| /* bnx2x_init.h: Broadcom Everest network driver. |
| * Structures and macroes needed during the initialization. |
| * |
| * Copyright (c) 2007-2013 Broadcom Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation. |
| * |
| * Maintained by: Eilon Greenstein <eilong@broadcom.com> |
| * Written by: Eliezer Tamir |
| * Modified by: Vladislav Zolotarov <vladz@broadcom.com> |
| */ |
| |
| #ifndef BNX2X_INIT_H |
| #define BNX2X_INIT_H |
| |
| /* Init operation types and structures */ |
| enum { |
| OP_RD = 0x1, /* read a single register */ |
| OP_WR, /* write a single register */ |
| OP_SW, /* copy a string to the device */ |
| OP_ZR, /* clear memory */ |
| OP_ZP, /* unzip then copy with DMAE */ |
| OP_WR_64, /* write 64 bit pattern */ |
| OP_WB, /* copy a string using DMAE */ |
| OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */ |
| /* Skip the following ops if all of the init modes don't match */ |
| OP_IF_MODE_OR, |
| /* Skip the following ops if any of the init modes don't match */ |
| OP_IF_MODE_AND, |
| OP_MAX |
| }; |
| |
| enum { |
| STAGE_START, |
| STAGE_END, |
| }; |
| |
| /* Returns the index of start or end of a specific block stage in ops array*/ |
| #define BLOCK_OPS_IDX(block, stage, end) \ |
| (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end)) |
| |
| |
| /* structs for the various opcodes */ |
| struct raw_op { |
| u32 op:8; |
| u32 offset:24; |
| u32 raw_data; |
| }; |
| |
| struct op_read { |
| u32 op:8; |
| u32 offset:24; |
| u32 val; |
| }; |
| |
| struct op_write { |
| u32 op:8; |
| u32 offset:24; |
| u32 val; |
| }; |
| |
| struct op_arr_write { |
| u32 op:8; |
| u32 offset:24; |
| #ifdef __BIG_ENDIAN |
| u16 data_len; |
| u16 data_off; |
| #else /* __LITTLE_ENDIAN */ |
| u16 data_off; |
| u16 data_len; |
| #endif |
| }; |
| |
| struct op_zero { |
| u32 op:8; |
| u32 offset:24; |
| u32 len; |
| }; |
| |
| struct op_if_mode { |
| u32 op:8; |
| u32 cmd_offset:24; |
| u32 mode_bit_map; |
| }; |
| |
| |
| union init_op { |
| struct op_read read; |
| struct op_write write; |
| struct op_arr_write arr_wr; |
| struct op_zero zero; |
| struct raw_op raw; |
| struct op_if_mode if_mode; |
| }; |
| |
| |
| /* Init Phases */ |
| enum { |
| PHASE_COMMON, |
| PHASE_PORT0, |
| PHASE_PORT1, |
| PHASE_PF0, |
| PHASE_PF1, |
| PHASE_PF2, |
| PHASE_PF3, |
| PHASE_PF4, |
| PHASE_PF5, |
| PHASE_PF6, |
| PHASE_PF7, |
| NUM_OF_INIT_PHASES |
| }; |
| |
| /* Init Modes */ |
| enum { |
| MODE_ASIC = 0x00000001, |
| MODE_FPGA = 0x00000002, |
| MODE_EMUL = 0x00000004, |
| MODE_E2 = 0x00000008, |
| MODE_E3 = 0x00000010, |
| MODE_PORT2 = 0x00000020, |
| MODE_PORT4 = 0x00000040, |
| MODE_SF = 0x00000080, |
| MODE_MF = 0x00000100, |
| MODE_MF_SD = 0x00000200, |
| MODE_MF_SI = 0x00000400, |
| MODE_MF_AFEX = 0x00000800, |
| MODE_E3_A0 = 0x00001000, |
| MODE_E3_B0 = 0x00002000, |
| MODE_COS3 = 0x00004000, |
| MODE_COS6 = 0x00008000, |
| MODE_LITTLE_ENDIAN = 0x00010000, |
| MODE_BIG_ENDIAN = 0x00020000, |
| }; |
| |
| /* Init Blocks */ |
| enum { |
| BLOCK_ATC, |
| BLOCK_BRB1, |
| BLOCK_CCM, |
| BLOCK_CDU, |
| BLOCK_CFC, |
| BLOCK_CSDM, |
| BLOCK_CSEM, |
| BLOCK_DBG, |
| BLOCK_DMAE, |
| BLOCK_DORQ, |
| BLOCK_HC, |
| BLOCK_IGU, |
| BLOCK_MISC, |
| BLOCK_NIG, |
| BLOCK_PBF, |
| BLOCK_PGLUE_B, |
| BLOCK_PRS, |
| BLOCK_PXP2, |
| BLOCK_PXP, |
| BLOCK_QM, |
| BLOCK_SRC, |
| BLOCK_TCM, |
| BLOCK_TM, |
| BLOCK_TSDM, |
| BLOCK_TSEM, |
| BLOCK_UCM, |
| BLOCK_UPB, |
| BLOCK_USDM, |
| BLOCK_USEM, |
| BLOCK_XCM, |
| BLOCK_XPB, |
| BLOCK_XSDM, |
| BLOCK_XSEM, |
| BLOCK_MISC_AEU, |
| NUM_OF_INIT_BLOCKS |
| }; |
| |
| /* QM queue numbers */ |
| #define BNX2X_ETH_Q 0 |
| #define BNX2X_TOE_Q 3 |
| #define BNX2X_TOE_ACK_Q 6 |
| #define BNX2X_ISCSI_Q 9 |
| #define BNX2X_ISCSI_ACK_Q 11 |
| #define BNX2X_FCOE_Q 10 |
| |
| /* Vnics per mode */ |
| #define BNX2X_PORT2_MODE_NUM_VNICS 4 |
| #define BNX2X_PORT4_MODE_NUM_VNICS 2 |
| |
| /* COS offset for port1 in E3 B0 4port mode */ |
| #define BNX2X_E3B0_PORT1_COS_OFFSET 3 |
| |
| /* QM Register addresses */ |
| #define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\ |
| (QM_REG_QVOQIDX_0 + 4 * (pf_q_num)) |
| #define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\ |
| (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5))) |
| #define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\ |
| (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4)) |
| |
| /* extracts the QM queue number for the specified port and vnic */ |
| #define BNX2X_PF_Q_NUM(q_num, port, vnic)\ |
| ((((port) << 1) | (vnic)) * 16 + (q_num)) |
| |
| |
| /* Maps the specified queue to the specified COS */ |
| static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos) |
| { |
| /* find current COS mapping */ |
| u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4); |
| |
| /* check if queue->COS mapping has changed */ |
| if (curr_cos != new_cos) { |
| u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS; |
| u32 reg_addr, reg_bit_map, vnic; |
| |
| /* update parameters for 4port mode */ |
| if (INIT_MODE_FLAGS(bp) & MODE_PORT4) { |
| num_vnics = BNX2X_PORT4_MODE_NUM_VNICS; |
| if (BP_PORT(bp)) { |
| curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET; |
| new_cos += BNX2X_E3B0_PORT1_COS_OFFSET; |
| } |
| } |
| |
| /* change queue mapping for each VNIC */ |
| for (vnic = 0; vnic < num_vnics; vnic++) { |
| u32 pf_q_num = |
| BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic); |
| u32 q_bit_map = 1 << (pf_q_num & 0x1f); |
| |
| /* overwrite queue->VOQ mapping */ |
| REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos); |
| |
| /* clear queue bit from current COS bit map */ |
| reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num); |
| reg_bit_map = REG_RD(bp, reg_addr); |
| REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map)); |
| |
| /* set queue bit in new COS bit map */ |
| reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num); |
| reg_bit_map = REG_RD(bp, reg_addr); |
| REG_WR(bp, reg_addr, reg_bit_map | q_bit_map); |
| |
| /* set/clear queue bit in command-queue bit map |
| * (E2/E3A0 only, valid COS values are 0/1) |
| */ |
| if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) { |
| reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num); |
| reg_bit_map = REG_RD(bp, reg_addr); |
| q_bit_map = 1 << (2 * (pf_q_num & 0xf)); |
| reg_bit_map = new_cos ? |
| (reg_bit_map | q_bit_map) : |
| (reg_bit_map & (~q_bit_map)); |
| REG_WR(bp, reg_addr, reg_bit_map); |
| } |
| } |
| } |
| } |
| |
| /* Configures the QM according to the specified per-traffic-type COSes */ |
| static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode, |
| struct priority_cos *traffic_cos) |
| { |
| bnx2x_map_q_cos(bp, BNX2X_FCOE_Q, |
| traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos); |
| bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q, |
| traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos); |
| bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q, |
| traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos); |
| if (mode != STATIC_COS) { |
| /* required only in backward compatible COS mode */ |
| bnx2x_map_q_cos(bp, BNX2X_ETH_Q, |
| traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); |
| bnx2x_map_q_cos(bp, BNX2X_TOE_Q, |
| traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); |
| bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q, |
| traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); |
| } |
| } |
| |
| |
| /* congestion managment port init api description |
| * the api works as follows: |
| * the driver should pass the cmng_init_input struct, the port_init function |
| * will prepare the required internal ram structure which will be passed back |
| * to the driver (cmng_init) that will write it into the internal ram. |
| * |
| * IMPORTANT REMARKS: |
| * 1. the cmng_init struct does not represent the contiguous internal ram |
| * structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET |
| * offset in order to write the port sub struct and the |
| * PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other |
| * words - don't use memcpy!). |
| * 2. although the cmng_init struct is filled for the maximal vnic number |
| * possible, the driver should only write the valid vnics into the internal |
| * ram according to the appropriate port mode. |
| */ |
| #define BITS_TO_BYTES(x) ((x)/8) |
| |
| /* CMNG constants, as derived from system spec calculations */ |
| |
| /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */ |
| #define DEF_MIN_RATE 100 |
| |
| /* resolution of the rate shaping timer - 400 usec */ |
| #define RS_PERIODIC_TIMEOUT_USEC 400 |
| |
| /* number of bytes in single QM arbitration cycle - |
| * coefficient for calculating the fairness timer |
| */ |
| #define QM_ARB_BYTES 160000 |
| |
| /* resolution of Min algorithm 1:100 */ |
| #define MIN_RES 100 |
| |
| /* how many bytes above threshold for |
| * the minimal credit of Min algorithm |
| */ |
| #define MIN_ABOVE_THRESH 32768 |
| |
| /* Fairness algorithm integration time coefficient - |
| * for calculating the actual Tfair |
| */ |
| #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) |
| |
| /* Memory of fairness algorithm - 2 cycles */ |
| #define FAIR_MEM 2 |
| #define SAFC_TIMEOUT_USEC 52 |
| |
| #define SDM_TICKS 4 |
| |
| |
| static inline void bnx2x_init_max(const struct cmng_init_input *input_data, |
| u32 r_param, struct cmng_init *ram_data) |
| { |
| u32 vnic; |
| struct cmng_vnic *vdata = &ram_data->vnic; |
| struct cmng_struct_per_port *pdata = &ram_data->port; |
| /* rate shaping per-port variables |
| * 100 micro seconds in SDM ticks = 25 |
| * since each tick is 4 microSeconds |
| */ |
| |
| pdata->rs_vars.rs_periodic_timeout = |
| RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS; |
| |
| /* this is the threshold below which no timer arming will occur. |
| * 1.25 coefficient is for the threshold to be a little bigger |
| * then the real time to compensate for timer in-accuracy |
| */ |
| pdata->rs_vars.rs_threshold = |
| (5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4; |
| |
| /* rate shaping per-vnic variables */ |
| for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) { |
| /* global vnic counter */ |
| vdata->vnic_max_rate[vnic].vn_counter.rate = |
| input_data->vnic_max_rate[vnic]; |
| /* maximal Mbps for this vnic |
| * the quota in each timer period - number of bytes |
| * transmitted in this period |
| */ |
| vdata->vnic_max_rate[vnic].vn_counter.quota = |
| RS_PERIODIC_TIMEOUT_USEC * |
| (u32)vdata->vnic_max_rate[vnic].vn_counter.rate / 8; |
| } |
| |
| } |
| |
| static inline void bnx2x_init_min(const struct cmng_init_input *input_data, |
| u32 r_param, struct cmng_init *ram_data) |
| { |
| u32 vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair; |
| struct cmng_vnic *vdata = &ram_data->vnic; |
| struct cmng_struct_per_port *pdata = &ram_data->port; |
| |
| /* this is the resolution of the fairness timer */ |
| fair_periodic_timeout_usec = QM_ARB_BYTES / r_param; |
| |
| /* fairness per-port variables |
| * for 10G it is 1000usec. for 1G it is 10000usec. |
| */ |
| tFair = T_FAIR_COEF / input_data->port_rate; |
| |
| /* this is the threshold below which we won't arm the timer anymore */ |
| pdata->fair_vars.fair_threshold = QM_ARB_BYTES; |
| |
| /* we multiply by 1e3/8 to get bytes/msec. We don't want the credits |
| * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution) |
| */ |
| pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM; |
| |
| /* since each tick is 4 microSeconds */ |
| pdata->fair_vars.fairness_timeout = |
| fair_periodic_timeout_usec / SDM_TICKS; |
| |
| /* calculate sum of weights */ |
| vnicWeightSum = 0; |
| |
| for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) |
| vnicWeightSum += input_data->vnic_min_rate[vnic]; |
| |
| /* global vnic counter */ |
| if (vnicWeightSum > 0) { |
| /* fairness per-vnic variables */ |
| for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) { |
| /* this is the credit for each period of the fairness |
| * algorithm - number of bytes in T_FAIR (this vnic |
| * share of the port rate) |
| */ |
| vdata->vnic_min_rate[vnic].vn_credit_delta = |
| (u32)input_data->vnic_min_rate[vnic] * 100 * |
| (T_FAIR_COEF / (8 * 100 * vnicWeightSum)); |
| if (vdata->vnic_min_rate[vnic].vn_credit_delta < |
| pdata->fair_vars.fair_threshold + |
| MIN_ABOVE_THRESH) { |
| vdata->vnic_min_rate[vnic].vn_credit_delta = |
| pdata->fair_vars.fair_threshold + |
| MIN_ABOVE_THRESH; |
| } |
| } |
| } |
| } |
| |
| static inline void bnx2x_init_fw_wrr(const struct cmng_init_input *input_data, |
| u32 r_param, struct cmng_init *ram_data) |
| { |
| u32 vnic, cos; |
| u32 cosWeightSum = 0; |
| struct cmng_vnic *vdata = &ram_data->vnic; |
| struct cmng_struct_per_port *pdata = &ram_data->port; |
| |
| for (cos = 0; cos < MAX_COS_NUMBER; cos++) |
| cosWeightSum += input_data->cos_min_rate[cos]; |
| |
| if (cosWeightSum > 0) { |
| |
| for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) { |
| /* Since cos and vnic shouldn't work together the rate |
| * to divide between the coses is the port rate. |
| */ |
| u32 *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta; |
| for (cos = 0; cos < MAX_COS_NUMBER; cos++) { |
| /* this is the credit for each period of |
| * the fairness algorithm - number of bytes |
| * in T_FAIR (this cos share of the vnic rate) |
| */ |
| ccd[cos] = |
| (u32)input_data->cos_min_rate[cos] * 100 * |
| (T_FAIR_COEF / (8 * 100 * cosWeightSum)); |
| if (ccd[cos] < pdata->fair_vars.fair_threshold |
| + MIN_ABOVE_THRESH) { |
| ccd[cos] = |
| pdata->fair_vars.fair_threshold + |
| MIN_ABOVE_THRESH; |
| } |
| } |
| } |
| } |
| } |
| |
| static inline void bnx2x_init_safc(const struct cmng_init_input *input_data, |
| struct cmng_init *ram_data) |
| { |
| /* in microSeconds */ |
| ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC; |
| } |
| |
| /* Congestion management port init */ |
| static inline void bnx2x_init_cmng(const struct cmng_init_input *input_data, |
| struct cmng_init *ram_data) |
| { |
| u32 r_param; |
| memset(ram_data, 0, sizeof(struct cmng_init)); |
| |
| ram_data->port.flags = input_data->flags; |
| |
| /* number of bytes transmitted in a rate of 10Gbps |
| * in one usec = 1.25KB. |
| */ |
| r_param = BITS_TO_BYTES(input_data->port_rate); |
| bnx2x_init_max(input_data, r_param, ram_data); |
| bnx2x_init_min(input_data, r_param, ram_data); |
| bnx2x_init_fw_wrr(input_data, r_param, ram_data); |
| bnx2x_init_safc(input_data, ram_data); |
| } |
| |
| |
| |
| /* Returns the index of start or end of a specific block stage in ops array */ |
| #define BLOCK_OPS_IDX(block, stage, end) \ |
| (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end)) |
| |
| |
| #define INITOP_SET 0 /* set the HW directly */ |
| #define INITOP_CLEAR 1 /* clear the HW directly */ |
| #define INITOP_INIT 2 /* set the init-value array */ |
| |
| /**************************************************************************** |
| * ILT management |
| ****************************************************************************/ |
| struct ilt_line { |
| dma_addr_t page_mapping; |
| void *page; |
| u32 size; |
| }; |
| |
| struct ilt_client_info { |
| u32 page_size; |
| u16 start; |
| u16 end; |
| u16 client_num; |
| u16 flags; |
| #define ILT_CLIENT_SKIP_INIT 0x1 |
| #define ILT_CLIENT_SKIP_MEM 0x2 |
| }; |
| |
| struct bnx2x_ilt { |
| u32 start_line; |
| struct ilt_line *lines; |
| struct ilt_client_info clients[4]; |
| #define ILT_CLIENT_CDU 0 |
| #define ILT_CLIENT_QM 1 |
| #define ILT_CLIENT_SRC 2 |
| #define ILT_CLIENT_TM 3 |
| }; |
| |
| /**************************************************************************** |
| * SRC configuration |
| ****************************************************************************/ |
| struct src_ent { |
| u8 opaque[56]; |
| u64 next; |
| }; |
| |
| /**************************************************************************** |
| * Parity configuration |
| ****************************************************************************/ |
| #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \ |
| { \ |
| block##_REG_##block##_PRTY_MASK, \ |
| block##_REG_##block##_PRTY_STS_CLR, \ |
| en_mask, {m1, m1h, m2, m3}, #block \ |
| } |
| |
| #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \ |
| { \ |
| block##_REG_##block##_PRTY_MASK_0, \ |
| block##_REG_##block##_PRTY_STS_CLR_0, \ |
| en_mask, {m1, m1h, m2, m3}, #block"_0" \ |
| } |
| |
| #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \ |
| { \ |
| block##_REG_##block##_PRTY_MASK_1, \ |
| block##_REG_##block##_PRTY_STS_CLR_1, \ |
| en_mask, {m1, m1h, m2, m3}, #block"_1" \ |
| } |
| |
| static const struct { |
| u32 mask_addr; |
| u32 sts_clr_addr; |
| u32 en_mask; /* Mask to enable parity attentions */ |
| struct { |
| u32 e1; /* 57710 */ |
| u32 e1h; /* 57711 */ |
| u32 e2; /* 57712 */ |
| u32 e3; /* 578xx */ |
| } reg_mask; /* Register mask (all valid bits) */ |
| char name[8]; /* Block's longest name is 7 characters long |
| * (name + suffix) |
| */ |
| } bnx2x_blocks_parity_data[] = { |
| /* bit 19 masked */ |
| /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */ |
| /* bit 5,18,20-31 */ |
| /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */ |
| /* bit 5 */ |
| /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */ |
| /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */ |
| /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */ |
| |
| /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't |
| * want to handle "system kill" flow at the moment. |
| */ |
| BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff, |
| 0x7ffffff), |
| BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, |
| 0xffffffff), |
| BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff), |
| BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0), |
| BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0), |
| BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff, 0xffffffff), |
| BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xff, 0xffff), |
| BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff), |
| BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1), |
| BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff), |
| BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f), |
| BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3), |
| BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3), |
| {GRCBASE_UPB + PB_REG_PB_PRTY_MASK, |
| GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf, |
| {0xf, 0xf, 0xf, 0xf}, "UPB"}, |
| {GRCBASE_XPB + PB_REG_PB_PRTY_MASK, |
| GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0, |
| {0xf, 0xf, 0xf, 0xf}, "XPB"}, |
| BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7), |
| BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f), |
| BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f), |
| BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1), |
| BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf), |
| BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf), |
| BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff), |
| BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff), |
| BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f), |
| BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff), |
| BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff), |
| BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff), |
| BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff), |
| BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), |
| BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), |
| BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), |
| BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff), |
| BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, |
| 0xffffffff), |
| BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f), |
| BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, |
| 0xffffffff), |
| BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f), |
| BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, |
| 0xffffffff), |
| BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f), |
| BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, |
| 0xffffffff), |
| BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f), |
| }; |
| |
| |
| /* [28] MCP Latched rom_parity |
| * [29] MCP Latched ump_rx_parity |
| * [30] MCP Latched ump_tx_parity |
| * [31] MCP Latched scpad_parity |
| */ |
| #define MISC_AEU_ENABLE_MCP_PRTY_BITS \ |
| (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \ |
| AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \ |
| AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \ |
| AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY) |
| |
| /* Below registers control the MCP parity attention output. When |
| * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are |
| * enabled, when cleared - disabled. |
| */ |
| static const u32 mcp_attn_ctl_regs[] = { |
| MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0, |
| MISC_REG_AEU_ENABLE4_NIG_0, |
| MISC_REG_AEU_ENABLE4_PXP_0, |
| MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0, |
| MISC_REG_AEU_ENABLE4_NIG_1, |
| MISC_REG_AEU_ENABLE4_PXP_1 |
| }; |
| |
| static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable) |
| { |
| int i; |
| u32 reg_val; |
| |
| for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) { |
| reg_val = REG_RD(bp, mcp_attn_ctl_regs[i]); |
| |
| if (enable) |
| reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS; |
| else |
| reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS; |
| |
| REG_WR(bp, mcp_attn_ctl_regs[i], reg_val); |
| } |
| } |
| |
| static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx) |
| { |
| if (CHIP_IS_E1(bp)) |
| return bnx2x_blocks_parity_data[idx].reg_mask.e1; |
| else if (CHIP_IS_E1H(bp)) |
| return bnx2x_blocks_parity_data[idx].reg_mask.e1h; |
| else if (CHIP_IS_E2(bp)) |
| return bnx2x_blocks_parity_data[idx].reg_mask.e2; |
| else /* CHIP_IS_E3 */ |
| return bnx2x_blocks_parity_data[idx].reg_mask.e3; |
| } |
| |
| static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) { |
| u32 dis_mask = bnx2x_parity_reg_mask(bp, i); |
| |
| if (dis_mask) { |
| REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr, |
| dis_mask); |
| DP(NETIF_MSG_HW, "Setting parity mask " |
| "for %s to\t\t0x%x\n", |
| bnx2x_blocks_parity_data[i].name, dis_mask); |
| } |
| } |
| |
| /* Disable MCP parity attentions */ |
| bnx2x_set_mcp_parity(bp, false); |
| } |
| |
| /* Clear the parity error status registers. */ |
| static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp) |
| { |
| int i; |
| u32 reg_val, mcp_aeu_bits = |
| AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | |
| AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY | |
| AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | |
| AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY; |
| |
| /* Clear SEM_FAST parities */ |
| REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); |
| REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); |
| REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); |
| REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); |
| |
| for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) { |
| u32 reg_mask = bnx2x_parity_reg_mask(bp, i); |
| |
| if (reg_mask) { |
| reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i]. |
| sts_clr_addr); |
| if (reg_val & reg_mask) |
| DP(NETIF_MSG_HW, |
| "Parity errors in %s: 0x%x\n", |
| bnx2x_blocks_parity_data[i].name, |
| reg_val & reg_mask); |
| } |
| } |
| |
| /* Check if there were parity attentions in MCP */ |
| reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP); |
| if (reg_val & mcp_aeu_bits) |
| DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n", |
| reg_val & mcp_aeu_bits); |
| |
| /* Clear parity attentions in MCP: |
| * [7] clears Latched rom_parity |
| * [8] clears Latched ump_rx_parity |
| * [9] clears Latched ump_tx_parity |
| * [10] clears Latched scpad_parity (both ports) |
| */ |
| REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780); |
| } |
| |
| static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) { |
| u32 reg_mask = bnx2x_parity_reg_mask(bp, i); |
| |
| if (reg_mask) |
| REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr, |
| bnx2x_blocks_parity_data[i].en_mask & reg_mask); |
| } |
| |
| /* Enable MCP parity attentions */ |
| bnx2x_set_mcp_parity(bp, true); |
| } |
| |
| |
| #endif /* BNX2X_INIT_H */ |
| |