| /* |
| * Performance counter callchain support - powerpc architecture code |
| * |
| * Copyright © 2009 Paul Mackerras, IBM Corporation. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/perf_event.h> |
| #include <linux/percpu.h> |
| #include <linux/uaccess.h> |
| #include <linux/mm.h> |
| #include <asm/ptrace.h> |
| #include <asm/pgtable.h> |
| #include <asm/sigcontext.h> |
| #include <asm/ucontext.h> |
| #include <asm/vdso.h> |
| #ifdef CONFIG_PPC64 |
| #include "../kernel/ppc32.h" |
| #endif |
| |
| |
| /* |
| * Is sp valid as the address of the next kernel stack frame after prev_sp? |
| * The next frame may be in a different stack area but should not go |
| * back down in the same stack area. |
| */ |
| static int valid_next_sp(unsigned long sp, unsigned long prev_sp) |
| { |
| if (sp & 0xf) |
| return 0; /* must be 16-byte aligned */ |
| if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD)) |
| return 0; |
| if (sp >= prev_sp + STACK_FRAME_OVERHEAD) |
| return 1; |
| /* |
| * sp could decrease when we jump off an interrupt stack |
| * back to the regular process stack. |
| */ |
| if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1))) |
| return 1; |
| return 0; |
| } |
| |
| void |
| perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs) |
| { |
| unsigned long sp, next_sp; |
| unsigned long next_ip; |
| unsigned long lr; |
| long level = 0; |
| unsigned long *fp; |
| |
| lr = regs->link; |
| sp = regs->gpr[1]; |
| perf_callchain_store(entry, perf_instruction_pointer(regs)); |
| |
| if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD)) |
| return; |
| |
| for (;;) { |
| fp = (unsigned long *) sp; |
| next_sp = fp[0]; |
| |
| if (next_sp == sp + STACK_INT_FRAME_SIZE && |
| fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { |
| /* |
| * This looks like an interrupt frame for an |
| * interrupt that occurred in the kernel |
| */ |
| regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD); |
| next_ip = regs->nip; |
| lr = regs->link; |
| level = 0; |
| perf_callchain_store(entry, PERF_CONTEXT_KERNEL); |
| |
| } else { |
| if (level == 0) |
| next_ip = lr; |
| else |
| next_ip = fp[STACK_FRAME_LR_SAVE]; |
| |
| /* |
| * We can't tell which of the first two addresses |
| * we get are valid, but we can filter out the |
| * obviously bogus ones here. We replace them |
| * with 0 rather than removing them entirely so |
| * that userspace can tell which is which. |
| */ |
| if ((level == 1 && next_ip == lr) || |
| (level <= 1 && !kernel_text_address(next_ip))) |
| next_ip = 0; |
| |
| ++level; |
| } |
| |
| perf_callchain_store(entry, next_ip); |
| if (!valid_next_sp(next_sp, sp)) |
| return; |
| sp = next_sp; |
| } |
| } |
| |
| #ifdef CONFIG_PPC64 |
| /* |
| * On 64-bit we don't want to invoke hash_page on user addresses from |
| * interrupt context, so if the access faults, we read the page tables |
| * to find which page (if any) is mapped and access it directly. |
| */ |
| static int read_user_stack_slow(void __user *ptr, void *ret, int nb) |
| { |
| pgd_t *pgdir; |
| pte_t *ptep, pte; |
| unsigned shift; |
| unsigned long addr = (unsigned long) ptr; |
| unsigned long offset; |
| unsigned long pfn; |
| void *kaddr; |
| |
| pgdir = current->mm->pgd; |
| if (!pgdir) |
| return -EFAULT; |
| |
| ptep = find_linux_pte_or_hugepte(pgdir, addr, &shift); |
| if (!shift) |
| shift = PAGE_SHIFT; |
| |
| /* align address to page boundary */ |
| offset = addr & ((1UL << shift) - 1); |
| addr -= offset; |
| |
| if (ptep == NULL) |
| return -EFAULT; |
| pte = *ptep; |
| if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER)) |
| return -EFAULT; |
| pfn = pte_pfn(pte); |
| if (!page_is_ram(pfn)) |
| return -EFAULT; |
| |
| /* no highmem to worry about here */ |
| kaddr = pfn_to_kaddr(pfn); |
| memcpy(ret, kaddr + offset, nb); |
| return 0; |
| } |
| |
| static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret) |
| { |
| if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) || |
| ((unsigned long)ptr & 7)) |
| return -EFAULT; |
| |
| pagefault_disable(); |
| if (!__get_user_inatomic(*ret, ptr)) { |
| pagefault_enable(); |
| return 0; |
| } |
| pagefault_enable(); |
| |
| return read_user_stack_slow(ptr, ret, 8); |
| } |
| |
| static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret) |
| { |
| if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) || |
| ((unsigned long)ptr & 3)) |
| return -EFAULT; |
| |
| pagefault_disable(); |
| if (!__get_user_inatomic(*ret, ptr)) { |
| pagefault_enable(); |
| return 0; |
| } |
| pagefault_enable(); |
| |
| return read_user_stack_slow(ptr, ret, 4); |
| } |
| |
| static inline int valid_user_sp(unsigned long sp, int is_64) |
| { |
| if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * 64-bit user processes use the same stack frame for RT and non-RT signals. |
| */ |
| struct signal_frame_64 { |
| char dummy[__SIGNAL_FRAMESIZE]; |
| struct ucontext uc; |
| unsigned long unused[2]; |
| unsigned int tramp[6]; |
| struct siginfo *pinfo; |
| void *puc; |
| struct siginfo info; |
| char abigap[288]; |
| }; |
| |
| static int is_sigreturn_64_address(unsigned long nip, unsigned long fp) |
| { |
| if (nip == fp + offsetof(struct signal_frame_64, tramp)) |
| return 1; |
| if (vdso64_rt_sigtramp && current->mm->context.vdso_base && |
| nip == current->mm->context.vdso_base + vdso64_rt_sigtramp) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * Do some sanity checking on the signal frame pointed to by sp. |
| * We check the pinfo and puc pointers in the frame. |
| */ |
| static int sane_signal_64_frame(unsigned long sp) |
| { |
| struct signal_frame_64 __user *sf; |
| unsigned long pinfo, puc; |
| |
| sf = (struct signal_frame_64 __user *) sp; |
| if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) || |
| read_user_stack_64((unsigned long __user *) &sf->puc, &puc)) |
| return 0; |
| return pinfo == (unsigned long) &sf->info && |
| puc == (unsigned long) &sf->uc; |
| } |
| |
| static void perf_callchain_user_64(struct perf_callchain_entry *entry, |
| struct pt_regs *regs) |
| { |
| unsigned long sp, next_sp; |
| unsigned long next_ip; |
| unsigned long lr; |
| long level = 0; |
| struct signal_frame_64 __user *sigframe; |
| unsigned long __user *fp, *uregs; |
| |
| next_ip = perf_instruction_pointer(regs); |
| lr = regs->link; |
| sp = regs->gpr[1]; |
| perf_callchain_store(entry, next_ip); |
| |
| for (;;) { |
| fp = (unsigned long __user *) sp; |
| if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp)) |
| return; |
| if (level > 0 && read_user_stack_64(&fp[2], &next_ip)) |
| return; |
| |
| /* |
| * Note: the next_sp - sp >= signal frame size check |
| * is true when next_sp < sp, which can happen when |
| * transitioning from an alternate signal stack to the |
| * normal stack. |
| */ |
| if (next_sp - sp >= sizeof(struct signal_frame_64) && |
| (is_sigreturn_64_address(next_ip, sp) || |
| (level <= 1 && is_sigreturn_64_address(lr, sp))) && |
| sane_signal_64_frame(sp)) { |
| /* |
| * This looks like an signal frame |
| */ |
| sigframe = (struct signal_frame_64 __user *) sp; |
| uregs = sigframe->uc.uc_mcontext.gp_regs; |
| if (read_user_stack_64(&uregs[PT_NIP], &next_ip) || |
| read_user_stack_64(&uregs[PT_LNK], &lr) || |
| read_user_stack_64(&uregs[PT_R1], &sp)) |
| return; |
| level = 0; |
| perf_callchain_store(entry, PERF_CONTEXT_USER); |
| perf_callchain_store(entry, next_ip); |
| continue; |
| } |
| |
| if (level == 0) |
| next_ip = lr; |
| perf_callchain_store(entry, next_ip); |
| ++level; |
| sp = next_sp; |
| } |
| } |
| |
| static inline int current_is_64bit(void) |
| { |
| /* |
| * We can't use test_thread_flag() here because we may be on an |
| * interrupt stack, and the thread flags don't get copied over |
| * from the thread_info on the main stack to the interrupt stack. |
| */ |
| return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT); |
| } |
| |
| #else /* CONFIG_PPC64 */ |
| /* |
| * On 32-bit we just access the address and let hash_page create a |
| * HPTE if necessary, so there is no need to fall back to reading |
| * the page tables. Since this is called at interrupt level, |
| * do_page_fault() won't treat a DSI as a page fault. |
| */ |
| static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret) |
| { |
| int rc; |
| |
| if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) || |
| ((unsigned long)ptr & 3)) |
| return -EFAULT; |
| |
| pagefault_disable(); |
| rc = __get_user_inatomic(*ret, ptr); |
| pagefault_enable(); |
| |
| return rc; |
| } |
| |
| static inline void perf_callchain_user_64(struct perf_callchain_entry *entry, |
| struct pt_regs *regs) |
| { |
| } |
| |
| static inline int current_is_64bit(void) |
| { |
| return 0; |
| } |
| |
| static inline int valid_user_sp(unsigned long sp, int is_64) |
| { |
| if (!sp || (sp & 7) || sp > TASK_SIZE - 32) |
| return 0; |
| return 1; |
| } |
| |
| #define __SIGNAL_FRAMESIZE32 __SIGNAL_FRAMESIZE |
| #define sigcontext32 sigcontext |
| #define mcontext32 mcontext |
| #define ucontext32 ucontext |
| #define compat_siginfo_t struct siginfo |
| |
| #endif /* CONFIG_PPC64 */ |
| |
| /* |
| * Layout for non-RT signal frames |
| */ |
| struct signal_frame_32 { |
| char dummy[__SIGNAL_FRAMESIZE32]; |
| struct sigcontext32 sctx; |
| struct mcontext32 mctx; |
| int abigap[56]; |
| }; |
| |
| /* |
| * Layout for RT signal frames |
| */ |
| struct rt_signal_frame_32 { |
| char dummy[__SIGNAL_FRAMESIZE32 + 16]; |
| compat_siginfo_t info; |
| struct ucontext32 uc; |
| int abigap[56]; |
| }; |
| |
| static int is_sigreturn_32_address(unsigned int nip, unsigned int fp) |
| { |
| if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad)) |
| return 1; |
| if (vdso32_sigtramp && current->mm->context.vdso_base && |
| nip == current->mm->context.vdso_base + vdso32_sigtramp) |
| return 1; |
| return 0; |
| } |
| |
| static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp) |
| { |
| if (nip == fp + offsetof(struct rt_signal_frame_32, |
| uc.uc_mcontext.mc_pad)) |
| return 1; |
| if (vdso32_rt_sigtramp && current->mm->context.vdso_base && |
| nip == current->mm->context.vdso_base + vdso32_rt_sigtramp) |
| return 1; |
| return 0; |
| } |
| |
| static int sane_signal_32_frame(unsigned int sp) |
| { |
| struct signal_frame_32 __user *sf; |
| unsigned int regs; |
| |
| sf = (struct signal_frame_32 __user *) (unsigned long) sp; |
| if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, ®s)) |
| return 0; |
| return regs == (unsigned long) &sf->mctx; |
| } |
| |
| static int sane_rt_signal_32_frame(unsigned int sp) |
| { |
| struct rt_signal_frame_32 __user *sf; |
| unsigned int regs; |
| |
| sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp; |
| if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, ®s)) |
| return 0; |
| return regs == (unsigned long) &sf->uc.uc_mcontext; |
| } |
| |
| static unsigned int __user *signal_frame_32_regs(unsigned int sp, |
| unsigned int next_sp, unsigned int next_ip) |
| { |
| struct mcontext32 __user *mctx = NULL; |
| struct signal_frame_32 __user *sf; |
| struct rt_signal_frame_32 __user *rt_sf; |
| |
| /* |
| * Note: the next_sp - sp >= signal frame size check |
| * is true when next_sp < sp, for example, when |
| * transitioning from an alternate signal stack to the |
| * normal stack. |
| */ |
| if (next_sp - sp >= sizeof(struct signal_frame_32) && |
| is_sigreturn_32_address(next_ip, sp) && |
| sane_signal_32_frame(sp)) { |
| sf = (struct signal_frame_32 __user *) (unsigned long) sp; |
| mctx = &sf->mctx; |
| } |
| |
| if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) && |
| is_rt_sigreturn_32_address(next_ip, sp) && |
| sane_rt_signal_32_frame(sp)) { |
| rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp; |
| mctx = &rt_sf->uc.uc_mcontext; |
| } |
| |
| if (!mctx) |
| return NULL; |
| return mctx->mc_gregs; |
| } |
| |
| static void perf_callchain_user_32(struct perf_callchain_entry *entry, |
| struct pt_regs *regs) |
| { |
| unsigned int sp, next_sp; |
| unsigned int next_ip; |
| unsigned int lr; |
| long level = 0; |
| unsigned int __user *fp, *uregs; |
| |
| next_ip = perf_instruction_pointer(regs); |
| lr = regs->link; |
| sp = regs->gpr[1]; |
| perf_callchain_store(entry, next_ip); |
| |
| while (entry->nr < PERF_MAX_STACK_DEPTH) { |
| fp = (unsigned int __user *) (unsigned long) sp; |
| if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp)) |
| return; |
| if (level > 0 && read_user_stack_32(&fp[1], &next_ip)) |
| return; |
| |
| uregs = signal_frame_32_regs(sp, next_sp, next_ip); |
| if (!uregs && level <= 1) |
| uregs = signal_frame_32_regs(sp, next_sp, lr); |
| if (uregs) { |
| /* |
| * This looks like an signal frame, so restart |
| * the stack trace with the values in it. |
| */ |
| if (read_user_stack_32(&uregs[PT_NIP], &next_ip) || |
| read_user_stack_32(&uregs[PT_LNK], &lr) || |
| read_user_stack_32(&uregs[PT_R1], &sp)) |
| return; |
| level = 0; |
| perf_callchain_store(entry, PERF_CONTEXT_USER); |
| perf_callchain_store(entry, next_ip); |
| continue; |
| } |
| |
| if (level == 0) |
| next_ip = lr; |
| perf_callchain_store(entry, next_ip); |
| ++level; |
| sp = next_sp; |
| } |
| } |
| |
| void |
| perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) |
| { |
| if (current_is_64bit()) |
| perf_callchain_user_64(entry, regs); |
| else |
| perf_callchain_user_32(entry, regs); |
| } |