RX_RING_SIZE; i++, bdp++) |
| printk("%04x %04x %08x\n", |
| bdp->cbd_sc, |
| bdp->cbd_datlen, |
| bdp->cbd_bufaddr); |
| } |
| #endif |
| if (!cep->tx_full) |
| netif_wake_queue(dev); |
| } |
| |
| /* The interrupt handler. |
| * This is called from the CPM handler, not the MPC core interrupt. |
| */ |
| static irqreturn_t |
| scc_enet_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| volatile struct scc_enet_private *cep; |
| volatile cbd_t *bdp; |
| ushort int_events; |
| int must_restart; |
| |
| cep = dev->priv; |
| |
| /* Get the interrupt events that caused us to be here. |
| */ |
| int_events = cep->sccp->scc_scce; |
| cep->sccp->scc_scce = int_events; |
| must_restart = 0; |
| |
| /* Handle receive event in its own function. |
| */ |
| if (int_events & SCCE_ENET_RXF) |
| scc_enet_rx(dev_id); |
| |
| /* Check for a transmit error. The manual is a little unclear |
| * about this, so the debug code until I get it figured out. It |
| * appears that if TXE is set, then TXB is not set. However, |
| * if carrier sense is lost during frame transmission, the TXE |
| * bit is set, "and continues the buffer transmission normally." |
| * I don't know if "normally" implies TXB is set when the buffer |
| * descriptor is closed.....trial and error :-). |
| */ |
| |
| /* Transmit OK, or non-fatal error. Update the buffer descriptors. |
| */ |
| if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) { |
| spin_lock(&cep->lock); |
| bdp = cep->dirty_tx; |
| while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) { |
| if ((bdp==cep->cur_tx) && (cep->tx_full == 0)) |
| break; |
| |
| if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ |
| cep->stats.tx_heartbeat_errors++; |
| if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ |
| cep->stats.tx_window_errors++; |
| if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ |
| cep->stats.tx_aborted_errors++; |
| if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ |
| cep->stats.tx_fifo_errors++; |
| if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ |
| cep->stats.tx_carrier_errors++; |
| |
| |
| /* No heartbeat or Lost carrier are not really bad errors. |
| * The others require a restart transmit command. |
| */ |
| if (bdp->cbd_sc & |
| (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { |
| must_restart = 1; |
| cep->stats.tx_errors++; |
| } |
| |
| cep->stats.tx_packets++; |
| |
| /* Deferred means some collisions occurred during transmit, |
| * but we eventually sent the packet OK. |
| */ |
| if (bdp->cbd_sc & BD_ENET_TX_DEF) |
| cep->stats.collisions++; |
| |
| /* Free the sk buffer associated with this last transmit. |
| */ |
| dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]); |
| cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK; |
| |
| /* Update pointer to next buffer descriptor to be transmitted. |
| */ |
| if (bdp->cbd_sc & BD_ENET_TX_WRAP) |
| bdp = cep->tx_bd_base; |
| else |
| bdp++; |
| |
| /* I don't know if we can be held off from processing these |
| * interrupts for more than one frame time. I really hope |
| * not. In such a case, we would now want to check the |
| * currently available BD (cur_tx) and determine if any |
| * buffers between the dirty_tx and cur_tx have also been |
| * sent. We would want to process anything in between that |
| * does not have BD_ENET_TX_READY set. |
| */ |
| |
| /* Since we have freed up a buffer, the ring is no longer |
| * full. |
| */ |
| if (cep->tx_full) { |
| cep->tx_full = 0; |
| if (netif_queue_stopped(dev)) { |
| netif_wake_queue(dev); |
| } |
| } |
| |
| cep->dirty_tx = (cbd_t *)bdp; |
| } |
| |
| if (must_restart) { |
| volatile cpm_cpm2_t *cp; |
| |
| /* Some transmit errors cause the transmitter to shut |
| * down. We now issue a restart transmit. Since the |
| * errors close the BD and update the pointers, the restart |
| * _should_ pick up without having to reset any of our |
| * pointers either. |
| */ |
| |
| cp = cpmp; |
| cp->cp_cpcr = |
| mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0, |
| CPM_CR_RESTART_TX) | CPM_CR_FLG; |
| while (cp->cp_cpcr & CPM_CR_FLG); |
| } |
| spin_unlock(&cep->lock); |
| } |
| |
| /* Check for receive busy, i.e. packets coming but no place to |
| * put them. This "can't happen" because the receive interrupt |
| * is tossing previous frames. |
| */ |
| if (int_events & SCCE_ENET_BSY) { |
| cep->stats.rx_dropped++; |
| printk("SCC ENET: BSY can't happen.\n"); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* During a receive, the cur_rx points to the current incoming buffer. |
| * When we update through the ring, if the next incoming buffer has |
| * not been given to the system, we just set the empty indicator, |
| * effectively tossing the packet. |
| */ |
| static int |
| scc_enet_rx(struct net_device *dev) |
| { |
| struct scc_enet_private *cep; |
| volatile cbd_t *bdp; |
| struct sk_buff *skb; |
| ushort pkt_len; |
| |
| cep = (struct scc_enet_private *)dev->priv; |
| |
| /* First, grab all of the stats for the incoming packet. |
| * These get messed up if we get called due to a busy condition. |
| */ |
| bdp = cep->cur_rx; |
| |
| for (;;) { |
| if (bdp->cbd_sc & BD_ENET_RX_EMPTY) |
| break; |
| |
| #ifndef final_version |
| /* Since we have allocated space to hold a complete frame, both |
| * the first and last indicators should be set. |
| */ |
| if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) != |
| (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) |
| printk("CPM ENET: rcv is not first+last\n"); |
| #endif |
| |
| /* Frame too long or too short. |
| */ |
| if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) |
| cep->stats.rx_length_errors++; |
| if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ |
| cep->stats.rx_frame_errors++; |
| if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ |
| cep->stats.rx_crc_errors++; |
| if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ |
| cep->stats.rx_crc_errors++; |
| |
| /* Report late collisions as a frame error. |
| * On this error, the BD is closed, but we don't know what we |
| * have in the buffer. So, just drop this frame on the floor. |
| */ |
| if (bdp->cbd_sc & BD_ENET_RX_CL) { |
| cep->stats.rx_frame_errors++; |
| } |
| else { |
| |
| /* Process the incoming frame. |
| */ |
| cep->stats.rx_packets++; |
| pkt_len = bdp->cbd_datlen; |
| cep->stats.rx_bytes += pkt_len; |
| |
| /* This does 16 byte alignment, much more than we need. |
| * The packet length includes FCS, but we don't want to |
| * include that when passing upstream as it messes up |
| * bridging applications. |
| */ |
| skb = dev_alloc_skb(pkt_len-4); |
| |
| if (skb == NULL) { |
| printk("%s: Memory squeeze, dropping packet.\n", dev->name); |
| cep->stats.rx_dropped++; |
| } |
| else { |
| skb_put(skb,pkt_len-4); /* Make room */ |
| skb_copy_to_linear_data(skb, |
| (unsigned char *)__va(bdp->cbd_bufaddr), |
| pkt_len-4); |
| skb->protocol=eth_type_trans(skb,dev); |
| netif_rx(skb); |
| } |
| } |
| |
| /* Clear the status flags for this buffer. |
| */ |
| bdp->cbd_sc &= ~BD_ENET_RX_STATS; |
| |
| /* Mark the buffer empty. |
| */ |
| bdp->cbd_sc |= BD_ENET_RX_EMPTY; |
| |
| /* Update BD pointer to next entry. |
| */ |
| if (bdp->cbd_sc & BD_ENET_RX_WRAP) |
| bdp = cep->rx_bd_base; |
| else |
| bdp++; |
| |
| } |
| cep->cur_rx = (cbd_t *)bdp; |
| |
| return 0; |
| } |
| |
| static int |
| scc_enet_close(struct net_device *dev) |
| { |
| /* Don't know what to do yet. |
| */ |
| netif_stop_queue(dev); |
| |
| return 0; |
| } |
| |
| static struct net_device_stats *scc_enet_get_stats(struct net_device *dev) |
| { |
| struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; |
| |
| return &cep->stats; |
| } |
| |
| /* Set or clear the multicast filter for this adaptor. |
| * Skeleton taken from sunlance driver. |
| * The CPM Ethernet implementation allows Multicast as well as individual |
| * MAC address filtering. Some of the drivers check to make sure it is |
| * a group multicast address, and discard those that are not. I guess I |
| * will do the same for now, but just remove the test if you want |
| * individual filtering as well (do the upper net layers want or support |
| * this kind of feature?). |
| */ |
| |
| static void set_multicast_list(struct net_device *dev) |
| { |
| struct scc_enet_private *cep; |
| struct dev_mc_list *dmi; |
| u_char *mcptr, *tdptr; |
| volatile scc_enet_t *ep; |
| int i, j; |
| cep = (struct scc_enet_private *)dev->priv; |
| |
| /* Get pointer to SCC area in parameter RAM. |
| */ |
| ep = (scc_enet_t *)dev->base_addr; |
| |
| if (dev->flags&IFF_PROMISC) { |
| |
| /* Log any net taps. */ |
| printk("%s: Promiscuous mode enabled.\n", dev->name); |
| cep->sccp->scc_psmr |= SCC_PSMR_PRO; |
| } else { |
| |
| cep->sccp->scc_psmr &= ~SCC_PSMR_PRO; |
| |
| if (dev->flags & IFF_ALLMULTI) { |
| /* Catch all multicast addresses, so set the |
| * filter to all 1's. |
| */ |
| ep->sen_gaddr1 = 0xffff; |
| ep->sen_gaddr2 = 0xffff; |
| ep->sen_gaddr3 = 0xffff; |
| ep->sen_gaddr4 = 0xffff; |
| } |
| else { |
| /* Clear filter and add the addresses in the list. |
| */ |
| ep->sen_gaddr1 = 0; |
| ep->sen_gaddr2 = 0; |
| ep->sen_gaddr3 = 0; |
| ep->sen_gaddr4 = 0; |
| |
| dmi = dev->mc_list; |
| |
| for (i=0; i<dev->mc_count; i++) { |
| |
| /* Only support group multicast for now. |
| */ |
| if (!(dmi->dmi_addr[0] & 1)) |
| continue; |
| |
| /* The address in dmi_addr is LSB first, |
| * and taddr is MSB first. We have to |
| * copy bytes MSB first from dmi_addr. |
| */ |
| mcptr = (u_char *)dmi->dmi_addr + 5; |
| tdptr = (u_char *)&ep->sen_taddrh; |
| for (j=0; j<6; j++) |
| *tdptr++ = *mcptr--; |
| |
| /* Ask CPM to run CRC and set bit in |
| * filter mask. |
| */ |
| cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE, |
| CPM_ENET_BLOCK, 0, |
| CPM_CR_SET_GADDR) | CPM_CR_FLG; |
| /* this delay is necessary here -- Cort */ |
| udelay(10); |
| while (cpmp->cp_cpcr & CPM_CR_FLG); |
| } |
| } |
| } |
| } |
| |
| /* Initialize the CPM Ethernet on SCC. |
| */ |
| static int __init scc_enet_init(void) |
| { |
| struct net_device *dev; |
| struct scc_enet_private *cep; |
| int i, j, err; |
| uint dp_offset; |
| unsigned char *eap; |
| unsigned long mem_addr; |
| bd_t *bd; |
| volatile cbd_t *bdp; |
| volatile cpm_cpm2_t *cp; |
| volatile scc_t *sccp; |
| volatile scc_enet_t *ep; |
| volatile cpm2_map_t *immap; |
| volatile iop_cpm2_t *io; |
| |
| cp = cpmp; /* Get pointer to Communication Processor */ |
| |
| immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */ |
| io = &immap->im_ioport; |
| |
| bd = (bd_t *)__res; |
| |
| /* Create an Ethernet device instance. |
| */ |
| dev = alloc_etherdev(sizeof(*cep)); |
| if (!dev) |
| return -ENOMEM; |
| |
| cep = dev->priv; |
| spin_lock_init(&cep->lock); |
| |
| /* Get pointer to SCC area in parameter RAM. |
| */ |
| ep = (scc_enet_t *)(&immap->im_dprambase[PROFF_ENET]); |
| |
| /* And another to the SCC register area. |
| */ |
| sccp = (volatile scc_t *)(&immap->im_scc[SCC_ENET]); |
| cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */ |
| |
| /* Disable receive and transmit in case someone left it running. |
| */ |
| sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT); |
| |
| /* Configure port C and D pins for SCC Ethernet. This |
| * won't work for all SCC possibilities....it will be |
| * board/port specific. |
| */ |
| io->iop_pparc |= |
| (PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK); |
| io->iop_pdirc &= |
| ~(PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK); |
| io->iop_psorc &= |
| ~(PC_ENET_RENA | PC_ENET_TXCLK | PC_ENET_RXCLK); |
| io->iop_psorc |= PC_ENET_CLSN; |
| |
| io->iop_ppard |= (PD_ENET_RXD | PD_ENET_TXD | PD_ENET_TENA); |
| io->iop_pdird |= (PD_ENET_TXD | PD_ENET_TENA); |
| io->iop_pdird &= ~PD_ENET_RXD; |
| io->iop_psord |= PD_ENET_TXD; |
| io->iop_psord &= ~(PD_ENET_RXD | PD_ENET_TENA); |
| |
| /* Configure Serial Interface clock routing. |
| * First, clear all SCC bits to zero, then set the ones we want. |
| */ |
| immap->im_cpmux.cmx_scr &= ~CMX_CLK_MASK; |
| immap->im_cpmux.cmx_scr |= CMX_CLK_ROUTE; |
| |
| /* Allocate space for the buffer descriptors in the DP ram. |
| * These are relative offsets in the DP ram address space. |
| * Initialize base addresses for the buffer descriptors. |
| */ |
| dp_offset = cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8); |
| ep->sen_genscc.scc_rbase = dp_offset; |
| cep->rx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset); |
| |
| dp_offset = cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8); |
| ep->sen_genscc.scc_tbase = dp_offset; |
| cep->tx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset); |
| |
| cep->dirty_tx = cep->cur_tx = cep->tx_bd_base; |
| cep->cur_rx = cep->rx_bd_base; |
| |
| ep->sen_genscc.scc_rfcr = CPMFCR_GBL | CPMFCR_EB; |
| ep->sen_genscc.scc_tfcr = CPMFCR_GBL | CPMFCR_EB; |
| |
| /* Set maximum bytes per receive buffer. |
| * This appears to be an Ethernet frame size, not the buffer |
| * fragment size. It must be a multiple of four. |
| */ |
| ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE; |
| |
| /* Set CRC preset and mask. |
| */ |
| ep->sen_cpres = 0xffffffff; |
| ep->sen_cmask = 0xdebb20e3; |
| |
| ep->sen_crcec = 0; /* CRC Error counter */ |
| ep->sen_alec = 0; /* alignment error counter */ |
| ep->sen_disfc = 0; /* discard frame counter */ |
| |
| ep->sen_pads = 0x8888; /* Tx short frame pad character */ |
| ep->sen_retlim = 15; /* Retry limit threshold */ |
| |
| ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */ |
| ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */ |
| |
| ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */ |
| ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */ |
| |
| /* Clear hash tables. |
| */ |
| ep->sen_gaddr1 = 0; |
| ep->sen_gaddr2 = 0; |
| ep->sen_gaddr3 = 0; |
| ep->sen_gaddr4 = 0; |
| ep->sen_iaddr1 = 0; |
| ep->sen_iaddr2 = 0; |
| ep->sen_iaddr3 = 0; |
| ep->sen_iaddr4 = 0; |
| |
| /* Set Ethernet station address. |
| * |
| * This is supplied in the board information structure, so we |
| * copy that into the controller. |
| */ |
| eap = (unsigned char *)&(ep->sen_paddrh); |
| for (i=5; i>=0; i--) |
| *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i]; |
| |
| ep->sen_pper = 0; /* 'cause the book says so */ |
| ep->sen_taddrl = 0; /* temp address (LSB) */ |
| ep->sen_taddrm = 0; |
| ep->sen_taddrh = 0; /* temp address (MSB) */ |
| |
| /* Now allocate the host memory pages and initialize the |
| * buffer descriptors. |
| */ |
| bdp = cep->tx_bd_base; |
| for (i=0; i<TX_RING_SIZE; i++) { |
| |
| /* Initialize the BD for every fragment in the page. |
| */ |
| bdp->cbd_sc = 0; |
| bdp->cbd_bufaddr = 0; |
| bdp++; |
| } |
| |
| /* Set the last buffer to wrap. |
| */ |
| bdp--; |
| bdp->cbd_sc |= BD_SC_WRAP; |
| |
| bdp = cep->rx_bd_base; |
| for (i=0; i<CPM_ENET_RX_PAGES; i++) { |
| |
| /* Allocate a page. |
| */ |
| mem_addr = __get_free_page(GFP_KERNEL); |
| /* BUG: no check for failure */ |
| |
| /* Initialize the BD for every fragment in the page. |
| */ |
| for (j=0; j<CPM_ENET_RX_FRPPG; j++) { |
| bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR; |
| bdp->cbd_bufaddr = __pa(mem_addr); |
| mem_addr += CPM_ENET_RX_FRSIZE; |
| bdp++; |
| } |
| } |
| |
| /* Set the last buffer to wrap. |
| */ |
| bdp--; |
| bdp->cbd_sc |= BD_SC_WRAP; |
| |
| /* Let's re-initialize the channel now. We have to do it later |
| * than the manual describes because we have just now finished |
| * the BD initialization. |
| */ |
| cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0, |
| CPM_CR_INIT_TRX) | CPM_CR_FLG; |
| while (cp->cp_cpcr & CPM_CR_FLG); |
| |
| cep->skb_cur = cep->skb_dirty = 0; |
| |
| sccp->scc_scce = 0xffff; /* Clear any pending events */ |
| |
| /* Enable interrupts for transmit error, complete frame |
| * received, and any transmit buffer we have also set the |
| * interrupt flag. |
| */ |
| sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB); |
| |
| /* Install our interrupt handler. |
| */ |
| request_irq(SIU_INT_ENET, scc_enet_interrupt, 0, "enet", dev); |
| /* BUG: no check for failure */ |
| |
| /* Set GSMR_H to enable all normal operating modes. |
| * Set GSMR_L to enable Ethernet to MC68160. |
| */ |
| sccp->scc_gsmrh = 0; |
| sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET); |
| |
| /* Set sync/delimiters. |
| */ |
| sccp->scc_dsr = 0xd555; |
| |
| /* Set processing mode. Use Ethernet CRC, catch broadcast, and |
| * start frame search 22 bit times after RENA. |
| */ |
| sccp->scc_psmr = (SCC_PSMR_ENCRC | SCC_PSMR_NIB22); |
| |
| /* It is now OK to enable the Ethernet transmitter. |
| * Unfortunately, there are board implementation differences here. |
| */ |
| io->iop_pparc &= ~(PC_EST8260_ENET_LOOPBACK | |
| PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD); |
| io->iop_psorc &= ~(PC_EST8260_ENET_LOOPBACK | |
| PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD); |
| io->iop_pdirc |= (PC_EST8260_ENET_LOOPBACK | |
| PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD); |
| io->iop_pdatc &= ~(PC_EST8260_ENET_LOOPBACK | PC_EST8260_ENET_SQE); |
| io->iop_pdatc |= PC_EST8260_ENET_NOTFD; |
| |
| dev->base_addr = (unsigned long)ep; |
| |
| /* The CPM Ethernet specific entries in the device structure. */ |
| dev->open = scc_enet_open; |
| dev->hard_start_xmit = scc_enet_start_xmit; |
| dev->tx_timeout = scc_enet_timeout; |
| dev->watchdog_timeo = TX_TIMEOUT; |
| dev->stop = scc_enet_close; |
| dev->get_stats = scc_enet_get_stats; |
| dev->set_multicast_list = set_multicast_list; |
| |
| /* And last, enable the transmit and receive processing. |
| */ |
| sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); |
| |
| err = register_netdev(dev); |
| if (err) { |
| free_netdev(dev); |
| return err; |
| } |
| |
| printk("%s: SCC ENET Version 0.1, ", dev->name); |
| for (i=0; i<5; i++) |
| printk("%02x:", dev->dev_addr[i]); |
| printk("%02x\n", dev->dev_addr[5]); |
| |
| return 0; |
| } |
| |
| module_init(scc_enet_init); |