| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| #include <linux/sched.h> |
| #include <linux/pagemap.h> |
| #include <linux/writeback.h> |
| #include <linux/blkdev.h> |
| #include <linux/sort.h> |
| #include <linux/rcupdate.h> |
| #include <linux/kthread.h> |
| #include <linux/slab.h> |
| #include "compat.h" |
| #include "hash.h" |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "print-tree.h" |
| #include "transaction.h" |
| #include "volumes.h" |
| #include "locking.h" |
| #include "free-space-cache.h" |
| |
| static int update_block_group(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, int alloc, |
| int mark_free); |
| static int update_reserved_extents(struct btrfs_block_group_cache *cache, |
| u64 num_bytes, int reserve); |
| static int __btrfs_free_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner_objectid, |
| u64 owner_offset, int refs_to_drop, |
| struct btrfs_delayed_extent_op *extra_op); |
| static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, |
| struct extent_buffer *leaf, |
| struct btrfs_extent_item *ei); |
| static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 parent, u64 root_objectid, |
| u64 flags, u64 owner, u64 offset, |
| struct btrfs_key *ins, int ref_mod); |
| static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 parent, u64 root_objectid, |
| u64 flags, struct btrfs_disk_key *key, |
| int level, struct btrfs_key *ins); |
| static int do_chunk_alloc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *extent_root, u64 alloc_bytes, |
| u64 flags, int force); |
| static int pin_down_bytes(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 num_bytes, |
| int is_data, int reserved, |
| struct extent_buffer **must_clean); |
| static int find_next_key(struct btrfs_path *path, int level, |
| struct btrfs_key *key); |
| static void dump_space_info(struct btrfs_space_info *info, u64 bytes, |
| int dump_block_groups); |
| |
| static noinline int |
| block_group_cache_done(struct btrfs_block_group_cache *cache) |
| { |
| smp_mb(); |
| return cache->cached == BTRFS_CACHE_FINISHED; |
| } |
| |
| static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) |
| { |
| return (cache->flags & bits) == bits; |
| } |
| |
| void btrfs_get_block_group(struct btrfs_block_group_cache *cache) |
| { |
| atomic_inc(&cache->count); |
| } |
| |
| void btrfs_put_block_group(struct btrfs_block_group_cache *cache) |
| { |
| if (atomic_dec_and_test(&cache->count)) |
| kfree(cache); |
| } |
| |
| /* |
| * this adds the block group to the fs_info rb tree for the block group |
| * cache |
| */ |
| static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, |
| struct btrfs_block_group_cache *block_group) |
| { |
| struct rb_node **p; |
| struct rb_node *parent = NULL; |
| struct btrfs_block_group_cache *cache; |
| |
| spin_lock(&info->block_group_cache_lock); |
| p = &info->block_group_cache_tree.rb_node; |
| |
| while (*p) { |
| parent = *p; |
| cache = rb_entry(parent, struct btrfs_block_group_cache, |
| cache_node); |
| if (block_group->key.objectid < cache->key.objectid) { |
| p = &(*p)->rb_left; |
| } else if (block_group->key.objectid > cache->key.objectid) { |
| p = &(*p)->rb_right; |
| } else { |
| spin_unlock(&info->block_group_cache_lock); |
| return -EEXIST; |
| } |
| } |
| |
| rb_link_node(&block_group->cache_node, parent, p); |
| rb_insert_color(&block_group->cache_node, |
| &info->block_group_cache_tree); |
| spin_unlock(&info->block_group_cache_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * This will return the block group at or after bytenr if contains is 0, else |
| * it will return the block group that contains the bytenr |
| */ |
| static struct btrfs_block_group_cache * |
| block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, |
| int contains) |
| { |
| struct btrfs_block_group_cache *cache, *ret = NULL; |
| struct rb_node *n; |
| u64 end, start; |
| |
| spin_lock(&info->block_group_cache_lock); |
| n = info->block_group_cache_tree.rb_node; |
| |
| while (n) { |
| cache = rb_entry(n, struct btrfs_block_group_cache, |
| cache_node); |
| end = cache->key.objectid + cache->key.offset - 1; |
| start = cache->key.objectid; |
| |
| if (bytenr < start) { |
| if (!contains && (!ret || start < ret->key.objectid)) |
| ret = cache; |
| n = n->rb_left; |
| } else if (bytenr > start) { |
| if (contains && bytenr <= end) { |
| ret = cache; |
| break; |
| } |
| n = n->rb_right; |
| } else { |
| ret = cache; |
| break; |
| } |
| } |
| if (ret) |
| btrfs_get_block_group(ret); |
| spin_unlock(&info->block_group_cache_lock); |
| |
| return ret; |
| } |
| |
| static int add_excluded_extent(struct btrfs_root *root, |
| u64 start, u64 num_bytes) |
| { |
| u64 end = start + num_bytes - 1; |
| set_extent_bits(&root->fs_info->freed_extents[0], |
| start, end, EXTENT_UPTODATE, GFP_NOFS); |
| set_extent_bits(&root->fs_info->freed_extents[1], |
| start, end, EXTENT_UPTODATE, GFP_NOFS); |
| return 0; |
| } |
| |
| static void free_excluded_extents(struct btrfs_root *root, |
| struct btrfs_block_group_cache *cache) |
| { |
| u64 start, end; |
| |
| start = cache->key.objectid; |
| end = start + cache->key.offset - 1; |
| |
| clear_extent_bits(&root->fs_info->freed_extents[0], |
| start, end, EXTENT_UPTODATE, GFP_NOFS); |
| clear_extent_bits(&root->fs_info->freed_extents[1], |
| start, end, EXTENT_UPTODATE, GFP_NOFS); |
| } |
| |
| static int exclude_super_stripes(struct btrfs_root *root, |
| struct btrfs_block_group_cache *cache) |
| { |
| u64 bytenr; |
| u64 *logical; |
| int stripe_len; |
| int i, nr, ret; |
| |
| if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { |
| stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; |
| cache->bytes_super += stripe_len; |
| ret = add_excluded_extent(root, cache->key.objectid, |
| stripe_len); |
| BUG_ON(ret); |
| } |
| |
| for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { |
| bytenr = btrfs_sb_offset(i); |
| ret = btrfs_rmap_block(&root->fs_info->mapping_tree, |
| cache->key.objectid, bytenr, |
| 0, &logical, &nr, &stripe_len); |
| BUG_ON(ret); |
| |
| while (nr--) { |
| cache->bytes_super += stripe_len; |
| ret = add_excluded_extent(root, logical[nr], |
| stripe_len); |
| BUG_ON(ret); |
| } |
| |
| kfree(logical); |
| } |
| return 0; |
| } |
| |
| static struct btrfs_caching_control * |
| get_caching_control(struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_caching_control *ctl; |
| |
| spin_lock(&cache->lock); |
| if (cache->cached != BTRFS_CACHE_STARTED) { |
| spin_unlock(&cache->lock); |
| return NULL; |
| } |
| |
| ctl = cache->caching_ctl; |
| atomic_inc(&ctl->count); |
| spin_unlock(&cache->lock); |
| return ctl; |
| } |
| |
| static void put_caching_control(struct btrfs_caching_control *ctl) |
| { |
| if (atomic_dec_and_test(&ctl->count)) |
| kfree(ctl); |
| } |
| |
| /* |
| * this is only called by cache_block_group, since we could have freed extents |
| * we need to check the pinned_extents for any extents that can't be used yet |
| * since their free space will be released as soon as the transaction commits. |
| */ |
| static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, |
| struct btrfs_fs_info *info, u64 start, u64 end) |
| { |
| u64 extent_start, extent_end, size, total_added = 0; |
| int ret; |
| |
| while (start < end) { |
| ret = find_first_extent_bit(info->pinned_extents, start, |
| &extent_start, &extent_end, |
| EXTENT_DIRTY | EXTENT_UPTODATE); |
| if (ret) |
| break; |
| |
| if (extent_start <= start) { |
| start = extent_end + 1; |
| } else if (extent_start > start && extent_start < end) { |
| size = extent_start - start; |
| total_added += size; |
| ret = btrfs_add_free_space(block_group, start, |
| size); |
| BUG_ON(ret); |
| start = extent_end + 1; |
| } else { |
| break; |
| } |
| } |
| |
| if (start < end) { |
| size = end - start; |
| total_added += size; |
| ret = btrfs_add_free_space(block_group, start, size); |
| BUG_ON(ret); |
| } |
| |
| return total_added; |
| } |
| |
| static int caching_kthread(void *data) |
| { |
| struct btrfs_block_group_cache *block_group = data; |
| struct btrfs_fs_info *fs_info = block_group->fs_info; |
| struct btrfs_caching_control *caching_ctl = block_group->caching_ctl; |
| struct btrfs_root *extent_root = fs_info->extent_root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| u64 total_found = 0; |
| u64 last = 0; |
| u32 nritems; |
| int ret = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| exclude_super_stripes(extent_root, block_group); |
| spin_lock(&block_group->space_info->lock); |
| block_group->space_info->bytes_super += block_group->bytes_super; |
| spin_unlock(&block_group->space_info->lock); |
| |
| last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); |
| |
| /* |
| * We don't want to deadlock with somebody trying to allocate a new |
| * extent for the extent root while also trying to search the extent |
| * root to add free space. So we skip locking and search the commit |
| * root, since its read-only |
| */ |
| path->skip_locking = 1; |
| path->search_commit_root = 1; |
| path->reada = 2; |
| |
| key.objectid = last; |
| key.offset = 0; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| again: |
| mutex_lock(&caching_ctl->mutex); |
| /* need to make sure the commit_root doesn't disappear */ |
| down_read(&fs_info->extent_commit_sem); |
| |
| ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto err; |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| |
| while (1) { |
| smp_mb(); |
| if (fs_info->closing > 1) { |
| last = (u64)-1; |
| break; |
| } |
| |
| if (path->slots[0] < nritems) { |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| } else { |
| ret = find_next_key(path, 0, &key); |
| if (ret) |
| break; |
| |
| caching_ctl->progress = last; |
| btrfs_release_path(extent_root, path); |
| up_read(&fs_info->extent_commit_sem); |
| mutex_unlock(&caching_ctl->mutex); |
| if (btrfs_transaction_in_commit(fs_info)) |
| schedule_timeout(1); |
| else |
| cond_resched(); |
| goto again; |
| } |
| |
| if (key.objectid < block_group->key.objectid) { |
| path->slots[0]++; |
| continue; |
| } |
| |
| if (key.objectid >= block_group->key.objectid + |
| block_group->key.offset) |
| break; |
| |
| if (key.type == BTRFS_EXTENT_ITEM_KEY) { |
| total_found += add_new_free_space(block_group, |
| fs_info, last, |
| key.objectid); |
| last = key.objectid + key.offset; |
| |
| if (total_found > (1024 * 1024 * 2)) { |
| total_found = 0; |
| wake_up(&caching_ctl->wait); |
| } |
| } |
| path->slots[0]++; |
| } |
| ret = 0; |
| |
| total_found += add_new_free_space(block_group, fs_info, last, |
| block_group->key.objectid + |
| block_group->key.offset); |
| caching_ctl->progress = (u64)-1; |
| |
| spin_lock(&block_group->lock); |
| block_group->caching_ctl = NULL; |
| block_group->cached = BTRFS_CACHE_FINISHED; |
| spin_unlock(&block_group->lock); |
| |
| err: |
| btrfs_free_path(path); |
| up_read(&fs_info->extent_commit_sem); |
| |
| free_excluded_extents(extent_root, block_group); |
| |
| mutex_unlock(&caching_ctl->mutex); |
| wake_up(&caching_ctl->wait); |
| |
| put_caching_control(caching_ctl); |
| atomic_dec(&block_group->space_info->caching_threads); |
| btrfs_put_block_group(block_group); |
| |
| return 0; |
| } |
| |
| static int cache_block_group(struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| struct btrfs_caching_control *caching_ctl; |
| struct task_struct *tsk; |
| int ret = 0; |
| |
| smp_mb(); |
| if (cache->cached != BTRFS_CACHE_NO) |
| return 0; |
| |
| caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL); |
| BUG_ON(!caching_ctl); |
| |
| INIT_LIST_HEAD(&caching_ctl->list); |
| mutex_init(&caching_ctl->mutex); |
| init_waitqueue_head(&caching_ctl->wait); |
| caching_ctl->block_group = cache; |
| caching_ctl->progress = cache->key.objectid; |
| /* one for caching kthread, one for caching block group list */ |
| atomic_set(&caching_ctl->count, 2); |
| |
| spin_lock(&cache->lock); |
| if (cache->cached != BTRFS_CACHE_NO) { |
| spin_unlock(&cache->lock); |
| kfree(caching_ctl); |
| return 0; |
| } |
| cache->caching_ctl = caching_ctl; |
| cache->cached = BTRFS_CACHE_STARTED; |
| spin_unlock(&cache->lock); |
| |
| down_write(&fs_info->extent_commit_sem); |
| list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); |
| up_write(&fs_info->extent_commit_sem); |
| |
| atomic_inc(&cache->space_info->caching_threads); |
| btrfs_get_block_group(cache); |
| |
| tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n", |
| cache->key.objectid); |
| if (IS_ERR(tsk)) { |
| ret = PTR_ERR(tsk); |
| printk(KERN_ERR "error running thread %d\n", ret); |
| BUG(); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * return the block group that starts at or after bytenr |
| */ |
| static struct btrfs_block_group_cache * |
| btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) |
| { |
| struct btrfs_block_group_cache *cache; |
| |
| cache = block_group_cache_tree_search(info, bytenr, 0); |
| |
| return cache; |
| } |
| |
| /* |
| * return the block group that contains the given bytenr |
| */ |
| struct btrfs_block_group_cache *btrfs_lookup_block_group( |
| struct btrfs_fs_info *info, |
| u64 bytenr) |
| { |
| struct btrfs_block_group_cache *cache; |
| |
| cache = block_group_cache_tree_search(info, bytenr, 1); |
| |
| return cache; |
| } |
| |
| static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, |
| u64 flags) |
| { |
| struct list_head *head = &info->space_info; |
| struct btrfs_space_info *found; |
| |
| flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM | |
| BTRFS_BLOCK_GROUP_METADATA; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(found, head, list) { |
| if (found->flags == flags) { |
| rcu_read_unlock(); |
| return found; |
| } |
| } |
| rcu_read_unlock(); |
| return NULL; |
| } |
| |
| /* |
| * after adding space to the filesystem, we need to clear the full flags |
| * on all the space infos. |
| */ |
| void btrfs_clear_space_info_full(struct btrfs_fs_info *info) |
| { |
| struct list_head *head = &info->space_info; |
| struct btrfs_space_info *found; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(found, head, list) |
| found->full = 0; |
| rcu_read_unlock(); |
| } |
| |
| static u64 div_factor(u64 num, int factor) |
| { |
| if (factor == 10) |
| return num; |
| num *= factor; |
| do_div(num, 10); |
| return num; |
| } |
| |
| u64 btrfs_find_block_group(struct btrfs_root *root, |
| u64 search_start, u64 search_hint, int owner) |
| { |
| struct btrfs_block_group_cache *cache; |
| u64 used; |
| u64 last = max(search_hint, search_start); |
| u64 group_start = 0; |
| int full_search = 0; |
| int factor = 9; |
| int wrapped = 0; |
| again: |
| while (1) { |
| cache = btrfs_lookup_first_block_group(root->fs_info, last); |
| if (!cache) |
| break; |
| |
| spin_lock(&cache->lock); |
| last = cache->key.objectid + cache->key.offset; |
| used = btrfs_block_group_used(&cache->item); |
| |
| if ((full_search || !cache->ro) && |
| block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { |
| if (used + cache->pinned + cache->reserved < |
| div_factor(cache->key.offset, factor)) { |
| group_start = cache->key.objectid; |
| spin_unlock(&cache->lock); |
| btrfs_put_block_group(cache); |
| goto found; |
| } |
| } |
| spin_unlock(&cache->lock); |
| btrfs_put_block_group(cache); |
| cond_resched(); |
| } |
| if (!wrapped) { |
| last = search_start; |
| wrapped = 1; |
| goto again; |
| } |
| if (!full_search && factor < 10) { |
| last = search_start; |
| full_search = 1; |
| factor = 10; |
| goto again; |
| } |
| found: |
| return group_start; |
| } |
| |
| /* simple helper to search for an existing extent at a given offset */ |
| int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| |
| path = btrfs_alloc_path(); |
| BUG_ON(!path); |
| key.objectid = start; |
| key.offset = len; |
| btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); |
| ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, |
| 0, 0); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Back reference rules. Back refs have three main goals: |
| * |
| * 1) differentiate between all holders of references to an extent so that |
| * when a reference is dropped we can make sure it was a valid reference |
| * before freeing the extent. |
| * |
| * 2) Provide enough information to quickly find the holders of an extent |
| * if we notice a given block is corrupted or bad. |
| * |
| * 3) Make it easy to migrate blocks for FS shrinking or storage pool |
| * maintenance. This is actually the same as #2, but with a slightly |
| * different use case. |
| * |
| * There are two kinds of back refs. The implicit back refs is optimized |
| * for pointers in non-shared tree blocks. For a given pointer in a block, |
| * back refs of this kind provide information about the block's owner tree |
| * and the pointer's key. These information allow us to find the block by |
| * b-tree searching. The full back refs is for pointers in tree blocks not |
| * referenced by their owner trees. The location of tree block is recorded |
| * in the back refs. Actually the full back refs is generic, and can be |
| * used in all cases the implicit back refs is used. The major shortcoming |
| * of the full back refs is its overhead. Every time a tree block gets |
| * COWed, we have to update back refs entry for all pointers in it. |
| * |
| * For a newly allocated tree block, we use implicit back refs for |
| * pointers in it. This means most tree related operations only involve |
| * implicit back refs. For a tree block created in old transaction, the |
| * only way to drop a reference to it is COW it. So we can detect the |
| * event that tree block loses its owner tree's reference and do the |
| * back refs conversion. |
| * |
| * When a tree block is COW'd through a tree, there are four cases: |
| * |
| * The reference count of the block is one and the tree is the block's |
| * owner tree. Nothing to do in this case. |
| * |
| * The reference count of the block is one and the tree is not the |
| * block's owner tree. In this case, full back refs is used for pointers |
| * in the block. Remove these full back refs, add implicit back refs for |
| * every pointers in the new block. |
| * |
| * The reference count of the block is greater than one and the tree is |
| * the block's owner tree. In this case, implicit back refs is used for |
| * pointers in the block. Add full back refs for every pointers in the |
| * block, increase lower level extents' reference counts. The original |
| * implicit back refs are entailed to the new block. |
| * |
| * The reference count of the block is greater than one and the tree is |
| * not the block's owner tree. Add implicit back refs for every pointer in |
| * the new block, increase lower level extents' reference count. |
| * |
| * Back Reference Key composing: |
| * |
| * The key objectid corresponds to the first byte in the extent, |
| * The key type is used to differentiate between types of back refs. |
| * There are different meanings of the key offset for different types |
| * of back refs. |
| * |
| * File extents can be referenced by: |
| * |
| * - multiple snapshots, subvolumes, or different generations in one subvol |
| * - different files inside a single subvolume |
| * - different offsets inside a file (bookend extents in file.c) |
| * |
| * The extent ref structure for the implicit back refs has fields for: |
| * |
| * - Objectid of the subvolume root |
| * - objectid of the file holding the reference |
| * - original offset in the file |
| * - how many bookend extents |
| * |
| * The key offset for the implicit back refs is hash of the first |
| * three fields. |
| * |
| * The extent ref structure for the full back refs has field for: |
| * |
| * - number of pointers in the tree leaf |
| * |
| * The key offset for the implicit back refs is the first byte of |
| * the tree leaf |
| * |
| * When a file extent is allocated, The implicit back refs is used. |
| * the fields are filled in: |
| * |
| * (root_key.objectid, inode objectid, offset in file, 1) |
| * |
| * When a file extent is removed file truncation, we find the |
| * corresponding implicit back refs and check the following fields: |
| * |
| * (btrfs_header_owner(leaf), inode objectid, offset in file) |
| * |
| * Btree extents can be referenced by: |
| * |
| * - Different subvolumes |
| * |
| * Both the implicit back refs and the full back refs for tree blocks |
| * only consist of key. The key offset for the implicit back refs is |
| * objectid of block's owner tree. The key offset for the full back refs |
| * is the first byte of parent block. |
| * |
| * When implicit back refs is used, information about the lowest key and |
| * level of the tree block are required. These information are stored in |
| * tree block info structure. |
| */ |
| |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| static int convert_extent_item_v0(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 owner, u32 extra_size) |
| { |
| struct btrfs_extent_item *item; |
| struct btrfs_extent_item_v0 *ei0; |
| struct btrfs_extent_ref_v0 *ref0; |
| struct btrfs_tree_block_info *bi; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| u32 new_size = sizeof(*item); |
| u64 refs; |
| int ret; |
| |
| leaf = path->nodes[0]; |
| BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| ei0 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_item_v0); |
| refs = btrfs_extent_refs_v0(leaf, ei0); |
| |
| if (owner == (u64)-1) { |
| while (1) { |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| return ret; |
| BUG_ON(ret > 0); |
| leaf = path->nodes[0]; |
| } |
| btrfs_item_key_to_cpu(leaf, &found_key, |
| path->slots[0]); |
| BUG_ON(key.objectid != found_key.objectid); |
| if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { |
| path->slots[0]++; |
| continue; |
| } |
| ref0 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_ref_v0); |
| owner = btrfs_ref_objectid_v0(leaf, ref0); |
| break; |
| } |
| } |
| btrfs_release_path(root, path); |
| |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) |
| new_size += sizeof(*bi); |
| |
| new_size -= sizeof(*ei0); |
| ret = btrfs_search_slot(trans, root, &key, path, |
| new_size + extra_size, 1); |
| if (ret < 0) |
| return ret; |
| BUG_ON(ret); |
| |
| ret = btrfs_extend_item(trans, root, path, new_size); |
| BUG_ON(ret); |
| |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| btrfs_set_extent_refs(leaf, item, refs); |
| /* FIXME: get real generation */ |
| btrfs_set_extent_generation(leaf, item, 0); |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| btrfs_set_extent_flags(leaf, item, |
| BTRFS_EXTENT_FLAG_TREE_BLOCK | |
| BTRFS_BLOCK_FLAG_FULL_BACKREF); |
| bi = (struct btrfs_tree_block_info *)(item + 1); |
| /* FIXME: get first key of the block */ |
| memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); |
| btrfs_set_tree_block_level(leaf, bi, (int)owner); |
| } else { |
| btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| return 0; |
| } |
| #endif |
| |
| static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) |
| { |
| u32 high_crc = ~(u32)0; |
| u32 low_crc = ~(u32)0; |
| __le64 lenum; |
| |
| lenum = cpu_to_le64(root_objectid); |
| high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); |
| lenum = cpu_to_le64(owner); |
| low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); |
| lenum = cpu_to_le64(offset); |
| low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); |
| |
| return ((u64)high_crc << 31) ^ (u64)low_crc; |
| } |
| |
| static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, |
| struct btrfs_extent_data_ref *ref) |
| { |
| return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), |
| btrfs_extent_data_ref_objectid(leaf, ref), |
| btrfs_extent_data_ref_offset(leaf, ref)); |
| } |
| |
| static int match_extent_data_ref(struct extent_buffer *leaf, |
| struct btrfs_extent_data_ref *ref, |
| u64 root_objectid, u64 owner, u64 offset) |
| { |
| if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || |
| btrfs_extent_data_ref_objectid(leaf, ref) != owner || |
| btrfs_extent_data_ref_offset(leaf, ref) != offset) |
| return 0; |
| return 1; |
| } |
| |
| static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid, |
| u64 owner, u64 offset) |
| { |
| struct btrfs_key key; |
| struct btrfs_extent_data_ref *ref; |
| struct extent_buffer *leaf; |
| u32 nritems; |
| int ret; |
| int recow; |
| int err = -ENOENT; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_DATA_REF_KEY; |
| key.offset = parent; |
| } else { |
| key.type = BTRFS_EXTENT_DATA_REF_KEY; |
| key.offset = hash_extent_data_ref(root_objectid, |
| owner, offset); |
| } |
| again: |
| recow = 0; |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) { |
| err = ret; |
| goto fail; |
| } |
| |
| if (parent) { |
| if (!ret) |
| return 0; |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| key.type = BTRFS_EXTENT_REF_V0_KEY; |
| btrfs_release_path(root, path); |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) { |
| err = ret; |
| goto fail; |
| } |
| if (!ret) |
| return 0; |
| #endif |
| goto fail; |
| } |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| while (1) { |
| if (path->slots[0] >= nritems) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| err = ret; |
| if (ret) |
| goto fail; |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| recow = 1; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != bytenr || |
| key.type != BTRFS_EXTENT_DATA_REF_KEY) |
| goto fail; |
| |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| |
| if (match_extent_data_ref(leaf, ref, root_objectid, |
| owner, offset)) { |
| if (recow) { |
| btrfs_release_path(root, path); |
| goto again; |
| } |
| err = 0; |
| break; |
| } |
| path->slots[0]++; |
| } |
| fail: |
| return err; |
| } |
| |
| static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid, u64 owner, |
| u64 offset, int refs_to_add) |
| { |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| u32 size; |
| u32 num_refs; |
| int ret; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_DATA_REF_KEY; |
| key.offset = parent; |
| size = sizeof(struct btrfs_shared_data_ref); |
| } else { |
| key.type = BTRFS_EXTENT_DATA_REF_KEY; |
| key.offset = hash_extent_data_ref(root_objectid, |
| owner, offset); |
| size = sizeof(struct btrfs_extent_data_ref); |
| } |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, size); |
| if (ret && ret != -EEXIST) |
| goto fail; |
| |
| leaf = path->nodes[0]; |
| if (parent) { |
| struct btrfs_shared_data_ref *ref; |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_shared_data_ref); |
| if (ret == 0) { |
| btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); |
| } else { |
| num_refs = btrfs_shared_data_ref_count(leaf, ref); |
| num_refs += refs_to_add; |
| btrfs_set_shared_data_ref_count(leaf, ref, num_refs); |
| } |
| } else { |
| struct btrfs_extent_data_ref *ref; |
| while (ret == -EEXIST) { |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| if (match_extent_data_ref(leaf, ref, root_objectid, |
| owner, offset)) |
| break; |
| btrfs_release_path(root, path); |
| key.offset++; |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| size); |
| if (ret && ret != -EEXIST) |
| goto fail; |
| |
| leaf = path->nodes[0]; |
| } |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| if (ret == 0) { |
| btrfs_set_extent_data_ref_root(leaf, ref, |
| root_objectid); |
| btrfs_set_extent_data_ref_objectid(leaf, ref, owner); |
| btrfs_set_extent_data_ref_offset(leaf, ref, offset); |
| btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); |
| } else { |
| num_refs = btrfs_extent_data_ref_count(leaf, ref); |
| num_refs += refs_to_add; |
| btrfs_set_extent_data_ref_count(leaf, ref, num_refs); |
| } |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| ret = 0; |
| fail: |
| btrfs_release_path(root, path); |
| return ret; |
| } |
| |
| static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| int refs_to_drop) |
| { |
| struct btrfs_key key; |
| struct btrfs_extent_data_ref *ref1 = NULL; |
| struct btrfs_shared_data_ref *ref2 = NULL; |
| struct extent_buffer *leaf; |
| u32 num_refs = 0; |
| int ret = 0; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| ref1 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| ref2 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_shared_data_ref); |
| num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { |
| struct btrfs_extent_ref_v0 *ref0; |
| ref0 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_ref_v0); |
| num_refs = btrfs_ref_count_v0(leaf, ref0); |
| #endif |
| } else { |
| BUG(); |
| } |
| |
| BUG_ON(num_refs < refs_to_drop); |
| num_refs -= refs_to_drop; |
| |
| if (num_refs == 0) { |
| ret = btrfs_del_item(trans, root, path); |
| } else { |
| if (key.type == BTRFS_EXTENT_DATA_REF_KEY) |
| btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); |
| else if (key.type == BTRFS_SHARED_DATA_REF_KEY) |
| btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| else { |
| struct btrfs_extent_ref_v0 *ref0; |
| ref0 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_ref_v0); |
| btrfs_set_ref_count_v0(leaf, ref0, num_refs); |
| } |
| #endif |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| return ret; |
| } |
| |
| static noinline u32 extent_data_ref_count(struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref) |
| { |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_data_ref *ref1; |
| struct btrfs_shared_data_ref *ref2; |
| u32 num_refs = 0; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (iref) { |
| if (btrfs_extent_inline_ref_type(leaf, iref) == |
| BTRFS_EXTENT_DATA_REF_KEY) { |
| ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); |
| num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| } else { |
| ref2 = (struct btrfs_shared_data_ref *)(iref + 1); |
| num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| } |
| } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| ref1 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| ref2 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_shared_data_ref); |
| num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { |
| struct btrfs_extent_ref_v0 *ref0; |
| ref0 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_ref_v0); |
| num_refs = btrfs_ref_count_v0(leaf, ref0); |
| #endif |
| } else { |
| WARN_ON(1); |
| } |
| return num_refs; |
| } |
| |
| static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid) |
| { |
| struct btrfs_key key; |
| int ret; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_BLOCK_REF_KEY; |
| key.offset = parent; |
| } else { |
| key.type = BTRFS_TREE_BLOCK_REF_KEY; |
| key.offset = root_objectid; |
| } |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) |
| ret = -ENOENT; |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| if (ret == -ENOENT && parent) { |
| btrfs_release_path(root, path); |
| key.type = BTRFS_EXTENT_REF_V0_KEY; |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) |
| ret = -ENOENT; |
| } |
| #endif |
| return ret; |
| } |
| |
| static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid) |
| { |
| struct btrfs_key key; |
| int ret; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_BLOCK_REF_KEY; |
| key.offset = parent; |
| } else { |
| key.type = BTRFS_TREE_BLOCK_REF_KEY; |
| key.offset = root_objectid; |
| } |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, 0); |
| btrfs_release_path(root, path); |
| return ret; |
| } |
| |
| static inline int extent_ref_type(u64 parent, u64 owner) |
| { |
| int type; |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| if (parent > 0) |
| type = BTRFS_SHARED_BLOCK_REF_KEY; |
| else |
| type = BTRFS_TREE_BLOCK_REF_KEY; |
| } else { |
| if (parent > 0) |
| type = BTRFS_SHARED_DATA_REF_KEY; |
| else |
| type = BTRFS_EXTENT_DATA_REF_KEY; |
| } |
| return type; |
| } |
| |
| static int find_next_key(struct btrfs_path *path, int level, |
| struct btrfs_key *key) |
| |
| { |
| for (; level < BTRFS_MAX_LEVEL; level++) { |
| if (!path->nodes[level]) |
| break; |
| if (path->slots[level] + 1 >= |
| btrfs_header_nritems(path->nodes[level])) |
| continue; |
| if (level == 0) |
| btrfs_item_key_to_cpu(path->nodes[level], key, |
| path->slots[level] + 1); |
| else |
| btrfs_node_key_to_cpu(path->nodes[level], key, |
| path->slots[level] + 1); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * look for inline back ref. if back ref is found, *ref_ret is set |
| * to the address of inline back ref, and 0 is returned. |
| * |
| * if back ref isn't found, *ref_ret is set to the address where it |
| * should be inserted, and -ENOENT is returned. |
| * |
| * if insert is true and there are too many inline back refs, the path |
| * points to the extent item, and -EAGAIN is returned. |
| * |
| * NOTE: inline back refs are ordered in the same way that back ref |
| * items in the tree are ordered. |
| */ |
| static noinline_for_stack |
| int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref **ref_ret, |
| u64 bytenr, u64 num_bytes, |
| u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int insert) |
| { |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_inline_ref *iref; |
| u64 flags; |
| u64 item_size; |
| unsigned long ptr; |
| unsigned long end; |
| int extra_size; |
| int type; |
| int want; |
| int ret; |
| int err = 0; |
| |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| |
| want = extent_ref_type(parent, owner); |
| if (insert) { |
| extra_size = btrfs_extent_inline_ref_size(want); |
| path->keep_locks = 1; |
| } else |
| extra_size = -1; |
| ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| BUG_ON(ret); |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| if (item_size < sizeof(*ei)) { |
| if (!insert) { |
| err = -ENOENT; |
| goto out; |
| } |
| ret = convert_extent_item_v0(trans, root, path, owner, |
| extra_size); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| } |
| #endif |
| BUG_ON(item_size < sizeof(*ei)); |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| flags = btrfs_extent_flags(leaf, ei); |
| |
| ptr = (unsigned long)(ei + 1); |
| end = (unsigned long)ei + item_size; |
| |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| ptr += sizeof(struct btrfs_tree_block_info); |
| BUG_ON(ptr > end); |
| } else { |
| BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); |
| } |
| |
| err = -ENOENT; |
| while (1) { |
| if (ptr >= end) { |
| WARN_ON(ptr > end); |
| break; |
| } |
| iref = (struct btrfs_extent_inline_ref *)ptr; |
| type = btrfs_extent_inline_ref_type(leaf, iref); |
| if (want < type) |
| break; |
| if (want > type) { |
| ptr += btrfs_extent_inline_ref_size(type); |
| continue; |
| } |
| |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| struct btrfs_extent_data_ref *dref; |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| if (match_extent_data_ref(leaf, dref, root_objectid, |
| owner, offset)) { |
| err = 0; |
| break; |
| } |
| if (hash_extent_data_ref_item(leaf, dref) < |
| hash_extent_data_ref(root_objectid, owner, offset)) |
| break; |
| } else { |
| u64 ref_offset; |
| ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); |
| if (parent > 0) { |
| if (parent == ref_offset) { |
| err = 0; |
| break; |
| } |
| if (ref_offset < parent) |
| break; |
| } else { |
| if (root_objectid == ref_offset) { |
| err = 0; |
| break; |
| } |
| if (ref_offset < root_objectid) |
| break; |
| } |
| } |
| ptr += btrfs_extent_inline_ref_size(type); |
| } |
| if (err == -ENOENT && insert) { |
| if (item_size + extra_size >= |
| BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { |
| err = -EAGAIN; |
| goto out; |
| } |
| /* |
| * To add new inline back ref, we have to make sure |
| * there is no corresponding back ref item. |
| * For simplicity, we just do not add new inline back |
| * ref if there is any kind of item for this block |
| */ |
| if (find_next_key(path, 0, &key) == 0 && |
| key.objectid == bytenr && |
| key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { |
| err = -EAGAIN; |
| goto out; |
| } |
| } |
| *ref_ret = (struct btrfs_extent_inline_ref *)ptr; |
| out: |
| if (insert) { |
| path->keep_locks = 0; |
| btrfs_unlock_up_safe(path, 1); |
| } |
| return err; |
| } |
| |
| /* |
| * helper to add new inline back ref |
| */ |
| static noinline_for_stack |
| int setup_inline_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref, |
| u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int refs_to_add, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| unsigned long ptr; |
| unsigned long end; |
| unsigned long item_offset; |
| u64 refs; |
| int size; |
| int type; |
| int ret; |
| |
| leaf = path->nodes[0]; |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| item_offset = (unsigned long)iref - (unsigned long)ei; |
| |
| type = extent_ref_type(parent, owner); |
| size = btrfs_extent_inline_ref_size(type); |
| |
| ret = btrfs_extend_item(trans, root, path, size); |
| BUG_ON(ret); |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| refs = btrfs_extent_refs(leaf, ei); |
| refs += refs_to_add; |
| btrfs_set_extent_refs(leaf, ei, refs); |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| |
| ptr = (unsigned long)ei + item_offset; |
| end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); |
| if (ptr < end - size) |
| memmove_extent_buffer(leaf, ptr + size, ptr, |
| end - size - ptr); |
| |
| iref = (struct btrfs_extent_inline_ref *)ptr; |
| btrfs_set_extent_inline_ref_type(leaf, iref, type); |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| struct btrfs_extent_data_ref *dref; |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); |
| btrfs_set_extent_data_ref_objectid(leaf, dref, owner); |
| btrfs_set_extent_data_ref_offset(leaf, dref, offset); |
| btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); |
| } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| struct btrfs_shared_data_ref *sref; |
| sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| } else { |
| btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| return 0; |
| } |
| |
| static int lookup_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref **ref_ret, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner, u64 offset) |
| { |
| int ret; |
| |
| ret = lookup_inline_extent_backref(trans, root, path, ref_ret, |
| bytenr, num_bytes, parent, |
| root_objectid, owner, offset, 0); |
| if (ret != -ENOENT) |
| return ret; |
| |
| btrfs_release_path(root, path); |
| *ref_ret = NULL; |
| |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, |
| root_objectid); |
| } else { |
| ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, |
| root_objectid, owner, offset); |
| } |
| return ret; |
| } |
| |
| /* |
| * helper to update/remove inline back ref |
| */ |
| static noinline_for_stack |
| int update_inline_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref, |
| int refs_to_mod, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_data_ref *dref = NULL; |
| struct btrfs_shared_data_ref *sref = NULL; |
| unsigned long ptr; |
| unsigned long end; |
| u32 item_size; |
| int size; |
| int type; |
| int ret; |
| u64 refs; |
| |
| leaf = path->nodes[0]; |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| refs = btrfs_extent_refs(leaf, ei); |
| WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); |
| refs += refs_to_mod; |
| btrfs_set_extent_refs(leaf, ei, refs); |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| |
| type = btrfs_extent_inline_ref_type(leaf, iref); |
| |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| refs = btrfs_extent_data_ref_count(leaf, dref); |
| } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| refs = btrfs_shared_data_ref_count(leaf, sref); |
| } else { |
| refs = 1; |
| BUG_ON(refs_to_mod != -1); |
| } |
| |
| BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); |
| refs += refs_to_mod; |
| |
| if (refs > 0) { |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) |
| btrfs_set_extent_data_ref_count(leaf, dref, refs); |
| else |
| btrfs_set_shared_data_ref_count(leaf, sref, refs); |
| } else { |
| size = btrfs_extent_inline_ref_size(type); |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| ptr = (unsigned long)iref; |
| end = (unsigned long)ei + item_size; |
| if (ptr + size < end) |
| memmove_extent_buffer(leaf, ptr, ptr + size, |
| end - ptr - size); |
| item_size -= size; |
| ret = btrfs_truncate_item(trans, root, path, item_size, 1); |
| BUG_ON(ret); |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| return 0; |
| } |
| |
| static noinline_for_stack |
| int insert_inline_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner, |
| u64 offset, int refs_to_add, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_extent_inline_ref *iref; |
| int ret; |
| |
| ret = lookup_inline_extent_backref(trans, root, path, &iref, |
| bytenr, num_bytes, parent, |
| root_objectid, owner, offset, 1); |
| if (ret == 0) { |
| BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); |
| ret = update_inline_extent_backref(trans, root, path, iref, |
| refs_to_add, extent_op); |
| } else if (ret == -ENOENT) { |
| ret = setup_inline_extent_backref(trans, root, path, iref, |
| parent, root_objectid, |
| owner, offset, refs_to_add, |
| extent_op); |
| } |
| return ret; |
| } |
| |
| static int insert_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int refs_to_add) |
| { |
| int ret; |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| BUG_ON(refs_to_add != 1); |
| ret = insert_tree_block_ref(trans, root, path, bytenr, |
| parent, root_objectid); |
| } else { |
| ret = insert_extent_data_ref(trans, root, path, bytenr, |
| parent, root_objectid, |
| owner, offset, refs_to_add); |
| } |
| return ret; |
| } |
| |
| static int remove_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref, |
| int refs_to_drop, int is_data) |
| { |
| int ret; |
| |
| BUG_ON(!is_data && refs_to_drop != 1); |
| if (iref) { |
| ret = update_inline_extent_backref(trans, root, path, iref, |
| -refs_to_drop, NULL); |
| } else if (is_data) { |
| ret = remove_extent_data_ref(trans, root, path, refs_to_drop); |
| } else { |
| ret = btrfs_del_item(trans, root, path); |
| } |
| return ret; |
| } |
| |
| static void btrfs_issue_discard(struct block_device *bdev, |
| u64 start, u64 len) |
| { |
| blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL, |
| DISCARD_FL_BARRIER); |
| } |
| |
| static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, |
| u64 num_bytes) |
| { |
| int ret; |
| u64 map_length = num_bytes; |
| struct btrfs_multi_bio *multi = NULL; |
| |
| if (!btrfs_test_opt(root, DISCARD)) |
| return 0; |
| |
| /* Tell the block device(s) that the sectors can be discarded */ |
| ret = btrfs_map_block(&root->fs_info->mapping_tree, READ, |
| bytenr, &map_length, &multi, 0); |
| if (!ret) { |
| struct btrfs_bio_stripe *stripe = multi->stripes; |
| int i; |
| |
| if (map_length > num_bytes) |
| map_length = num_bytes; |
| |
| for (i = 0; i < multi->num_stripes; i++, stripe++) { |
| btrfs_issue_discard(stripe->dev->bdev, |
| stripe->physical, |
| map_length); |
| } |
| kfree(multi); |
| } |
| |
| return ret; |
| } |
| |
| int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner, u64 offset) |
| { |
| int ret; |
| BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && |
| root_objectid == BTRFS_TREE_LOG_OBJECTID); |
| |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, |
| parent, root_objectid, (int)owner, |
| BTRFS_ADD_DELAYED_REF, NULL); |
| } else { |
| ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, |
| parent, root_objectid, owner, offset, |
| BTRFS_ADD_DELAYED_REF, NULL); |
| } |
| return ret; |
| } |
| |
| static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, |
| u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int refs_to_add, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *item; |
| u64 refs; |
| int ret; |
| int err = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = 1; |
| path->leave_spinning = 1; |
| /* this will setup the path even if it fails to insert the back ref */ |
| ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, |
| path, bytenr, num_bytes, parent, |
| root_objectid, owner, offset, |
| refs_to_add, extent_op); |
| if (ret == 0) |
| goto out; |
| |
| if (ret != -EAGAIN) { |
| err = ret; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| refs = btrfs_extent_refs(leaf, item); |
| btrfs_set_extent_refs(leaf, item, refs + refs_to_add); |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, item); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_release_path(root->fs_info->extent_root, path); |
| |
| path->reada = 1; |
| path->leave_spinning = 1; |
| |
| /* now insert the actual backref */ |
| ret = insert_extent_backref(trans, root->fs_info->extent_root, |
| path, bytenr, parent, root_objectid, |
| owner, offset, refs_to_add); |
| BUG_ON(ret); |
| out: |
| btrfs_free_path(path); |
| return err; |
| } |
| |
| static int run_delayed_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op, |
| int insert_reserved) |
| { |
| int ret = 0; |
| struct btrfs_delayed_data_ref *ref; |
| struct btrfs_key ins; |
| u64 parent = 0; |
| u64 ref_root = 0; |
| u64 flags = 0; |
| |
| ins.objectid = node->bytenr; |
| ins.offset = node->num_bytes; |
| ins.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| ref = btrfs_delayed_node_to_data_ref(node); |
| if (node->type == BTRFS_SHARED_DATA_REF_KEY) |
| parent = ref->parent; |
| else |
| ref_root = ref->root; |
| |
| if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { |
| if (extent_op) { |
| BUG_ON(extent_op->update_key); |
| flags |= extent_op->flags_to_set; |
| } |
| ret = alloc_reserved_file_extent(trans, root, |
| parent, ref_root, flags, |
| ref->objectid, ref->offset, |
| &ins, node->ref_mod); |
| } else if (node->action == BTRFS_ADD_DELAYED_REF) { |
| ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, |
| node->num_bytes, parent, |
| ref_root, ref->objectid, |
| ref->offset, node->ref_mod, |
| extent_op); |
| } else if (node->action == BTRFS_DROP_DELAYED_REF) { |
| ret = __btrfs_free_extent(trans, root, node->bytenr, |
| node->num_bytes, parent, |
| ref_root, ref->objectid, |
| ref->offset, node->ref_mod, |
| extent_op); |
| } else { |
| BUG(); |
| } |
| return ret; |
| } |
| |
| static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, |
| struct extent_buffer *leaf, |
| struct btrfs_extent_item *ei) |
| { |
| u64 flags = btrfs_extent_flags(leaf, ei); |
| if (extent_op->update_flags) { |
| flags |= extent_op->flags_to_set; |
| btrfs_set_extent_flags(leaf, ei, flags); |
| } |
| |
| if (extent_op->update_key) { |
| struct btrfs_tree_block_info *bi; |
| BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); |
| bi = (struct btrfs_tree_block_info *)(ei + 1); |
| btrfs_set_tree_block_key(leaf, bi, &extent_op->key); |
| } |
| } |
| |
| static int run_delayed_extent_op(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct btrfs_extent_item *ei; |
| struct extent_buffer *leaf; |
| u32 item_size; |
| int ret; |
| int err = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = node->bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = node->num_bytes; |
| |
| path->reada = 1; |
| path->leave_spinning = 1; |
| ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, |
| path, 0, 1); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| if (ret > 0) { |
| err = -EIO; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| if (item_size < sizeof(*ei)) { |
| ret = convert_extent_item_v0(trans, root->fs_info->extent_root, |
| path, (u64)-1, 0); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| } |
| #endif |
| BUG_ON(item_size < sizeof(*ei)); |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| out: |
| btrfs_free_path(path); |
| return err; |
| } |
| |
| static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op, |
| int insert_reserved) |
| { |
| int ret = 0; |
| struct btrfs_delayed_tree_ref *ref; |
| struct btrfs_key ins; |
| u64 parent = 0; |
| u64 ref_root = 0; |
| |
| ins.objectid = node->bytenr; |
| ins.offset = node->num_bytes; |
| ins.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| ref = btrfs_delayed_node_to_tree_ref(node); |
| if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) |
| parent = ref->parent; |
| else |
| ref_root = ref->root; |
| |
| BUG_ON(node->ref_mod != 1); |
| if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { |
| BUG_ON(!extent_op || !extent_op->update_flags || |
| !extent_op->update_key); |
| ret = alloc_reserved_tree_block(trans, root, |
| parent, ref_root, |
| extent_op->flags_to_set, |
| &extent_op->key, |
| ref->level, &ins); |
| } else if (node->action == BTRFS_ADD_DELAYED_REF) { |
| ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, |
| node->num_bytes, parent, ref_root, |
| ref->level, 0, 1, extent_op); |
| } else if (node->action == BTRFS_DROP_DELAYED_REF) { |
| ret = __btrfs_free_extent(trans, root, node->bytenr, |
| node->num_bytes, parent, ref_root, |
| ref->level, 0, 1, extent_op); |
| } else { |
| BUG(); |
| } |
| return ret; |
| } |
| |
| |
| /* helper function to actually process a single delayed ref entry */ |
| static int run_one_delayed_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op, |
| int insert_reserved) |
| { |
| int ret; |
| if (btrfs_delayed_ref_is_head(node)) { |
| struct btrfs_delayed_ref_head *head; |
| /* |
| * we've hit the end of the chain and we were supposed |
| * to insert this extent into the tree. But, it got |
| * deleted before we ever needed to insert it, so all |
| * we have to do is clean up the accounting |
| */ |
| BUG_ON(extent_op); |
| head = btrfs_delayed_node_to_head(node); |
| if (insert_reserved) { |
| int mark_free = 0; |
| struct extent_buffer *must_clean = NULL; |
| |
| ret = pin_down_bytes(trans, root, NULL, |
| node->bytenr, node->num_bytes, |
| head->is_data, 1, &must_clean); |
| if (ret > 0) |
| mark_free = 1; |
| |
| if (must_clean) { |
| clean_tree_block(NULL, root, must_clean); |
| btrfs_tree_unlock(must_clean); |
| free_extent_buffer(must_clean); |
| } |
| if (head->is_data) { |
| ret = btrfs_del_csums(trans, root, |
| node->bytenr, |
| node->num_bytes); |
| BUG_ON(ret); |
| } |
| if (mark_free) { |
| ret = btrfs_free_reserved_extent(root, |
| node->bytenr, |
| node->num_bytes); |
| BUG_ON(ret); |
| } |
| } |
| mutex_unlock(&head->mutex); |
| return 0; |
| } |
| |
| if (node->type == BTRFS_TREE_BLOCK_REF_KEY || |
| node->type == BTRFS_SHARED_BLOCK_REF_KEY) |
| ret = run_delayed_tree_ref(trans, root, node, extent_op, |
| insert_reserved); |
| else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || |
| node->type == BTRFS_SHARED_DATA_REF_KEY) |
| ret = run_delayed_data_ref(trans, root, node, extent_op, |
| insert_reserved); |
| else |
| BUG(); |
| return ret; |
| } |
| |
| static noinline struct btrfs_delayed_ref_node * |
| select_delayed_ref(struct btrfs_delayed_ref_head *head) |
| { |
| struct rb_node *node; |
| struct btrfs_delayed_ref_node *ref; |
| int action = BTRFS_ADD_DELAYED_REF; |
| again: |
| /* |
| * select delayed ref of type BTRFS_ADD_DELAYED_REF first. |
| * this prevents ref count from going down to zero when |
| * there still are pending delayed ref. |
| */ |
| node = rb_prev(&head->node.rb_node); |
| while (1) { |
| if (!node) |
| break; |
| ref = rb_entry(node, struct btrfs_delayed_ref_node, |
| rb_node); |
| if (ref->bytenr != head->node.bytenr) |
| break; |
| if (ref->action == action) |
| return ref; |
| node = rb_prev(node); |
| } |
| if (action == BTRFS_ADD_DELAYED_REF) { |
| action = BTRFS_DROP_DELAYED_REF; |
| goto again; |
| } |
| return NULL; |
| } |
| |
| static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct list_head *cluster) |
| { |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_delayed_ref_node *ref; |
| struct btrfs_delayed_ref_head *locked_ref = NULL; |
| struct btrfs_delayed_extent_op *extent_op; |
| int ret; |
| int count = 0; |
| int must_insert_reserved = 0; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| while (1) { |
| if (!locked_ref) { |
| /* pick a new head ref from the cluster list */ |
| if (list_empty(cluster)) |
| break; |
| |
| locked_ref = list_entry(cluster->next, |
| struct btrfs_delayed_ref_head, cluster); |
| |
| /* grab the lock that says we are going to process |
| * all the refs for this head */ |
| ret = btrfs_delayed_ref_lock(trans, locked_ref); |
| |
| /* |
| * we may have dropped the spin lock to get the head |
| * mutex lock, and that might have given someone else |
| * time to free the head. If that's true, it has been |
| * removed from our list and we can move on. |
| */ |
| if (ret == -EAGAIN) { |
| locked_ref = NULL; |
| count++; |
| continue; |
| } |
| } |
| |
| /* |
| * record the must insert reserved flag before we |
| * drop the spin lock. |
| */ |
| must_insert_reserved = locked_ref->must_insert_reserved; |
| locked_ref->must_insert_reserved = 0; |
| |
| extent_op = locked_ref->extent_op; |
| locked_ref->extent_op = NULL; |
| |
| /* |
| * locked_ref is the head node, so we have to go one |
| * node back for any delayed ref updates |
| */ |
| ref = select_delayed_ref(locked_ref); |
| if (!ref) { |
| /* All delayed refs have been processed, Go ahead |
| * and send the head node to run_one_delayed_ref, |
| * so that any accounting fixes can happen |
| */ |
| ref = &locked_ref->node; |
| |
| if (extent_op && must_insert_reserved) { |
| kfree(extent_op); |
| extent_op = NULL; |
| } |
| |
| if (extent_op) { |
| spin_unlock(&delayed_refs->lock); |
| |
| ret = run_delayed_extent_op(trans, root, |
| ref, extent_op); |
| BUG_ON(ret); |
| kfree(extent_op); |
| |
| cond_resched(); |
| spin_lock(&delayed_refs->lock); |
| continue; |
| } |
| |
| list_del_init(&locked_ref->cluster); |
| locked_ref = NULL; |
| } |
| |
| ref->in_tree = 0; |
| rb_erase(&ref->rb_node, &delayed_refs->root); |
| delayed_refs->num_entries--; |
| |
| spin_unlock(&delayed_refs->lock); |
| |
| ret = run_one_delayed_ref(trans, root, ref, extent_op, |
| must_insert_reserved); |
| BUG_ON(ret); |
| |
| btrfs_put_delayed_ref(ref); |
| kfree(extent_op); |
| count++; |
| |
| cond_resched(); |
| spin_lock(&delayed_refs->lock); |
| } |
| return count; |
| } |
| |
| /* |
| * this starts processing the delayed reference count updates and |
| * extent insertions we have queued up so far. count can be |
| * 0, which means to process everything in the tree at the start |
| * of the run (but not newly added entries), or it can be some target |
| * number you'd like to process. |
| */ |
| int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, unsigned long count) |
| { |
| struct rb_node *node; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_delayed_ref_node *ref; |
| struct list_head cluster; |
| int ret; |
| int run_all = count == (unsigned long)-1; |
| int run_most = 0; |
| |
| if (root == root->fs_info->extent_root) |
| root = root->fs_info->tree_root; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| INIT_LIST_HEAD(&cluster); |
| again: |
| spin_lock(&delayed_refs->lock); |
| if (count == 0) { |
| count = delayed_refs->num_entries * 2; |
| run_most = 1; |
| } |
| while (1) { |
| if (!(run_all || run_most) && |
| delayed_refs->num_heads_ready < 64) |
| break; |
| |
| /* |
| * go find something we can process in the rbtree. We start at |
| * the beginning of the tree, and then build a cluster |
| * of refs to process starting at the first one we are able to |
| * lock |
| */ |
| ret = btrfs_find_ref_cluster(trans, &cluster, |
| delayed_refs->run_delayed_start); |
| if (ret) |
| break; |
| |
| ret = run_clustered_refs(trans, root, &cluster); |
| BUG_ON(ret < 0); |
| |
| count -= min_t(unsigned long, ret, count); |
| |
| if (count == 0) |
| break; |
| } |
| |
| if (run_all) { |
| node = rb_first(&delayed_refs->root); |
| if (!node) |
| goto out; |
| count = (unsigned long)-1; |
| |
| while (node) { |
| ref = rb_entry(node, struct btrfs_delayed_ref_node, |
| rb_node); |
| if (btrfs_delayed_ref_is_head(ref)) { |
| struct btrfs_delayed_ref_head *head; |
| |
| head = btrfs_delayed_node_to_head(ref); |
| atomic_inc(&ref->refs); |
| |
| spin_unlock(&delayed_refs->lock); |
| mutex_lock(&head->mutex); |
| mutex_unlock(&head->mutex); |
| |
| btrfs_put_delayed_ref(ref); |
| cond_resched(); |
| goto again; |
| } |
| node = rb_next(node); |
| } |
| spin_unlock(&delayed_refs->lock); |
| schedule_timeout(1); |
| goto again; |
| } |
| out: |
| spin_unlock(&delayed_refs->lock); |
| return 0; |
| } |
| |
| int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, u64 flags, |
| int is_data) |
| { |
| struct btrfs_delayed_extent_op *extent_op; |
| int ret; |
| |
| extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); |
| if (!extent_op) |
| return -ENOMEM; |
| |
| extent_op->flags_to_set = flags; |
| extent_op->update_flags = 1; |
| extent_op->update_key = 0; |
| extent_op->is_data = is_data ? 1 : 0; |
| |
| ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op); |
| if (ret) |
| kfree(extent_op); |
| return ret; |
| } |
| |
| static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 objectid, u64 offset, u64 bytenr) |
| { |
| struct btrfs_delayed_ref_head *head; |
| struct btrfs_delayed_ref_node *ref; |
| struct btrfs_delayed_data_ref *data_ref; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct rb_node *node; |
| int ret = 0; |
| |
| ret = -ENOENT; |
| delayed_refs = &trans->transaction->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(trans, bytenr); |
| if (!head) |
| goto out; |
| |
| if (!mutex_trylock(&head->mutex)) { |
| atomic_inc(&head->node.refs); |
| spin_unlock(&delayed_refs->lock); |
| |
| btrfs_release_path(root->fs_info->extent_root, path); |
| |
| mutex_lock(&head->mutex); |
| mutex_unlock(&head->mutex); |
| btrfs_put_delayed_ref(&head->node); |
| return -EAGAIN; |
| } |
| |
| node = rb_prev(&head->node.rb_node); |
| if (!node) |
| goto out_unlock; |
| |
| ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); |
| |
| if (ref->bytenr != bytenr) |
| goto out_unlock; |
| |
| ret = 1; |
| if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) |
| goto out_unlock; |
| |
| data_ref = btrfs_delayed_node_to_data_ref(ref); |
| |
| node = rb_prev(node); |
| if (node) { |
| ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); |
| if (ref->bytenr == bytenr) |
| goto out_unlock; |
| } |
| |
| if (data_ref->root != root->root_key.objectid || |
| data_ref->objectid != objectid || data_ref->offset != offset) |
| goto out_unlock; |
| |
| ret = 0; |
| out_unlock: |
| mutex_unlock(&head->mutex); |
| out: |
| spin_unlock(&delayed_refs->lock); |
| return ret; |
| } |
| |
| static noinline int check_committed_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 objectid, u64 offset, u64 bytenr) |
| { |
| struct btrfs_root *extent_root = root->fs_info->extent_root; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_data_ref *ref; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_extent_item *ei; |
| struct btrfs_key key; |
| u32 item_size; |
| int ret; |
| |
| key.objectid = bytenr; |
| key.offset = (u64)-1; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| BUG_ON(ret == 0); |
| |
| ret = -ENOENT; |
| if (path->slots[0] == 0) |
| goto out; |
| |
| path->slots[0]--; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) |
| goto out; |
| |
| ret = 1; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| if (item_size < sizeof(*ei)) { |
| WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); |
| goto out; |
| } |
| #endif |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| |
| if (item_size != sizeof(*ei) + |
| btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) |
| goto out; |
| |
| if (btrfs_extent_generation(leaf, ei) <= |
| btrfs_root_last_snapshot(&root->root_item)) |
| goto out; |
| |
| iref = (struct btrfs_extent_inline_ref *)(ei + 1); |
| if (btrfs_extent_inline_ref_type(leaf, iref) != |
| BTRFS_EXTENT_DATA_REF_KEY) |
| goto out; |
| |
| ref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| if (btrfs_extent_refs(leaf, ei) != |
| btrfs_extent_data_ref_count(leaf, ref) || |
| btrfs_extent_data_ref_root(leaf, ref) != |
| root->root_key.objectid || |
| btrfs_extent_data_ref_objectid(leaf, ref) != objectid || |
| btrfs_extent_data_ref_offset(leaf, ref) != offset) |
| goto out; |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 objectid, u64 offset, u64 bytenr) |
| { |
| struct btrfs_path *path; |
| int ret; |
| int ret2; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOENT; |
| |
| do { |
| ret = check_committed_ref(trans, root, path, objectid, |
| offset, bytenr); |
| if (ret && ret != -ENOENT) |
| goto out; |
| |
| ret2 = check_delayed_ref(trans, root, path, objectid, |
| offset, bytenr); |
| } while (ret2 == -EAGAIN); |
| |
| if (ret2 && ret2 != -ENOENT) { |
| ret = ret2; |
| goto out; |
| } |
| |
| if (ret != -ENOENT || ret2 != -ENOENT) |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| #if 0 |
| int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| struct extent_buffer *buf, u32 nr_extents) |
| { |
| struct btrfs_key key; |
| struct btrfs_file_extent_item *fi; |
| u64 root_gen; |
| u32 nritems; |
| int i; |
| int level; |
| int ret = 0; |
| int shared = 0; |
| |
| if (!root->ref_cows) |
| return 0; |
| |
| if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { |
| shared = 0; |
| root_gen = root->root_key.offset; |
| } else { |
| shared = 1; |
| root_gen = trans->transid - 1; |
| } |
| |
| level = btrfs_header_level(buf); |
| nritems = btrfs_header_nritems(buf); |
| |
| if (level == 0) { |
| struct btrfs_leaf_ref *ref; |
| struct btrfs_extent_info *info; |
| |
| ref = btrfs_alloc_leaf_ref(root, nr_extents); |
| if (!ref) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ref->root_gen = root_gen; |
| ref->bytenr = buf->start; |
| ref->owner = btrfs_header_owner(buf); |
| ref->generation = btrfs_header_generation(buf); |
| ref->nritems = nr_extents; |
| info = ref->extents; |
| |
| for (i = 0; nr_extents > 0 && i < nritems; i++) { |
| u64 disk_bytenr; |
| btrfs_item_key_to_cpu(buf, &key, i); |
| if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) |
| continue; |
| fi = btrfs_item_ptr(buf, i, |
| struct btrfs_file_extent_item); |
| if (btrfs_file_extent_type(buf, fi) == |
| BTRFS_FILE_EXTENT_INLINE) |
| continue; |
| disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi); |
| if (disk_bytenr == 0) |
| continue; |
| |
| info->bytenr = disk_bytenr; |
| info->num_bytes = |
| btrfs_file_extent_disk_num_bytes(buf, fi); |
| info->objectid = key.objectid; |
| info->offset = key.offset; |
| info++; |
| } |
| |
| ret = btrfs_add_leaf_ref(root, ref, shared); |
| if (ret == -EEXIST && shared) { |
| struct btrfs_leaf_ref *old; |
| old = btrfs_lookup_leaf_ref(root, ref->bytenr); |
| BUG_ON(!old); |
| btrfs_remove_leaf_ref(root, old); |
| btrfs_free_leaf_ref(root, old); |
| ret = btrfs_add_leaf_ref(root, ref, shared); |
| } |
| WARN_ON(ret); |
| btrfs_free_leaf_ref(root, ref); |
| } |
| out: |
| return ret; |
| } |
| |
| /* when a block goes through cow, we update the reference counts of |
| * everything that block points to. The internal pointers of the block |
| * can be in just about any order, and it is likely to have clusters of |
| * things that are close together and clusters of things that are not. |
| * |
| * To help reduce the seeks that come with updating all of these reference |
| * counts, sort them by byte number before actual updates are done. |
| * |
| * struct refsort is used to match byte number to slot in the btree block. |
| * we sort based on the byte number and then use the slot to actually |
| * find the item. |
| * |
| * struct refsort is smaller than strcut btrfs_item and smaller than |
| * struct btrfs_key_ptr. Since we're currently limited to the page size |
| * for a btree block, there's no way for a kmalloc of refsorts for a |
| * single node to be bigger than a page. |
| */ |
| struct refsort { |
| u64 bytenr; |
| u32 slot; |
| }; |
| |
| /* |
| * for passing into sort() |
| */ |
| static int refsort_cmp(const void *a_void, const void *b_void) |
| { |
| const struct refsort *a = a_void; |
| const struct refsort *b = b_void; |
| |
| if (a->bytenr < b->bytenr) |
| return -1; |
| if (a->bytenr > b->bytenr) |
| return 1; |
| return 0; |
| } |
| #endif |
| |
| static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf, |
| int full_backref, int inc) |
| { |
| u64 bytenr; |
| u64 num_bytes; |
| u64 parent; |
| u64 ref_root; |
| u32 nritems; |
| struct btrfs_key key; |
| struct btrfs_file_extent_item *fi; |
| int i; |
| int level; |
| int ret = 0; |
| int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, |
| u64, u64, u64, u64, u64, u64); |
| |
| ref_root = btrfs_header_owner(buf); |
| nritems = btrfs_header_nritems(buf); |
| level = btrfs_header_level(buf); |
| |
| if (!root->ref_cows && level == 0) |
| return 0; |
| |
| if (inc) |
| process_func = btrfs_inc_extent_ref; |
| else |
| process_func = btrfs_free_extent; |
| |
| if (full_backref) |
| parent = buf->start; |
| else |
| parent = 0; |
| |
| for (i = 0; i < nritems; i++) { |
| if (level == 0) { |
| btrfs_item_key_to_cpu(buf, &key, i); |
| if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) |
| continue; |
| fi = btrfs_item_ptr(buf, i, |
| struct btrfs_file_extent_item); |
| if (btrfs_file_extent_type(buf, fi) == |
| BTRFS_FILE_EXTENT_INLINE) |
| continue; |
| bytenr = btrfs_file_extent_disk_bytenr(buf, fi); |
| if (bytenr == 0) |
| continue; |
| |
| num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); |
| key.offset -= btrfs_file_extent_offset(buf, fi); |
| ret = process_func(trans, root, bytenr, num_bytes, |
| parent, ref_root, key.objectid, |
| key.offset); |
| if (ret) |
| goto fail; |
| } else { |
| bytenr = btrfs_node_blockptr(buf, i); |
| num_bytes = btrfs_level_size(root, level - 1); |
| ret = process_func(trans, root, bytenr, num_bytes, |
| parent, ref_root, level - 1, 0); |
| if (ret) |
| goto fail; |
| } |
| } |
| return 0; |
| fail: |
| BUG(); |
| return ret; |
| } |
| |
| int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| struct extent_buffer *buf, int full_backref) |
| { |
| return __btrfs_mod_ref(trans, root, buf, full_backref, 1); |
| } |
| |
| int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| struct extent_buffer *buf, int full_backref) |
| { |
| return __btrfs_mod_ref(trans, root, buf, full_backref, 0); |
| } |
| |
| static int write_one_cache_group(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_block_group_cache *cache) |
| { |
| int ret; |
| struct btrfs_root *extent_root = root->fs_info->extent_root; |
| unsigned long bi; |
| struct extent_buffer *leaf; |
| |
| ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); |
| if (ret < 0) |
| goto fail; |
| BUG_ON(ret); |
| |
| leaf = path->nodes[0]; |
| bi = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_release_path(extent_root, path); |
| fail: |
| if (ret) |
| return ret; |
| return 0; |
| |
| } |
| |
| static struct btrfs_block_group_cache * |
| next_block_group(struct btrfs_root *root, |
| struct btrfs_block_group_cache *cache) |
| { |
| struct rb_node *node; |
| spin_lock(&root->fs_info->block_group_cache_lock); |
| node = rb_next(&cache->cache_node); |
| btrfs_put_block_group(cache); |
| if (node) { |
| cache = rb_entry(node, struct btrfs_block_group_cache, |
| cache_node); |
| btrfs_get_block_group(cache); |
| } else |
| cache = NULL; |
| spin_unlock(&root->fs_info->block_group_cache_lock); |
| return cache; |
| } |
| |
| int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_block_group_cache *cache; |
| int err = 0; |
| struct btrfs_path *path; |
| u64 last = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| while (1) { |
| if (last == 0) { |
| err = btrfs_run_delayed_refs(trans, root, |
| (unsigned long)-1); |
| BUG_ON(err); |
| } |
| |
| cache = btrfs_lookup_first_block_group(root->fs_info, last); |
| while (cache) { |
| if (cache->dirty) |
| break; |
| cache = next_block_group(root, cache); |
| } |
| if (!cache) { |
| if (last == 0) |
| break; |
| last = 0; |
| continue; |
| } |
| |
| cache->dirty = 0; |
| last = cache->key.objectid + cache->key.offset; |
| |
| err = write_one_cache_group(trans, root, path, cache); |
| BUG_ON(err); |
| btrfs_put_block_group(cache); |
| } |
| |
| btrfs_free_path(path); |
| return 0; |
| } |
| |
| int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) |
| { |
| struct btrfs_block_group_cache *block_group; |
| int readonly = 0; |
| |
| block_group = btrfs_lookup_block_group(root->fs_info, bytenr); |
| if (!block_group || block_group->ro) |
| readonly = 1; |
| if (block_group) |
| btrfs_put_block_group(block_group); |
| return readonly; |
| } |
| |
| static int update_space_info(struct btrfs_fs_info *info, u64 flags, |
| u64 total_bytes, u64 bytes_used, |
| struct btrfs_space_info **space_info) |
| { |
| struct btrfs_space_info *found; |
| int i; |
| int factor; |
| |
| if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10)) |
| factor = 2; |
| else |
| factor = 1; |
| |
| found = __find_space_info(info, flags); |
| if (found) { |
| spin_lock(&found->lock); |
| found->total_bytes += total_bytes; |
| found->bytes_used += bytes_used; |
| found->disk_used += bytes_used * factor; |
| found->full = 0; |
| spin_unlock(&found->lock); |
| *space_info = found; |
| return 0; |
| } |
| found = kzalloc(sizeof(*found), GFP_NOFS); |
| if (!found) |
| return -ENOMEM; |
| |
| for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) |
| INIT_LIST_HEAD(&found->block_groups[i]); |
| init_rwsem(&found->groups_sem); |
| init_waitqueue_head(&found->flush_wait); |
| init_waitqueue_head(&found->allocate_wait); |
| spin_lock_init(&found->lock); |
| found->flags = flags & (BTRFS_BLOCK_GROUP_DATA | |
| BTRFS_BLOCK_GROUP_SYSTEM | |
| BTRFS_BLOCK_GROUP_METADATA); |
| found->total_bytes = total_bytes; |
| found->bytes_used = bytes_used; |
| found->disk_used = bytes_used * factor; |
| found->bytes_pinned = 0; |
| found->bytes_reserved = 0; |
| found->bytes_readonly = 0; |
| found->bytes_delalloc = 0; |
| found->full = 0; |
| found->force_alloc = 0; |
| *space_info = found; |
| list_add_rcu(&found->list, &info->space_info); |
| atomic_set(&found->caching_threads, 0); |
| return 0; |
| } |
| |
| static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_DUP); |
| if (extra_flags) { |
| if (flags & BTRFS_BLOCK_GROUP_DATA) |
| fs_info->avail_data_alloc_bits |= extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| fs_info->avail_metadata_alloc_bits |= extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| fs_info->avail_system_alloc_bits |= extra_flags; |
| } |
| } |
| |
| static void set_block_group_readonly(struct btrfs_block_group_cache *cache) |
| { |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| if (!cache->ro) { |
| cache->space_info->bytes_readonly += cache->key.offset - |
| btrfs_block_group_used(&cache->item); |
| cache->ro = 1; |
| } |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| } |
| |
| u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) |
| { |
| u64 num_devices = root->fs_info->fs_devices->rw_devices; |
| |
| if (num_devices == 1) |
| flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); |
| if (num_devices < 4) |
| flags &= ~BTRFS_BLOCK_GROUP_RAID10; |
| |
| if ((flags & BTRFS_BLOCK_GROUP_DUP) && |
| (flags & (BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10))) { |
| flags &= ~BTRFS_BLOCK_GROUP_DUP; |
| } |
| |
| if ((flags & BTRFS_BLOCK_GROUP_RAID1) && |
| (flags & BTRFS_BLOCK_GROUP_RAID10)) { |
| flags &= ~BTRFS_BLOCK_GROUP_RAID1; |
| } |
| |
| if ((flags & BTRFS_BLOCK_GROUP_RAID0) && |
| ((flags & BTRFS_BLOCK_GROUP_RAID1) | |
| (flags & BTRFS_BLOCK_GROUP_RAID10) | |
| (flags & BTRFS_BLOCK_GROUP_DUP))) |
| flags &= ~BTRFS_BLOCK_GROUP_RAID0; |
| return flags; |
| } |
| |
| static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) |
| { |
| if (flags & BTRFS_BLOCK_GROUP_DATA) |
| flags |= root->fs_info->avail_data_alloc_bits & |
| root->fs_info->data_alloc_profile; |
| else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| flags |= root->fs_info->avail_system_alloc_bits & |
| root->fs_info->system_alloc_profile; |
| else if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| flags |= root->fs_info->avail_metadata_alloc_bits & |
| root->fs_info->metadata_alloc_profile; |
| return btrfs_reduce_alloc_profile(root, flags); |
| } |
| |
| static u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) |
| { |
| u64 flags; |
| |
| if (data) |
| flags = BTRFS_BLOCK_GROUP_DATA; |
| else if (root == root->fs_info->chunk_root) |
| flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| else |
| flags = BTRFS_BLOCK_GROUP_METADATA; |
| |
| return get_alloc_profile(root, flags); |
| } |
| |
| void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode) |
| { |
| u64 alloc_target; |
| |
| alloc_target = btrfs_get_alloc_profile(root, 1); |
| BTRFS_I(inode)->space_info = __find_space_info(root->fs_info, |
| alloc_target); |
| } |
| |
| static u64 calculate_bytes_needed(struct btrfs_root *root, int num_items) |
| { |
| u64 num_bytes; |
| int level; |
| |
| level = BTRFS_MAX_LEVEL - 2; |
| /* |
| * NOTE: these calculations are absolutely the worst possible case. |
| * This assumes that _every_ item we insert will require a new leaf, and |
| * that the tree has grown to its maximum level size. |
| */ |
| |
| /* |
| * for every item we insert we could insert both an extent item and a |
| * extent ref item. Then for ever item we insert, we will need to cow |
| * both the original leaf, plus the leaf to the left and right of it. |
| * |
| * Unless we are talking about the extent root, then we just want the |
| * number of items * 2, since we just need the extent item plus its ref. |
| */ |
| if (root == root->fs_info->extent_root) |
| num_bytes = num_items * 2; |
| else |
| num_bytes = (num_items + (2 * num_items)) * 3; |
| |
| /* |
| * num_bytes is total number of leaves we could need times the leaf |
| * size, and then for every leaf we could end up cow'ing 2 nodes per |
| * level, down to the leaf level. |
| */ |
| num_bytes = (num_bytes * root->leafsize) + |
| (num_bytes * (level * 2)) * root->nodesize; |
| |
| return num_bytes; |
| } |
| |
| /* |
| * Unreserve metadata space for delalloc. If we have less reserved credits than |
| * we have extents, this function does nothing. |
| */ |
| int btrfs_unreserve_metadata_for_delalloc(struct btrfs_root *root, |
| struct inode *inode, int num_items) |
| { |
| struct btrfs_fs_info *info = root->fs_info; |
| struct btrfs_space_info *meta_sinfo; |
| u64 num_bytes; |
| u64 alloc_target; |
| bool bug = false; |
| |
| /* get the space info for where the metadata will live */ |
| alloc_target = btrfs_get_alloc_profile(root, 0); |
| meta_sinfo = __find_space_info(info, alloc_target); |
| |
| num_bytes = calculate_bytes_needed(root->fs_info->extent_root, |
| num_items); |
| |
| spin_lock(&meta_sinfo->lock); |
| spin_lock(&BTRFS_I(inode)->accounting_lock); |
| if (BTRFS_I(inode)->reserved_extents <= |
| BTRFS_I(inode)->outstanding_extents) { |
| spin_unlock(&BTRFS_I(inode)->accounting_lock); |
| spin_unlock(&meta_sinfo->lock); |
| return 0; |
| } |
| spin_unlock(&BTRFS_I(inode)->accounting_lock); |
| |
| BTRFS_I(inode)->reserved_extents -= num_items; |
| BUG_ON(BTRFS_I(inode)->reserved_extents < 0); |
| |
| if (meta_sinfo->bytes_delalloc < num_bytes) { |
| bug = true; |
| meta_sinfo->bytes_delalloc = 0; |
| } else { |
| meta_sinfo->bytes_delalloc -= num_bytes; |
| } |
| spin_unlock(&meta_sinfo->lock); |
| |
| BUG_ON(bug); |
| |
| return 0; |
| } |
| |
| static void check_force_delalloc(struct btrfs_space_info *meta_sinfo) |
| { |
| u64 thresh; |
| |
| thresh = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved + |
| meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly + |
| meta_sinfo->bytes_super + meta_sinfo->bytes_root + |
| meta_sinfo->bytes_may_use; |
| |
| thresh = meta_sinfo->total_bytes - thresh; |
| thresh *= 80; |
| do_div(thresh, 100); |
| if (thresh <= meta_sinfo->bytes_delalloc) |
| meta_sinfo->force_delalloc = 1; |
| else |
| meta_sinfo->force_delalloc = 0; |
| } |
| |
| struct async_flush { |
| struct btrfs_root *root; |
| struct btrfs_space_info *info; |
| struct btrfs_work work; |
| }; |
| |
| static noinline void flush_delalloc_async(struct btrfs_work *work) |
| { |
| struct async_flush *async; |
| struct btrfs_root *root; |
| struct btrfs_space_info *info; |
| |
| async = container_of(work, struct async_flush, work); |
| root = async->root; |
| info = async->info; |
| |
| btrfs_start_delalloc_inodes(root, 0); |
| wake_up(&info->flush_wait); |
| btrfs_wait_ordered_extents(root, 0, 0); |
| |
| spin_lock(&info->lock); |
| info->flushing = 0; |
| spin_unlock(&info->lock); |
| wake_up(&info->flush_wait); |
| |
| kfree(async); |
| } |
| |
| static void wait_on_flush(struct btrfs_space_info *info) |
| { |
| DEFINE_WAIT(wait); |
| u64 used; |
| |
| while (1) { |
| prepare_to_wait(&info->flush_wait, &wait, |
| TASK_UNINTERRUPTIBLE); |
| spin_lock(&info->lock); |
| if (!info->flushing) { |
| spin_unlock(&info->lock); |
| break; |
| } |
| |
| used = info->bytes_used + info->bytes_reserved + |
| info->bytes_pinned + info->bytes_readonly + |
| info->bytes_super + info->bytes_root + |
| info->bytes_may_use + info->bytes_delalloc; |
| if (used < info->total_bytes) { |
| spin_unlock(&info->lock); |
| break; |
| } |
| spin_unlock(&info->lock); |
| schedule(); |
| } |
| finish_wait(&info->flush_wait, &wait); |
| } |
| |
| static void flush_delalloc(struct btrfs_root *root, |
| struct btrfs_space_info *info) |
| { |
| struct async_flush *async; |
| bool wait = false; |
| |
| spin_lock(&info->lock); |
| |
| if (!info->flushing) |
| info->flushing = 1; |
| else |
| wait = true; |
| |
| spin_unlock(&info->lock); |
| |
| if (wait) { |
| wait_on_flush(info); |
| return; |
| } |
| |
| async = kzalloc(sizeof(*async), GFP_NOFS); |
| if (!async) |
| goto flush; |
| |
| async->root = root; |
| async->info = info; |
| async->work.func = flush_delalloc_async; |
| |
| btrfs_queue_worker(&root->fs_info->enospc_workers, |
| &async->work); |
| wait_on_flush(info); |
| return; |
| |
| flush: |
| btrfs_start_delalloc_inodes(root, 0); |
| btrfs_wait_ordered_extents(root, 0, 0); |
| |
| spin_lock(&info->lock); |
| info->flushing = 0; |
| spin_unlock(&info->lock); |
| wake_up(&info->flush_wait); |
| } |
| |
| static int maybe_allocate_chunk(struct btrfs_root *root, |
| struct btrfs_space_info *info) |
| { |
| struct btrfs_super_block *disk_super = &root->fs_info->super_copy; |
| struct btrfs_trans_handle *trans; |
| bool wait = false; |
| int ret = 0; |
| u64 min_metadata; |
| u64 free_space; |
| |
| free_space = btrfs_super_total_bytes(disk_super); |
| /* |
| * we allow the metadata to grow to a max of either 10gb or 5% of the |
| * space in the volume. |
| */ |
| min_metadata = min((u64)10 * 1024 * 1024 * 1024, |
| div64_u64(free_space * 5, 100)); |
| if (info->total_bytes >= min_metadata) { |
| spin_unlock(&info->lock); |
| return 0; |
| } |
| |
| if (info->full) { |
| spin_unlock(&info->lock); |
| return 0; |
| } |
| |
| if (!info->allocating_chunk) { |
| info->force_alloc = 1; |
| info->allocating_chunk = 1; |
| } else { |
| wait = true; |
| } |
| |
| spin_unlock(&info->lock); |
| |
| if (wait) { |
| wait_event(info->allocate_wait, |
| !info->allocating_chunk); |
| return 1; |
| } |
| |
| trans = btrfs_start_transaction(root, 1); |
| if (!trans) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ret = do_chunk_alloc(trans, root->fs_info->extent_root, |
| 4096 + 2 * 1024 * 1024, |
| info->flags, 0); |
| btrfs_end_transaction(trans, root); |
| if (ret) |
| goto out; |
| out: |
| spin_lock(&info->lock); |
| info->allocating_chunk = 0; |
| spin_unlock(&info->lock); |
| wake_up(&info->allocate_wait); |
| |
| if (ret) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * Reserve metadata space for delalloc. |
| */ |
| int btrfs_reserve_metadata_for_delalloc(struct btrfs_root *root, |
| struct inode *inode, int num_items) |
| { |
| struct btrfs_fs_info *info = root->fs_info; |
| struct btrfs_space_info *meta_sinfo; |
| u64 num_bytes; |
| u64 used; |
| u64 alloc_target; |
| int flushed = 0; |
| int force_delalloc; |
| |
| /* get the space info for where the metadata will live */ |
| alloc_target = btrfs_get_alloc_profile(root, 0); |
| meta_sinfo = __find_space_info(info, alloc_target); |
| |
| num_bytes = calculate_bytes_needed(root->fs_info->extent_root, |
| num_items); |
| again: |
| spin_lock(&meta_sinfo->lock); |
| |
| force_delalloc = meta_sinfo->force_delalloc; |
| |
| if (unlikely(!meta_sinfo->bytes_root)) |
| meta_sinfo->bytes_root = calculate_bytes_needed(root, 6); |
| |
| if (!flushed) |
| meta_sinfo->bytes_delalloc += num_bytes; |
| |
| used = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved + |
| meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly + |
| meta_sinfo->bytes_super + meta_sinfo->bytes_root + |
| meta_sinfo->bytes_may_use + meta_sinfo->bytes_delalloc; |
| |
| if (used > meta_sinfo->total_bytes) { |
| flushed++; |
| |
| if (flushed == 1) { |
| if (maybe_allocate_chunk(root, meta_sinfo)) |
| goto again; |
| flushed++; |
| } else { |
| spin_unlock(&meta_sinfo->lock); |
| } |
| |
| if (flushed == 2) { |
| filemap_flush(inode->i_mapping); |
| goto again; |
| } else if (flushed == 3) { |
| flush_delalloc(root, meta_sinfo); |
| goto again; |
| } |
| spin_lock(&meta_sinfo->lock); |
| meta_sinfo->bytes_delalloc -= num_bytes; |
| spin_unlock(&meta_sinfo->lock); |
| printk(KERN_ERR "enospc, has %d, reserved %d\n", |
| BTRFS_I(inode)->outstanding_extents, |
| BTRFS_I(inode)->reserved_extents); |
| dump_space_info(meta_sinfo, 0, 0); |
| return -ENOSPC; |
| } |
| |
| BTRFS_I(inode)->reserved_extents += num_items; |
| check_force_delalloc(meta_sinfo); |
| spin_unlock(&meta_sinfo->lock); |
| |
| if (!flushed && force_delalloc) |
| filemap_flush(inode->i_mapping); |
| |
| return 0; |
| } |
| |
| /* |
| * unreserve num_items number of items worth of metadata space. This needs to |
| * be paired with btrfs_reserve_metadata_space. |
| * |
| * NOTE: if you have the option, run this _AFTER_ you do a |
| * btrfs_end_transaction, since btrfs_end_transaction will run delayed ref |
| * oprations which will result in more used metadata, so we want to make sure we |
| * can do that without issue. |
| */ |
| int btrfs_unreserve_metadata_space(struct btrfs_root *root, int num_items) |
| { |
| struct btrfs_fs_info *info = root->fs_info; |
| struct btrfs_space_info *meta_sinfo; |
| u64 num_bytes; |
| u64 alloc_target; |
| bool bug = false; |
| |
| /* get the space info for where the metadata will live */ |
| alloc_target = btrfs_get_alloc_profile(root, 0); |
| meta_sinfo = __find_space_info(info, alloc_target); |
| |
| num_bytes = calculate_bytes_needed(root, num_items); |
| |
| spin_lock(&meta_sinfo->lock); |
| if (meta_sinfo->bytes_may_use < num_bytes) { |
| bug = true; |
| meta_sinfo->bytes_may_use = 0; |
| } else { |
| meta_sinfo->bytes_may_use -= num_bytes; |
| } |
| spin_unlock(&meta_sinfo->lock); |
| |
| BUG_ON(bug); |
| |
| return 0; |
| } |
| |
| /* |
| * Reserve some metadata space for use. We'll calculate the worste case number |
| * of bytes that would be needed to modify num_items number of items. If we |
| * have space, fantastic, if not, you get -ENOSPC. Please call |
| * btrfs_unreserve_metadata_space when you are done for the _SAME_ number of |
| * items you reserved, since whatever metadata you needed should have already |
| * been allocated. |
| * |
| * This will commit the transaction to make more space if we don't have enough |
| * metadata space. THe only time we don't do this is if we're reserving space |
| * inside of a transaction, then we will just return -ENOSPC and it is the |
| * callers responsibility to handle it properly. |
| */ |
| int btrfs_reserve_metadata_space(struct btrfs_root *root, int num_items) |
| { |
| struct btrfs_fs_info *info = root->fs_info; |
| struct btrfs_space_info *meta_sinfo; |
| u64 num_bytes; |
| u64 used; |
| u64 alloc_target; |
| int retries = 0; |
| |
| /* get the space info for where the metadata will live */ |
| alloc_target = btrfs_get_alloc_profile(root, 0); |
| meta_sinfo = __find_space_info(info, alloc_target); |
| |
| num_bytes = calculate_bytes_needed(root, num_items); |
| again: |
| spin_lock(&meta_sinfo->lock); |
| |
| if (unlikely(!meta_sinfo->bytes_root)) |
| meta_sinfo->bytes_root = calculate_bytes_needed(root, 6); |
| |
| if (!retries) |
| meta_sinfo->bytes_may_use += num_bytes; |
| |
| used = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved + |
| meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly + |
| meta_sinfo->bytes_super + meta_sinfo->bytes_root + |
| meta_sinfo->bytes_may_use + meta_sinfo->bytes_delalloc; |
| |
| if (used > meta_sinfo->total_bytes) { |
| retries++; |
| if (retries == 1) { |
| if (maybe_allocate_chunk(root, meta_sinfo)) |
| goto again; |
| retries++; |
| } else { |
| spin_unlock(&meta_sinfo->lock); |
| } |
| |
| if (retries == 2) { |
| flush_delalloc(root, meta_sinfo); |
| goto again; |
| } |
| spin_lock(&meta_sinfo->lock); |
| meta_sinfo->bytes_may_use -= num_bytes; |
| spin_unlock(&meta_sinfo->lock); |
| |
| dump_space_info(meta_sinfo, 0, 0); |
| return -ENOSPC; |
| } |
| |
| check_force_delalloc(meta_sinfo); |
| spin_unlock(&meta_sinfo->lock); |
| |
| return 0; |
| } |
| |
| /* |
| * This will check the space that the inode allocates from to make sure we have |
| * enough space for bytes. |
| */ |
| int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode, |
| u64 bytes) |
| { |
| struct btrfs_space_info *data_sinfo; |
| u64 used; |
| int ret = 0, committed = 0, flushed = 0; |
| |
| /* make sure bytes are sectorsize aligned */ |
| bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); |
| |
| data_sinfo = BTRFS_I(inode)->space_info; |
| if (!data_sinfo) |
| goto alloc; |
| |
| again: |
| /* make sure we have enough space to handle the data first */ |
| spin_lock(&data_sinfo->lock); |
| used = data_sinfo->bytes_used + data_sinfo->bytes_delalloc + |
| data_sinfo->bytes_reserved + data_sinfo->bytes_pinned + |
| data_sinfo->bytes_readonly + data_sinfo->bytes_may_use + |
| data_sinfo->bytes_super; |
| |
| if (used + bytes > data_sinfo->total_bytes) { |
| struct btrfs_trans_handle *trans; |
| |
| if (!flushed) { |
| spin_unlock(&data_sinfo->lock); |
| flush_delalloc(root, data_sinfo); |
| flushed = 1; |
| goto again; |
| } |
| |
| /* |
| * if we don't have enough free bytes in this space then we need |
| * to alloc a new chunk. |
| */ |
| if (!data_sinfo->full) { |
| u64 alloc_target; |
| |
| data_sinfo->force_alloc = 1; |
| spin_unlock(&data_sinfo->lock); |
| alloc: |
| alloc_target = btrfs_get_alloc_profile(root, 1); |
| trans = btrfs_start_transaction(root, 1); |
| if (!trans) |
| return -ENOMEM; |
| |
| ret = do_chunk_alloc(trans, root->fs_info->extent_root, |
| bytes + 2 * 1024 * 1024, |
| alloc_target, 0); |
| btrfs_end_transaction(trans, root); |
| if (ret) |
| return ret; |
| |
| if (!data_sinfo) { |
| btrfs_set_inode_space_info(root, inode); |
| data_sinfo = BTRFS_I(inode)->space_info; |
| } |
| goto again; |
| } |
| spin_unlock(&data_sinfo->lock); |
| |
| /* commit the current transaction and try again */ |
| if (!committed && !root->fs_info->open_ioctl_trans) { |
| committed = 1; |
| trans = btrfs_join_transaction(root, 1); |
| if (!trans) |
| return -ENOMEM; |
| ret = btrfs_commit_transaction(trans, root); |
| if (ret) |
| return ret; |
| goto again; |
| } |
| |
| printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes" |
| ", %llu bytes_used, %llu bytes_reserved, " |
| "%llu bytes_pinned, %llu bytes_readonly, %llu may use " |
| "%llu total\n", (unsigned long long)bytes, |
| (unsigned long long)data_sinfo->bytes_delalloc, |
| (unsigned long long)data_sinfo->bytes_used, |
| (unsigned long long)data_sinfo->bytes_reserved, |
| (unsigned long long)data_sinfo->bytes_pinned, |
| (unsigned long long)data_sinfo->bytes_readonly, |
| (unsigned long long)data_sinfo->bytes_may_use, |
| (unsigned long long)data_sinfo->total_bytes); |
| return -ENOSPC; |
| } |
| data_sinfo->bytes_may_use += bytes; |
| BTRFS_I(inode)->reserved_bytes += bytes; |
| spin_unlock(&data_sinfo->lock); |
| |
| return 0; |
| } |
| |
| /* |
| * if there was an error for whatever reason after calling |
| * btrfs_check_data_free_space, call this so we can cleanup the counters. |
| */ |
| void btrfs_free_reserved_data_space(struct btrfs_root *root, |
| struct inode *inode, u64 bytes) |
| { |
| struct btrfs_space_info *data_sinfo; |
| |
| /* make sure bytes are sectorsize aligned */ |
| bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); |
| |
| data_sinfo = BTRFS_I(inode)->space_info; |
| spin_lock(&data_sinfo->lock); |
| data_sinfo->bytes_may_use -= bytes; |
| BTRFS_I(inode)->reserved_bytes -= bytes; |
| spin_unlock(&data_sinfo->lock); |
| } |
| |
| /* called when we are adding a delalloc extent to the inode's io_tree */ |
| void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode, |
| u64 bytes) |
| { |
| struct btrfs_space_info *data_sinfo; |
| |
| /* get the space info for where this inode will be storing its data */ |
| data_sinfo = BTRFS_I(inode)->space_info; |
| |
| /* make sure we have enough space to handle the data first */ |
| spin_lock(&data_sinfo->lock); |
| data_sinfo->bytes_delalloc += bytes; |
| |
| /* |
| * we are adding a delalloc extent without calling |
| * btrfs_check_data_free_space first. This happens on a weird |
| * writepage condition, but shouldn't hurt our accounting |
| */ |
| if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) { |
| data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes; |
| BTRFS_I(inode)->reserved_bytes = 0; |
| } else { |
| data_sinfo->bytes_may_use -= bytes; |
| BTRFS_I(inode)->reserved_bytes -= bytes; |
| } |
| |
| spin_unlock(&data_sinfo->lock); |
| } |
| |
| /* called when we are clearing an delalloc extent from the inode's io_tree */ |
| void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode, |
| u64 bytes) |
| { |
| struct btrfs_space_info *info; |
| |
| info = BTRFS_I(inode)->space_info; |
| |
| spin_lock(&info->lock); |
| info->bytes_delalloc -= bytes; |
| spin_unlock(&info->lock); |
| } |
| |
| static void force_metadata_allocation(struct btrfs_fs_info *info) |
| { |
| struct list_head *head = &info->space_info; |
| struct btrfs_space_info *found; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(found, head, list) { |
| if (found->flags & BTRFS_BLOCK_GROUP_METADATA) |
| found->force_alloc = 1; |
| } |
| rcu_read_unlock(); |
| } |
| |
| static int do_chunk_alloc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *extent_root, u64 alloc_bytes, |
| u64 flags, int force) |
| { |
| struct btrfs_space_info *space_info; |
| struct btrfs_fs_info *fs_info = extent_root->fs_info; |
| u64 thresh; |
| int ret = 0; |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| |
| flags = btrfs_reduce_alloc_profile(extent_root, flags); |
| |
| space_info = __find_space_info(extent_root->fs_info, flags); |
| if (!space_info) { |
| ret = update_space_info(extent_root->fs_info, flags, |
| 0, 0, &space_info); |
| BUG_ON(ret); |
| } |
| BUG_ON(!space_info); |
| |
| spin_lock(&space_info->lock); |
| if (space_info->force_alloc) |
| force = 1; |
| if (space_info->full) { |
| spin_unlock(&space_info->lock); |
| goto out; |
| } |
| |
| thresh = space_info->total_bytes - space_info->bytes_readonly; |
| thresh = div_factor(thresh, 8); |
| if (!force && |
| (space_info->bytes_used + space_info->bytes_pinned + |
| space_info->bytes_reserved + alloc_bytes) < thresh) { |
| spin_unlock(&space_info->lock); |
| goto out; |
| } |
| spin_unlock(&space_info->lock); |
| |
| /* |
| * if we're doing a data chunk, go ahead and make sure that |
| * we keep a reasonable number of metadata chunks allocated in the |
| * FS as well. |
| */ |
| if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { |
| fs_info->data_chunk_allocations++; |
| if (!(fs_info->data_chunk_allocations % |
| fs_info->metadata_ratio)) |
| force_metadata_allocation(fs_info); |
| } |
| |
| ret = btrfs_alloc_chunk(trans, extent_root, flags); |
| spin_lock(&space_info->lock); |
| if (ret) |
| space_info->full = 1; |
| space_info->force_alloc = 0; |
| spin_unlock(&space_info->lock); |
| out: |
| mutex_unlock(&extent_root->fs_info->chunk_mutex); |
| return ret; |
| } |
| |
| static int update_block_group(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, int alloc, |
| int mark_free) |
| { |
| struct btrfs_block_group_cache *cache; |
| struct btrfs_fs_info *info = root->fs_info; |
| int factor; |
| u64 total = num_bytes; |
| u64 old_val; |
| u64 byte_in_group; |
| |
| /* block accounting for super block */ |
| spin_lock(&info->delalloc_lock); |
| old_val = btrfs_super_bytes_used(&info->super_copy); |
| if (alloc) |
| old_val += num_bytes; |
| else |
| old_val -= num_bytes; |
| btrfs_set_super_bytes_used(&info->super_copy, old_val); |
| spin_unlock(&info->delalloc_lock); |
| |
| while (total) { |
| cache = btrfs_lookup_block_group(info, bytenr); |
| if (!cache) |
| return -1; |
| if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | |
| BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10)) |
| factor = 2; |
| else |
| factor = 1; |
| byte_in_group = bytenr - cache->key.objectid; |
| WARN_ON(byte_in_group > cache->key.offset); |
| |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| cache->dirty = 1; |
| old_val = btrfs_block_group_used(&cache->item); |
| num_bytes = min(total, cache->key.offset - byte_in_group); |
| if (alloc) { |
| old_val += num_bytes; |
| btrfs_set_block_group_used(&cache->item, old_val); |
| cache->reserved -= num_bytes; |
| cache->space_info->bytes_reserved -= num_bytes; |
| cache->space_info->bytes_used += num_bytes; |
| cache->space_info->disk_used += num_bytes * factor; |
| if (cache->ro) |
| cache->space_info->bytes_readonly -= num_bytes; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| } else { |
| old_val -= num_bytes; |
| btrfs_set_block_group_used(&cache->item, old_val); |
| cache->space_info->bytes_used -= num_bytes; |
| cache->space_info->disk_used -= num_bytes * factor; |
| if (cache->ro) |
| cache->space_info->bytes_readonly += num_bytes; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| if (mark_free) { |
| int ret; |
| |
| ret = btrfs_discard_extent(root, bytenr, |
| num_bytes); |
| WARN_ON(ret); |
| |
| ret = btrfs_add_free_space(cache, bytenr, |
| num_bytes); |
| WARN_ON(ret); |
| } |
| } |
| btrfs_put_block_group(cache); |
| total -= num_bytes; |
| bytenr += num_bytes; |
| } |
| return 0; |
| } |
| |
| static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) |
| { |
| struct btrfs_block_group_cache *cache; |
| u64 bytenr; |
| |
| cache = btrfs_lookup_first_block_group(root->fs_info, search_start); |
| if (!cache) |
| return 0; |
| |
| bytenr = cache->key.objectid; |
| btrfs_put_block_group(cache); |
| |
| return bytenr; |
| } |
| |
| /* |
| * this function must be called within transaction |
| */ |
| int btrfs_pin_extent(struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, int reserved) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_group_cache *cache; |
| |
| cache = btrfs_lookup_block_group(fs_info, bytenr); |
| BUG_ON(!cache); |
| |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| cache->pinned += num_bytes; |
| cache->space_info->bytes_pinned += num_bytes; |
| if (reserved) { |
| cache->reserved -= num_bytes; |
| cache->space_info->bytes_reserved -= num_bytes; |
| } |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| |
| btrfs_put_block_group(cache); |
| |
| set_extent_dirty(fs_info->pinned_extents, |
| bytenr, bytenr + num_bytes - 1, GFP_NOFS); |
| return 0; |
| } |
| |
| static int update_reserved_extents(struct btrfs_block_group_cache *cache, |
| u64 num_bytes, int reserve) |
| { |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| if (reserve) { |
| cache->reserved += num_bytes; |
| cache->space_info->bytes_reserved += num_bytes; |
| } else { |
| cache->reserved -= num_bytes; |
| cache->space_info->bytes_reserved -= num_bytes; |
| } |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| return 0; |
| } |
| |
| int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_caching_control *next; |
| struct btrfs_caching_control *caching_ctl; |
| struct btrfs_block_group_cache *cache; |
| |
| down_write(&fs_info->extent_commit_sem); |
| |
| list_for_each_entry_safe(caching_ctl, next, |
| &fs_info->caching_block_groups, list) { |
| cache = caching_ctl->block_group; |
| if (block_group_cache_done(cache)) { |
| cache->last_byte_to_unpin = (u64)-1; |
| list_del_init(&caching_ctl->list); |
| put_caching_control(caching_ctl); |
| } else { |
| cache->last_byte_to_unpin = caching_ctl->progress; |
| } |
| } |
| |
| if (fs_info->pinned_extents == &fs_info->freed_extents[0]) |
| fs_info->pinned_extents = &fs_info->freed_extents[1]; |
| else |
| fs_info->pinned_extents = &fs_info->freed_extents[0]; |
| |
| up_write(&fs_info->extent_commit_sem); |
| return 0; |
| } |
| |
| static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_group_cache *cache = NULL; |
| u64 len; |
| |
| while (start <= end) { |
| if (!cache || |
| start >= cache->key.objectid + cache->key.offset) { |
| if (cache) |
| btrfs_put_block_group(cache); |
| cache = btrfs_lookup_block_group(fs_info, start); |
| BUG_ON(!cache); |
| } |
| |
| len = cache->key.objectid + cache->key.offset - start; |
| len = min(len, end + 1 - start); |
| |
| if (start < cache->last_byte_to_unpin) { |
| len = min(len, cache->last_byte_to_unpin - start); |
| btrfs_add_free_space(cache, start, len); |
| } |
| |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| cache->pinned -= len; |
| cache->space_info->bytes_pinned -= len; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| |
| start += len; |
| } |
| |
| if (cache) |
| btrfs_put_block_group(cache); |
| return 0; |
| } |
| |
| int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_io_tree *unpin; |
| u64 start; |
| u64 end; |
| int ret; |
| |
| if (fs_info->pinned_extents == &fs_info->freed_extents[0]) |
| unpin = &fs_info->freed_extents[1]; |
| else |
| unpin = &fs_info->freed_extents[0]; |
| |
| while (1) { |
| ret = find_first_extent_bit(unpin, 0, &start, &end, |
| EXTENT_DIRTY); |
| if (ret) |
| break; |
| |
| ret = btrfs_discard_extent(root, start, end + 1 - start); |
| |
| clear_extent_dirty(unpin, start, end, GFP_NOFS); |
| unpin_extent_range(root, start, end); |
| cond_resched(); |
| } |
| |
| return ret; |
| } |
| |
| static int pin_down_bytes(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 bytenr, u64 num_bytes, |
| int is_data, int reserved, |
| struct extent_buffer **must_clean) |
| { |
| int err = 0; |
| struct extent_buffer *buf; |
| |
| if (is_data) |
| goto pinit; |
| |
| /* |
| * discard is sloooow, and so triggering discards on |
| * individual btree blocks isn't a good plan. Just |
| * pin everything in discard mode. |
| */ |
| if (btrfs_test_opt(root, DISCARD)) |
| goto pinit; |
| |
| buf = btrfs_find_tree_block(root, bytenr, num_bytes); |
| if (!buf) |
| goto pinit; |
| |
| /* we can reuse a block if it hasn't been written |
| * and it is from this transaction. We can't |
| * reuse anything from the tree log root because |
| * it has tiny sub-transactions. |
| */ |
| if (btrfs_buffer_uptodate(buf, 0) && |
| btrfs_try_tree_lock(buf)) { |
| u64 header_owner = btrfs_header_owner(buf); |
| u64 header_transid = btrfs_header_generation(buf); |
| if (header_owner != BTRFS_TREE_LOG_OBJECTID && |
| header_transid == trans->transid && |
| !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { |
| *must_clean = buf; |
| return 1; |
| } |
| btrfs_tree_unlock(buf); |
| } |
| free_extent_buffer(buf); |
| pinit: |
| if (path) |
| btrfs_set_path_blocking(path); |
| /* unlocks the pinned mutex */ |
| btrfs_pin_extent(root, bytenr, num_bytes, reserved); |
| |
| BUG_ON(err < 0); |
| return 0; |
| } |
| |
| static int __btrfs_free_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner_objectid, |
| u64 owner_offset, int refs_to_drop, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct btrfs_fs_info *info = root->fs_info; |
| struct btrfs_root *extent_root = info->extent_root; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_inline_ref *iref; |
| int ret; |
| int is_data; |
| int extent_slot = 0; |
| int found_extent = 0; |
| int num_to_del = 1; |
| u32 item_size; |
| u64 refs; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = 1; |
| path->leave_spinning = 1; |
| |
| is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; |
| BUG_ON(!is_data && refs_to_drop != 1); |
| |
| ret = lookup_extent_backref(trans, extent_root, path, &iref, |
| bytenr, num_bytes, parent, |
| root_objectid, owner_objectid, |
| owner_offset); |
| if (ret == 0) { |
| extent_slot = path->slots[0]; |
| while (extent_slot >= 0) { |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| extent_slot); |
| if (key.objectid != bytenr) |
| break; |
| if (key.type == BTRFS_EXTENT_ITEM_KEY && |
| key.offset == num_bytes) { |
| found_extent = 1; |
| break; |
| } |
| if (path->slots[0] - extent_slot > 5) |
| break; |
| extent_slot--; |
| } |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); |
| if (found_extent && item_size < sizeof(*ei)) |
| found_extent = 0; |
| #endif |
| if (!found_extent) { |
| BUG_ON(iref); |
| ret = remove_extent_backref(trans, extent_root, path, |
| NULL, refs_to_drop, |
| is_data); |
| BUG_ON(ret); |
| btrfs_release_path(extent_root, path); |
| path->leave_spinning = 1; |
| |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| |
| ret = btrfs_search_slot(trans, extent_root, |
| &key, path, -1, 1); |
| if (ret) { |
| printk(KERN_ERR "umm, got %d back from search" |
| ", was looking for %llu\n", ret, |
| (unsigned long long)bytenr); |
| btrfs_print_leaf(extent_root, path->nodes[0]); |
| } |
| BUG_ON(ret); |
| extent_slot = path->slots[0]; |
| } |
| } else { |
| btrfs_print_leaf(extent_root, path->nodes[0]); |
| WARN_ON(1); |
| printk(KERN_ERR "btrfs unable to find ref byte nr %llu " |
| "parent %llu root %llu owner %llu offset %llu\n", |
| (unsigned long long)bytenr, |
| (unsigned long long)parent, |
| (unsigned long long)root_objectid, |
| (unsigned long long)owner_objectid, |
| (unsigned long long)owner_offset); |
| } |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, extent_slot); |
| #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 |
| if (item_size < sizeof(*ei)) { |
| BUG_ON(found_extent || extent_slot != path->slots[0]); |
| ret = convert_extent_item_v0(trans, extent_root, path, |
| owner_objectid, 0); |
| BUG_ON(ret < 0); |
| |
| btrfs_release_path(extent_root, path); |
| path->leave_spinning = 1; |
| |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| |
| ret = btrfs_search_slot(trans, extent_root, &key, path, |
| -1, 1); |
| if (ret) { |
| printk(KERN_ERR "umm, got %d back from search" |
| ", was looking for %llu\n", ret, |
| (unsigned long long)bytenr); |
| btrfs_print_leaf(extent_root, path->nodes[0]); |
| } |
| BUG_ON(ret); |
| extent_slot = path->slots[0]; |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, extent_slot); |
| } |
| #endif |
| BUG_ON(item_size < sizeof(*ei)); |
| ei = btrfs_item_ptr(leaf, extent_slot, |
| struct btrfs_extent_item); |
| if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { |
| struct btrfs_tree_block_info *bi; |
| BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); |
| bi = (struct btrfs_tree_block_info *)(ei + 1); |
| WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); |
| } |
| |
| refs = btrfs_extent_refs(leaf, ei); |
| BUG_ON(refs < refs_to_drop); |
| refs -= refs_to_drop; |
| |
| if (refs > 0) { |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| /* |
| * In the case of inline back ref, reference count will |
| * be updated by remove_extent_backref |
| */ |
| if (iref) { |
| BUG_ON(!found_extent); |
| } else { |
| btrfs_set_extent_refs(leaf, ei, refs); |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| if (found_extent) { |
| ret = remove_extent_backref(trans, extent_root, path, |
| iref, refs_to_drop, |
| is_data); |
| BUG_ON(ret); |
| } |
| } else { |
| int mark_free = 0; |
| struct extent_buffer *must_clean = NULL; |
| |
| if (found_extent) { |
| BUG_ON(is_data && refs_to_drop != |
| extent_data_ref_count(root, path, iref)); |
| if (iref) { |
| BUG_ON(path->slots[0] != extent_slot); |
| } else { |
| BUG_ON(path->slots[0] != extent_slot + 1); |
| path->slots[0] = extent_slot; |
| num_to_del = 2; |
| } |
| } |
| |
| ret = pin_down_bytes(trans, root, path, bytenr, |
| num_bytes, is_data, 0, &must_clean); |
| if (ret > 0) |
| mark_free = 1; |
| BUG_ON(ret < 0); |
| /* |
| * it is going to be very rare for someone to be waiting |
| * on the block we're freeing. del_items might need to |
| * schedule, so rather than get fancy, just force it |
| * to blocking here |
| */ |
| if (must_clean) |
| btrfs_set_lock_blocking(must_clean); |
| |
| ret = btrfs_del_items(trans, extent_root, path, path->slots[0], |
| num_to_del); |
| BUG_ON(ret); |
| btrfs_release_path(extent_root, path); |
| |
| if (must_clean) { |
| clean_tree_block(NULL, root, must_clean); |
| btrfs_tree_unlock(must_clean); |
| free_extent_buffer(must_clean); |
| } |
| |
| if (is_data) { |
| ret = btrfs_del_csums(trans, root, bytenr, num_bytes); |
| BUG_ON(ret); |
| } else { |
| invalidate_mapping_pages(info->btree_inode->i_mapping, |
| bytenr >> PAGE_CACHE_SHIFT, |
| (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT); |
| } |
| |
| ret = update_block_group(trans, root, bytenr, num_bytes, 0, |
| mark_free); |
| BUG_ON(ret); |
| } |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * when we free an extent, it is possible (and likely) that we free the last |
| * delayed ref for that extent as well. This searches the delayed ref tree for |
| * a given extent, and if there are no other delayed refs to be processed, it |
| * removes it from the tree. |
| */ |
| static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 bytenr) |
| { |
| struct btrfs_delayed_ref_head *head; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_delayed_ref_node *ref; |
| struct rb_node *node; |
| int ret; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(trans, bytenr); |
| if (!head) |
| goto out; |
| |
| node = rb_prev(&head->node.rb_node); |
| if (!node) |
| goto out; |
| |
| ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); |
| |
| /* there are still entries for this ref, we can't drop it */ |
| if (ref->bytenr == bytenr) |
| goto out; |
| |
| if (head->extent_op) { |
| if (!head->must_insert_reserved) |
| goto out; |
| kfree(head->extent_op); |
| head->extent_op = NULL; |
| } |
| |
| /* |
| * waiting for the lock here would deadlock. If someone else has it |
| * locked they are already in the process of dropping it anyway |
| */ |
| if (!mutex_trylock(&head->mutex)) |
| goto out; |
| |
| /* |
| * at this point we have a head with no other entries. Go |
| * ahead and process it. |
| */ |
| head->node.in_tree = 0; |
| rb_erase(&head->node.rb_node, &delayed_refs->root); |
| |
| delayed_refs->num_entries--; |
| |
| /* |
| * we don't take a ref on the node because we're removing it from the |
| * tree, so we just steal the ref the tree was holding. |
| */ |
| delayed_refs->num_heads--; |
| if (list_empty(&head->cluster)) |
| delayed_refs->num_heads_ready--; |
| |
| list_del_init(&head->cluster); |
| spin_unlock(&delayed_refs->lock); |
| |
| ret = run_one_delayed_ref(trans, root->fs_info->tree_root, |
| &head->node, head->extent_op, |
| head->must_insert_reserved); |
| BUG_ON(ret); |
| btrfs_put_delayed_ref(&head->node); |
| return 0; |
| out: |
| spin_unlock(&delayed_refs->lock); |
| return 0; |
| } |
| |
| int btrfs_free_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner, u64 offset) |
| { |
| int ret; |
| |
| /* |
| * tree log blocks never actually go into the extent allocation |
| * tree, just update pinning info and exit early. |
| */ |
| if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { |
| WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); |
| /* unlocks the pinned mutex */ |
| btrfs_pin_extent(root, bytenr, num_bytes, 1); |
| ret = 0; |
| } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, |
| parent, root_objectid, (int)owner, |
| BTRFS_DROP_DELAYED_REF, NULL); |
| BUG_ON(ret); |
| ret = check_ref_cleanup(trans, root, bytenr); |
| BUG_ON(ret); |
| } else { |
| ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, |
| parent, root_objectid, owner, |
| offset, BTRFS_DROP_DELAYED_REF, NULL); |
| BUG_ON(ret); |
| } |
| return ret; |
| } |
| |
| int btrfs_free_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u32 blocksize, |
| u64 parent, u64 root_objectid, int level) |
| { |
| u64 used; |
| spin_lock(&root->node_lock); |
| used = btrfs_root_used(&root->root_item) - blocksize; |
| btrfs_set_root_used(&root->root_item, used); |
| spin_unlock(&root->node_lock); |
| |
| return btrfs_free_extent(trans, root, bytenr, blocksize, |
| parent, root_objectid, level, 0); |
| } |
| |
| static u64 stripe_align(struct btrfs_root *root, u64 val) |
| { |
| u64 mask = ((u64)root->stripesize - 1); |
| u64 ret = (val + mask) & ~mask; |
| return ret; |
| } |
| |
| /* |
| * when we wait for progress in the block group caching, its because |
| * our allocation attempt failed at least once. So, we must sleep |
| * and let some progress happen before we try again. |
| * |
| * This function will sleep at least once waiting for new free space to |
| * show up, and then it will check the block group free space numbers |
| * for our min num_bytes. Another option is to have it go ahead |
| * and look in the rbtree for a free extent of a given size, but this |
| * is a good start. |
| */ |
| static noinline int |
| wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, |
| u64 num_bytes) |
| { |
| struct btrfs_caching_control *caching_ctl; |
| DEFINE_WAIT(wait); |
| |
| caching_ctl = get_caching_control(cache); |
| if (!caching_ctl) |
| return 0; |
| |
| wait_event(caching_ctl->wait, block_group_cache_done(cache) || |
| (cache->free_space >= num_bytes)); |
| |
| put_caching_control(caching_ctl); |
| return 0; |
| } |
| |
| static noinline int |
| wait_block_group_cache_done(struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_caching_control *caching_ctl; |
| DEFINE_WAIT(wait); |
| |
| caching_ctl = get_caching_control(cache); |
| if (!caching_ctl) |
| return 0; |
| |
| wait_event(caching_ctl->wait, block_group_cache_done(cache)); |
| |
| put_caching_control(caching_ctl); |
| return 0; |
| } |
| |
| static int get_block_group_index(struct btrfs_block_group_cache *cache) |
| { |
| int index; |
| if (cache->flags & BTRFS_BLOCK_GROUP_RAID10) |
| index = 0; |
| else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1) |
| index = 1; |
| else if (cache->flags & BTRFS_BLOCK_GROUP_DUP) |
| index = 2; |
| else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0) |
| index = 3; |
| else |
| index = 4; |
| return index; |
| } |
| |
| enum btrfs_loop_type { |
| LOOP_FIND_IDEAL = 0, |
| LOOP_CACHING_NOWAIT = 1, |
| LOOP_CACHING_WAIT = 2, |
| LOOP_ALLOC_CHUNK = 3, |
| LOOP_NO_EMPTY_SIZE = 4, |
| }; |
| |
| /* |
| * walks the btree of allocated extents and find a hole of a given size. |
| * The key ins is changed to record the hole: |
| * ins->objectid == block start |
| * ins->flags = BTRFS_EXTENT_ITEM_KEY |
| * ins->offset == number of blocks |
| * Any available blocks before search_start are skipped. |
| */ |
| static noinline int find_free_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *orig_root, |
| u64 num_bytes, u64 empty_size, |
| u64 search_start, u64 search_end, |
| u64 hint_byte, struct btrfs_key *ins, |
| u64 exclude_start, u64 exclude_nr, |
| int data) |
| { |
| int ret = 0; |
| struct btrfs_root *root = orig_root->fs_info->extent_root; |
| struct btrfs_free_cluster *last_ptr = NULL; |
| struct btrfs_block_group_cache *block_group = NULL; |
| int empty_cluster = 2 * 1024 * 1024; |
| int allowed_chunk_alloc = 0; |
| int done_chunk_alloc = 0; |
| struct btrfs_space_info *space_info; |
| int last_ptr_loop = 0; |
| int index = 0; |
| int loop = 0; |
| bool found_uncached_bg = false; |
| bool failed_cluster_refill = false; |
| bool failed_alloc = false; |
| u64 ideal_cache_percent = 0; |
| u64 ideal_cache_offset = 0; |
| |
| WARN_ON(num_bytes < root->sectorsize); |
| btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); |
| ins->objectid = 0; |
| ins->offset = 0; |
| |
| space_info = __find_space_info(root->fs_info, data); |
| if (!space_info) { |
| printk(KERN_ERR "No space info for %d\n", data); |
| return -ENOSPC; |
| } |
| |
| if (orig_root->ref_cows || empty_size) |
| allowed_chunk_alloc = 1; |
| |
| if (data & BTRFS_BLOCK_GROUP_METADATA) { |
| last_ptr = &root->fs_info->meta_alloc_cluster; |
| if (!btrfs_test_opt(root, SSD)) |
| empty_cluster = 64 * 1024; |
| } |
| |
| if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) { |
| last_ptr = &root->fs_info->data_alloc_cluster; |
| } |
| |
| if (last_ptr) { |
| spin_lock(&last_ptr->lock); |
| if (last_ptr->block_group) |
| hint_byte = last_ptr->window_start; |
| spin_unlock(&last_ptr->lock); |
| } |
| |
| search_start = max(search_start, first_logical_byte(root, 0)); |
| search_start = max(search_start, hint_byte); |
| |
| if (!last_ptr) |
| empty_cluster = 0; |
| |
| if (search_start == hint_byte) { |
| ideal_cache: |
| block_group = btrfs_lookup_block_group(root->fs_info, |
| search_start); |
| /* |
| * we don't want to use the block group if it doesn't match our |
| * allocation bits, or if its not cached. |
| * |
| * However if we are re-searching with an ideal block group |
| * picked out then we don't care that the block group is cached. |
| */ |
| if (block_group && block_group_bits(block_group, data) && |
| (block_group->cached != BTRFS_CACHE_NO || |
| search_start == ideal_cache_offset)) { |
| down_read(&space_info->groups_sem); |
| if (list_empty(&block_group->list) || |
| block_group->ro) { |
| /* |
| * someone is removing this block group, |
| * we can't jump into the have_block_group |
| * target because our list pointers are not |
| * valid |
| */ |
| btrfs_put_block_group(block_group); |
| up_read(&space_info->groups_sem); |
| } else { |
| index = get_block_group_index(block_group); |
| goto have_block_group; |
| } |
| } else if (block_group) { |
| btrfs_put_block_group(block_group); |
| } |
| } |
| search: |
| down_read(&space_info->groups_sem); |
| list_for_each_entry(block_group, &space_info->block_groups[index], |
| list) { |
| u64 offset; |
| int cached; |
| |
| btrfs_get_block_group(block_group); |
| search_start = block_group->key.objectid; |
| |
| have_block_group: |
| if (unlikely(block_group->cached == BTRFS_CACHE_NO)) { |
| u64 free_percent; |
| |
| free_percent = btrfs_block_group_used(&block_group->item); |
| free_percent *= 100; |
| free_percent = div64_u64(free_percent, |
| block_group->key.offset); |
| free_percent = 100 - free_percent; |
| if (free_percent > ideal_cache_percent && |
| likely(!block_group->ro)) { |
| ideal_cache_offset = block_group->key.objectid; |
| ideal_cache_percent = free_percent; |
| } |
| |
| /* |
| * We only want to start kthread caching if we are at |
| * the point where we will wait for caching to make |
| * progress, or if our ideal search is over and we've |
| * found somebody to start caching. |
| */ |
| if (loop > LOOP_CACHING_NOWAIT || |
| (loop > LOOP_FIND_IDEAL && |
| atomic_read(&space_info->caching_threads) < 2)) { |
| ret = cache_block_group(block_group); |
| BUG_ON(ret); |
| } |
| found_uncached_bg = true; |
| |
| /* |
| * If loop is set for cached only, try the next block |
| * group. |
| */ |
| if (loop == LOOP_FIND_IDEAL) |
| goto loop; |
| } |
| |
| cached = block_group_cache_done(block_group); |
| if (unlikely(!cached)) |
| found_uncached_bg = true; |
| |
| if (unlikely(block_group->ro)) |
| goto loop; |
| |
| /* |
| * Ok we want to try and use the cluster allocator, so lets look |
| * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will |
| * have tried the cluster allocator plenty of times at this |
| * point and not have found anything, so we are likely way too |
| * fragmented for the clustering stuff to find anything, so lets |
| * just skip it and let the allocator find whatever block it can |
| * find |
| */ |
| if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) { |
| /* |
| * the refill lock keeps out other |
| * people trying to start a new cluster |
| */ |
| spin_lock(&last_ptr->refill_lock); |
| if (last_ptr->block_group && |
| (last_ptr->block_group->ro || |
| !block_group_bits(last_ptr->block_group, data))) { |
| offset = 0; |
| goto refill_cluster; |
| } |
| |
| offset = btrfs_alloc_from_cluster(block_group, last_ptr, |
| num_bytes, search_start); |
| if (offset) { |
| /* we have a block, we're done */ |
| spin_unlock(&last_ptr->refill_lock); |
| goto checks; |
| } |
| |
| spin_lock(&last_ptr->lock); |
| /* |
| * whoops, this cluster doesn't actually point to |
| * this block group. Get a ref on the block |
| * group is does point to and try again |
| */ |
| if (!last_ptr_loop && last_ptr->block_group && |
| last_ptr->block_group != block_group) { |
| |
| btrfs_put_block_group(block_group); |
| block_group = last_ptr->block_group; |
| btrfs_get_block_group(block_group); |
| spin_unlock(&last_ptr->lock); |
| spin_unlock(&last_ptr->refill_lock); |
| |
| last_ptr_loop = 1; |
| search_start = block_group->key.objectid; |
| /* |
| * we know this block group is properly |
| * in the list because |
| * btrfs_remove_block_group, drops the |
| * cluster before it removes the block |
| * group from the list |
| */ |
| goto have_block_group; |
| } |
| spin_unlock(&last_ptr->lock); |
| refill_cluster: |
| /* |
| * this cluster didn't work out, free it and |
| * start over |
| */ |
| btrfs_return_cluster_to_free_space(NULL, last_ptr); |
| |
| last_ptr_loop = 0; |
| |
| /* allocate a cluster in this block group */ |
| ret = btrfs_find_space_cluster(trans, root, |
| block_group, last_ptr, |
| offset, num_bytes, |
| empty_cluster + empty_size); |
| if (ret == 0) { |
| /* |
| * now pull our allocation out of this |
| * cluster |
| */ |
| offset = btrfs_alloc_from_cluster(block_group, |
| last_ptr, num_bytes, |
| search_start); |
| if (offset) { |
| /* we found one, proceed */ |
| spin_unlock(&last_ptr->refill_lock); |
| goto checks; |
| } |
| } else if (!cached && loop > LOOP_CACHING_NOWAIT |
| && !failed_cluster_refill) { |
| spin_unlock(&last_ptr->refill_lock); |
| |
| failed_cluster_refill = true; |
| wait_block_group_cache_progress(block_group, |
| num_bytes + empty_cluster + empty_size); |
| goto have_block_group; |
| } |
| |
| /* |
| * at this point we either didn't find a cluster |
| * or we weren't able to allocate a block from our |
| * cluster. Free the cluster we've been trying |
| * to use, and go to the next block group |
| */ |
| btrfs_return_cluster_to_free_space(NULL, last_ptr); |
| spin_unlock(&last_ptr->refill_lock); |
| goto loop; |
| } |
| |
| offset = btrfs_find_space_for_alloc(block_group, search_start, |
| num_bytes, empty_size); |
| /* |
| * If we didn't find a chunk, and we haven't failed on this |
| * block group before, and this block group is in the middle of |
| * caching and we are ok with waiting, then go ahead and wait |
| * for progress to be made, and set failed_alloc to true. |
| * |
| * If failed_alloc is true then we've already waited on this |
| * block group once and should move on to the next block group. |
| */ |
| if (!offset && !failed_alloc && !cached && |
| loop > LOOP_CACHING_NOWAIT) { |
| wait_block_group_cache_progress(block_group, |
| num_bytes + empty_size); |
| failed_alloc = true; |
| goto have_block_group; |
| } else if (!offset) { |
| goto loop; |
| } |
| checks: |
| search_start = stripe_align(root, offset); |
| /* move on to the next group */ |
| if (search_start + num_bytes >= search_end) { |
| btrfs_add_free_space(block_group, offset, num_bytes); |
| goto loop; |
| } |
| |
| /* move on to the next group */ |
| if (search_start + num_bytes > |
| block_group->key.objectid + block_group->key.offset) { |
| btrfs_add_free_space(block_group, offset, num_bytes); |
| goto loop; |
| } |
| |
| if (exclude_nr > 0 && |
| (search_start + num_bytes > exclude_start && |
| search_start < exclude_start + exclude_nr)) { |
| search_start = exclude_start + exclude_nr; |
| |
| btrfs_add_free_space(block_group, offset, num_bytes); |
| /* |
| * if search_start is still in this block group |
| * then we just re-search this block group |
| */ |
| if (search_start >= block_group->key.objectid && |
| search_start < (block_group->key.objectid + |
| block_group->key.offset)) |
| goto have_block_group; |
| goto loop; |
| } |
| |
| ins->objectid = search_start; |
| ins->offset = num_bytes; |
| |
| if (offset < search_start) |
| btrfs_add_free_space(block_group, offset, |
| search_start - offset); |
| BUG_ON(offset > search_start); |
| |
| update_reserved_extents(block_group, num_bytes, 1); |
| |
| /* we are all good, lets return */ |
| break; |
| loop: |
| failed_cluster_refill = false; |
| failed_alloc = false; |
| BUG_ON(index != get_block_group_index(block_group)); |
| btrfs_put_block_group(block_group); |
| } |
| up_read(&space_info->groups_sem); |
| |
| if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) |
| goto search; |
| |
| /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for |
| * for them to make caching progress. Also |
| * determine the best possible bg to cache |
| * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking |
| * caching kthreads as we move along |
| * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching |
| * LOOP_ALLOC_CHUNK, force a chunk allocation and try again |
| * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try |
| * again |
| */ |
| if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE && |
| (found_uncached_bg || empty_size || empty_cluster || |
| allowed_chunk_alloc)) { |
| index = 0; |
| if (loop == LOOP_FIND_IDEAL && found_uncached_bg) { |
| found_uncached_bg = false; |
| loop++; |
| if (!ideal_cache_percent && |
| atomic_read(&space_info->caching_threads)) |
| goto search; |
| |
| /* |
| * 1 of the following 2 things have happened so far |
| * |
| * 1) We found an ideal block group for caching that |
| * is mostly full and will cache quickly, so we might |
| * as well wait for it. |
| * |
| * 2) We searched for cached only and we didn't find |
| * anything, and we didn't start any caching kthreads |
| * either, so chances are we will loop through and |
| * start a couple caching kthreads, and then come back |
| * around and just wait for them. This will be slower |
| * because we will have 2 caching kthreads reading at |
| * the same time when we could have just started one |
| * and waited for it to get far enough to give us an |
| * allocation, so go ahead and go to the wait caching |
| * loop. |
| */ |
| loop = LOOP_CACHING_WAIT; |
| search_start = ideal_cache_offset; |
| ideal_cache_percent = 0; |
| goto ideal_cache; |
| } else if (loop == LOOP_FIND_IDEAL) { |
| /* |
| * Didn't find a uncached bg, wait on anything we find |
| * next. |
| */ |
| loop = LOOP_CACHING_WAIT; |
| goto search; |
| } |
| |
| if (loop < LOOP_CACHING_WAIT) { |
| loop++; |
| goto search; |
| } |
| |
| if (loop == LOOP_ALLOC_CHUNK) { |
| empty_size = 0; |
| empty_cluster = 0; |
| } |
| |
| if (allowed_chunk_alloc) { |
| ret = do_chunk_alloc(trans, root, num_bytes + |
| 2 * 1024 * 1024, data, 1); |
| allowed_chunk_alloc = 0; |
| done_chunk_alloc = 1; |
| } else if (!done_chunk_alloc) { |
| space_info->force_alloc = 1; |
| } |
| |
| if (loop < LOOP_NO_EMPTY_SIZE) { |
| loop++; |
| goto search; |
| } |
| ret = -ENOSPC; |
| } else if (!ins->objectid) { |
| ret = -ENOSPC; |
| } |
| |
| /* we found what we needed */ |
| if (ins->objectid) { |
| if (!(data & BTRFS_BLOCK_GROUP_DATA)) |
| trans->block_group = block_group->key.objectid; |
| |
| btrfs_put_block_group(block_group); |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static void dump_space_info(struct btrfs_space_info *info, u64 bytes, |
| int dump_block_groups) |
| { |
| struct btrfs_block_group_cache *cache; |
| int index = 0; |
| |
| spin_lock(&info->lock); |
| printk(KERN_INFO "space_info has %llu free, is %sfull\n", |
| (unsigned long long)(info->total_bytes - info->bytes_used - |
| info->bytes_pinned - info->bytes_reserved - |
| info->bytes_super), |
| (info->full) ? "" : "not "); |
| printk(KERN_INFO "space_info total=%llu, pinned=%llu, delalloc=%llu," |
| " may_use=%llu, used=%llu, root=%llu, super=%llu, reserved=%llu" |
| "\n", |
| (unsigned long long)info->total_bytes, |
| (unsigned long long)info->bytes_pinned, |
| (unsigned long long)info->bytes_delalloc, |
| (unsigned long long)info->bytes_may_use, |
| (unsigned long long)info->bytes_used, |
| (unsigned long long)info->bytes_root, |
| (unsigned long long)info->bytes_super, |
| (unsigned long long)info->bytes_reserved); |
| spin_unlock(&info->lock); |
| |
| if (!dump_block_groups) |
| return; |
| |
| down_read(&info->groups_sem); |
| again: |
| list_for_each_entry(cache, &info->block_groups[index], list) { |
| spin_lock(&cache->lock); |
| printk(KERN_INFO "block group %llu has %llu bytes, %llu used " |
| "%llu pinned %llu reserved\n", |
| (unsigned long long)cache->key.objectid, |
| (unsigned long long)cache->key.offset, |
| (unsigned long long)btrfs_block_group_used(&cache->item), |
| (unsigned long long)cache->pinned, |
| (unsigned long long)cache->reserved); |
| btrfs_dump_free_space(cache, bytes); |
| spin_unlock(&cache->lock); |
| } |
| if (++index < BTRFS_NR_RAID_TYPES) |
| goto again; |
| up_read(&info->groups_sem); |
| } |
| |
| int btrfs_reserve_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 num_bytes, u64 min_alloc_size, |
| u64 empty_size, u64 hint_byte, |
| u64 search_end, struct btrfs_key *ins, |
| u64 data) |
| { |
| int ret; |
| u64 search_start = 0; |
| |
| data = btrfs_get_alloc_profile(root, data); |
| again: |
| /* |
| * the only place that sets empty_size is btrfs_realloc_node, which |
| * is not called recursively on allocations |
| */ |
| if (empty_size || root->ref_cows) |
| ret = do_chunk_alloc(trans, root->fs_info->extent_root, |
| num_bytes + 2 * 1024 * 1024, data, 0); |
| |
| WARN_ON(num_bytes < root->sectorsize); |
| ret = find_free_extent(trans, root, num_bytes, empty_size, |
| search_start, search_end, hint_byte, ins, |
| trans->alloc_exclude_start, |
| trans->alloc_exclude_nr, data); |
| |
| if (ret == -ENOSPC && num_bytes > min_alloc_size) { |
| num_bytes = num_bytes >> 1; |
| num_bytes = num_bytes & ~(root->sectorsize - 1); |
| num_bytes = max(num_bytes, min_alloc_size); |
| do_chunk_alloc(trans, root->fs_info->extent_root, |
| num_bytes, data, 1); |
| goto again; |
| } |
| if (ret == -ENOSPC) { |
| struct btrfs_space_info *sinfo; |
| |
| sinfo = __find_space_info(root->fs_info, data); |
| printk(KERN_ERR "btrfs allocation failed flags %llu, " |
| "wanted %llu\n", (unsigned long long)data, |
| (unsigned long long)num_bytes); |
| dump_space_info(sinfo, num_bytes, 1); |
| } |
| |
| return ret; |
| } |
| |
| int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len) |
| { |
| struct btrfs_block_group_cache *cache; |
| int ret = 0; |
| |
| cache = btrfs_lookup_block_group(root->fs_info, start); |
| if (!cache) { |
| printk(KERN_ERR "Unable to find block group for %llu\n", |
| (unsigned long long)start); |
| return -ENOSPC; |
| } |
| |
| ret = btrfs_discard_extent(root, start, len); |
| |
| btrfs_add_free_space(cache, start, len); |
| update_reserved_extents(cache, len, 0); |
| btrfs_put_block_group(cache); |
| |
| return ret; |
| } |
| |
| static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 parent, u64 root_objectid, |
| u64 flags, u64 owner, u64 offset, |
| struct btrfs_key *ins, int ref_mod) |
| { |
| int ret; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_extent_item *extent_item; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| int type; |
| u32 size; |
| |
| if (parent > 0) |
| type = BTRFS_SHARED_DATA_REF_KEY; |
| else |
| type = BTRFS_EXTENT_DATA_REF_KEY; |
| |
| size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); |
| |
| path = btrfs_alloc_path(); |
| BUG_ON(!path); |
| |
| path->leave_spinning = 1; |
| ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, |
| ins, size); |
| BUG_ON(ret); |
| |
| leaf = path->nodes[0]; |
| extent_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_item); |
| btrfs_set_extent_refs(leaf, extent_item, ref_mod); |
| btrfs_set_extent_generation(leaf, extent_item, trans->transid); |
| btrfs_set_extent_flags(leaf, extent_item, |
| flags | BTRFS_EXTENT_FLAG_DATA); |
| |
| iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); |
| btrfs_set_extent_inline_ref_type(leaf, iref, type); |
| if (parent > 0) { |
| struct btrfs_shared_data_ref *ref; |
| ref = (struct btrfs_shared_data_ref *)(iref + 1); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); |
| } else { |
| struct btrfs_extent_data_ref *ref; |
| ref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); |
| btrfs_set_extent_data_ref_objectid(leaf, ref, owner); |
| btrfs_set_extent_data_ref_offset(leaf, ref, offset); |
| btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); |
| } |
| |
| btrfs_mark_buffer_dirty(path->nodes[0]); |
| btrfs_free_path(path); |
| |
| ret = update_block_group(trans, root, ins->objectid, ins->offset, |
| 1, 0); |
| if (ret) { |
| printk(KERN_ERR "btrfs update block group failed for %llu " |
| "%llu\n", (unsigned long long)ins->objectid, |
| (unsigned long long)ins->offset); |
| BUG(); |
| } |
| return ret; |
| } |
| |
| static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 parent, u64 root_objectid, |
| u64 flags, struct btrfs_disk_key *key, |
| int level, struct btrfs_key *ins) |
| { |
| int ret; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_extent_item *extent_item; |
| struct btrfs_tree_block_info *block_info; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); |
| |
| path = btrfs_alloc_path(); |
| BUG_ON(!path); |
| |
| path->leave_spinning = 1; |
| ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, |
| ins, size); |
| BUG_ON(ret); |
| |
| leaf = path->nodes[0]; |
| extent_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_item); |
| btrfs_set_extent_refs(leaf, extent_item, 1); |
| btrfs_set_extent_generation(leaf, extent_item, trans->transid); |
| btrfs_set_extent_flags(leaf, extent_item, |
| flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); |
| block_info = (struct btrfs_tree_block_info *)(extent_item + 1); |
| |
| btrfs_set_tree_block_key(leaf, block_info, key); |
| btrfs_set_tree_block_level(leaf, block_info, level); |
| |
| iref = (struct btrfs_extent_inline_ref *)(block_info + 1); |
| if (parent > 0) { |
| BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); |
| btrfs_set_extent_inline_ref_type(leaf, iref, |
| BTRFS_SHARED_BLOCK_REF_KEY); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| } else { |
| btrfs_set_extent_inline_ref_type(leaf, iref, |
| BTRFS_TREE_BLOCK_REF_KEY); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); |
| } |
| |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_free_path(path); |
| |
| ret = update_block_group(trans, root, ins->objectid, ins->offset, |
| 1, 0); |
| if (ret) { |
| printk(KERN_ERR "btrfs update block group failed for %llu " |
| "%llu\n", (unsigned long long)ins->objectid, |
| (unsigned long long)ins->offset); |
| BUG(); |
| } |
| return ret; |
| } |
| |
| int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 root_objectid, u64 owner, |
| u64 offset, struct btrfs_key *ins) |
| { |
| int ret; |
| |
| BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); |
| |
| ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset, |
| 0, root_objectid, owner, offset, |
| BTRFS_ADD_DELAYED_EXTENT, NULL); |
| return ret; |
| } |
| |
| /* |
| * this is used by the tree logging recovery code. It records that |
| * an extent has been allocated and makes sure to clear the free |
| * space cache bits as well |
| */ |
| int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 root_objectid, u64 owner, u64 offset, |
| struct btrfs_key *ins) |
| { |
| int ret; |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_caching_control *caching_ctl; |
| u64 start = ins->objectid; |
| u64 num_bytes = ins->offset; |
| |
| block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); |
| cache_block_group(block_group); |
| caching_ctl = get_caching_control(block_group); |
| |
| if (!caching_ctl) { |
| BUG_ON(!block_group_cache_done(block_group)); |
| ret = btrfs_remove_free_space(block_group, start, num_bytes); |
| BUG_ON(ret); |
| } else { |
| mutex_lock(&caching_ctl->mutex); |
| |
| if (start >= caching_ctl->progress) { |
| ret = add_excluded_extent(root, start, num_bytes); |
| BUG_ON(ret); |
| } else if (start + num_bytes <= caching_ctl->progress) { |
| ret = btrfs_remove_free_space(block_group, |
| start, num_bytes); |
| BUG_ON(ret); |
| } else { |
| num_bytes = caching_ctl->progress - start; |
| ret = btrfs_remove_free_space(block_group, |
| start, num_bytes); |
| BUG_ON(ret); |
| |
| start = caching_ctl->progress; |
| num_bytes = ins->objectid + ins->offset - |
| caching_ctl->progress; |
| ret = add_excluded_extent(root, start, num_bytes); |
| BUG_ON(ret); |
| } |
| |
| mutex_unlock(&caching_ctl->mutex); |
| put_caching_control(caching_ctl); |
| } |
| |
| update_reserved_extents(block_group, ins->offset, 1); |
| btrfs_put_block_group(block_group); |
| ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, |
| 0, owner, offset, ins, 1); |
| return ret; |
| } |
| |
| /* |
| * finds a free extent and does all the dirty work required for allocation |
| * returns the key for the extent through ins, and a tree buffer for |
| * the first block of the extent through buf. |
| * |
| * returns 0 if everything worked, non-zero otherwise. |
| */ |
| static int alloc_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 num_bytes, u64 parent, u64 root_objectid, |
| struct btrfs_disk_key *key, int level, |
| u64 empty_size, u64 hint_byte, u64 search_end, |
| struct btrfs_key *ins) |
| { |
| int ret; |
| u64 flags = 0; |
| |
| ret = btrfs_reserve_extent(trans, root, num_bytes, num_bytes, |
| empty_size, hint_byte, search_end, |
| ins, 0); |
| if (ret) |
| return ret; |
| |
| if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { |
| if (parent == 0) |
| parent = ins->objectid; |
| flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| } else |
| BUG_ON(parent > 0); |
| |
| if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { |
| struct btrfs_delayed_extent_op *extent_op; |
| extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); |
| BUG_ON(!extent_op); |
| if (key) |
| memcpy(&extent_op->key, key, sizeof(extent_op->key)); |
| else |
| memset(&extent_op->key, 0, sizeof(extent_op->key)); |
| extent_op->flags_to_set = flags; |
| extent_op->update_key = 1; |
| extent_op->update_flags = 1; |
| extent_op->is_data = 0; |
| |
| ret = btrfs_add_delayed_tree_ref(trans, ins->objectid, |
| ins->offset, parent, root_objectid, |
| level, BTRFS_ADD_DELAYED_EXTENT, |
| extent_op); |
| BUG_ON(ret); |
| } |
| |
| if (root_objectid == root->root_key.objectid) { |
| u64 used; |
| spin_lock(&root->node_lock); |
| used = btrfs_root_used(&root->root_item) + num_bytes; |
| btrfs_set_root_used(&root->root_item, used); |
| spin_unlock(&root->node_lock); |
| } |
| return ret; |
| } |
| |
| struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 bytenr, u32 blocksize, |
| int level) |
| { |
| struct extent_buffer *buf; |
| |
| buf = btrfs_find_create_tree_block(root, bytenr, blocksize); |
| if (!buf) |
| return ERR_PTR(-ENOMEM); |
| btrfs_set_header_generation(buf, trans->transid); |
| btrfs_set_buffer_lockdep_class(buf, level); |
| btrfs_tree_lock(buf); |
| clean_tree_block(trans, root, buf); |
| |
| btrfs_set_lock_blocking(buf); |
| btrfs_set_buffer_uptodate(buf); |
| |
| if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { |
| /* |
| * we allow two log transactions at a time, use different |
| * EXENT bit to differentiate dirty pages. |
| */ |
| if (root->log_transid % 2 == 0) |
| set_extent_dirty(&root->dirty_log_pages, buf->start, |
| buf->start + buf->len - 1, GFP_NOFS); |
| else |
| set_extent_new(&root->dirty_log_pages, buf->start, |
| buf->start + buf->len - 1, GFP_NOFS); |
| } else { |
| set_extent_dirty(&trans->transaction->dirty_pages, buf->start, |
| buf->start + buf->len - 1, GFP_NOFS); |
| } |
| trans->blocks_used++; |
| /* this returns a buffer locked for blocking */ |
| return buf; |
| } |
| |
| /* |
| * helper function to allocate a block for a given tree |
| * returns the tree buffer or NULL. |
| */ |
| struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u32 blocksize, |
| u64 parent, u64 root_objectid, |
| struct btrfs_disk_key *key, int level, |
| u64 hint, u64 empty_size) |
| { |
| struct btrfs_key ins; |
| int ret; |
| struct extent_buffer *buf; |
| |
| ret = alloc_tree_block(trans, root, blocksize, parent, root_objectid, |
| key, level, empty_size, hint, (u64)-1, &ins); |
| if (ret) { |
| BUG_ON(ret > 0); |
| return ERR_PTR(ret); |
| } |
| |
| buf = btrfs_init_new_buffer(trans, root, ins.objectid, |
| blocksize, level); |
| return buf; |
| } |
| |
| struct walk_control { |
| u64 refs[BTRFS_MAX_LEVEL]; |
| u64 flags[BTRFS_MAX_LEVEL]; |
| struct btrfs_key update_progress; |
| int stage; |
| int level; |
| int shared_level; |
| int update_ref; |
| int keep_locks; |
| int reada_slot; |
| int reada_count; |
| }; |
| |
| #define DROP_REFERENCE 1 |
| #define UPDATE_BACKREF 2 |
| |
| static noinline void reada_walk_down(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct walk_control *wc, |
| struct btrfs_path *path) |
| { |
| u64 bytenr; |
| u64 generation; |
| u64 refs; |
| u64 flags; |
| u64 last = 0; |
| u32 nritems; |
| u32 blocksize; |
| struct btrfs_key key; |
| struct extent_buffer *eb; |
| int ret; |
| int slot; |
| int nread = 0; |
| |
| if (path->slots[wc->level] < wc->reada_slot) { |
| wc->reada_count = wc->reada_count * 2 / 3; |
| wc->reada_count = max(wc->reada_count, 2); |
| } else { |
| wc->reada_count = wc->reada_count * 3 / 2; |
| wc->reada_count = min_t(int, wc->reada_count, |
| BTRFS_NODEPTRS_PER_BLOCK(root)); |
| } |
| |
| eb = path->nodes[wc->level]; |
| nritems = btrfs_header_nritems(eb); |
| blocksize = btrfs_level_size(root, wc->level - 1); |
| |
| for (slot = path->slots[wc->level]; slot < nritems; slot++) { |
| if (nread >= wc->reada_count) |
| break; |
| |
| cond_resched(); |
| bytenr = btrfs_node_blockptr(eb, slot); |
| generation = btrfs_node_ptr_generation(eb, slot); |
| |
| if (slot == path->slots[wc->level]) |
| goto reada; |
| |
| if (wc->stage == UPDATE_BACKREF && |
| generation <= root->root_key.offset) |
| continue; |
| |
| /* We don't lock the tree block, it's OK to be racy here */ |
| ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, |
| &refs, &flags); |
| BUG_ON(ret); |
| BUG_ON(refs == 0); |
| |
| if (wc->stage == DROP_REFERENCE) { |
| if (refs == 1) |
| goto reada; |
| |
| if (wc->level == 1 && |
| (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| continue; |
| if (!wc->update_ref || |
| generation <= root->root_key.offset) |
| continue; |
| btrfs_node_key_to_cpu(eb, &key, slot); |
| ret = btrfs_comp_cpu_keys(&key, |
| &wc->update_progress); |
| if (ret < 0) |
| continue; |
| } else { |
| if (wc->level == 1 && |
| (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| continue; |
| } |
| reada: |
| ret = readahead_tree_block(root, bytenr, blocksize, |
| generation); |
| if (ret) |
| break; |
| last = bytenr + blocksize; |
| nread++; |
| } |
| wc->reada_slot = slot; |
| } |
| |
| /* |
| * hepler to process tree block while walking down the tree. |
| * |
| * when wc->stage == UPDATE_BACKREF, this function updates |
| * back refs for pointers in the block. |
| * |
| * NOTE: return value 1 means we should stop walking down. |
| */ |
| static noinline int walk_down_proc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc, int lookup_info) |
| { |
| int level = wc->level; |
| struct extent_buffer *eb = path->nodes[level]; |
| u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| int ret; |
| |
| if (wc->stage == UPDATE_BACKREF && |
| btrfs_header_owner(eb) != root->root_key.objectid) |
| return 1; |
| |
| /* |
| * when reference count of tree block is 1, it won't increase |
| * again. once full backref flag is set, we never clear it. |
| */ |
| if (lookup_info && |
| ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || |
| (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { |
| BUG_ON(!path->locks[level]); |
| ret = btrfs_lookup_extent_info(trans, root, |
| eb->start, eb->len, |
| &wc->refs[level], |
| &wc->flags[level]); |
| BUG_ON(ret); |
| BUG_ON(wc->refs[level] == 0); |
| } |
| |
| if (wc->stage == DROP_REFERENCE) { |
| if (wc->refs[level] > 1) |
| return 1; |
| |
| if (path->locks[level] && !wc->keep_locks) { |
| btrfs_tree_unlock(eb); |
| path->locks[level] = 0; |
| } |
| return 0; |
| } |
| |
| /* wc->stage == UPDATE_BACKREF */ |
| if (!(wc->flags[level] & flag)) { |
| BUG_ON(!path->locks[level]); |
| ret = btrfs_inc_ref(trans, root, eb, 1); |
| BUG_ON(ret); |
| ret = btrfs_dec_ref(trans, root, eb, 0); |
| BUG_ON(ret); |
| ret = btrfs_set_disk_extent_flags(trans, root, eb->start, |
| eb->len, flag, 0); |
| BUG_ON(ret); |
| wc->flags[level] |= flag; |
| } |
| |
| /* |
| * the block is shared by multiple trees, so it's not good to |
| * keep the tree lock |
| */ |
| if (path->locks[level] && level > 0) { |
| btrfs_tree_unlock(eb); |
| path->locks[level] = 0; |
| } |
| return 0; |
| } |
| |
| /* |
| * hepler to process tree block pointer. |
| * |
| * when wc->stage == DROP_REFERENCE, this function checks |
| * reference count of the block pointed to. if the block |
| * is shared and we need update back refs for the subtree |
| * rooted at the block, this function changes wc->stage to |
| * UPDATE_BACKREF. if the block is shared and there is no |
| * need to update back, this function drops the reference |
| * to the block. |
| * |
| * NOTE: return value 1 means we should stop walking down. |
| */ |
| static noinline int do_walk_down(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc, int *lookup_info) |
| { |
| u64 bytenr; |
| u64 generation; |
| u64 parent; |
| u32 blocksize; |
| struct btrfs_key key; |
| struct extent_buffer *next; |
| int level = wc->level; |
| int reada = 0; |
| int ret = 0; |
| |
| generation = btrfs_node_ptr_generation(path->nodes[level], |
| path->slots[level]); |
| /* |
| * if the lower level block was created before the snapshot |
| * was created, we know there is no need to update back refs |
| * for the subtree |
| */ |
| if (wc->stage == UPDATE_BACKREF && |
| generation <= root->root_key.offset) { |
| *lookup_info = 1; |
| return 1; |
| } |
| |
| bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); |
| blocksize = btrfs_level_size(root, level - 1); |
| |
| next = btrfs_find_tree_block(root, bytenr, blocksize); |
| if (!next) { |
| next = btrfs_find_create_tree_block(root, bytenr, blocksize); |
| if (!next) |
| return -ENOMEM; |
| reada = 1; |
| } |
| btrfs_tree_lock(next); |
| btrfs_set_lock_blocking(next); |
| |
| ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, |
| &wc->refs[level - 1], |
| &wc->flags[level - 1]); |
| BUG_ON(ret); |
| BUG_ON(wc->refs[level - 1] == 0); |
| *lookup_info = 0; |
| |
| if (wc->stage == DROP_REFERENCE) { |
| if (wc->refs[level - 1] > 1) { |
| if (level == 1 && |
| (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| goto skip; |
| |
| if (!wc->update_ref || |
| generation <= root->root_key.offset) |
| goto skip; |
| |
| btrfs_node_key_to_cpu(path->nodes[level], &key, |
| path->slots[level]); |
| ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); |
| if (ret < 0) |
| goto skip; |
| |
| wc->stage = UPDATE_BACKREF; |
| wc->shared_level = level - 1; |
| } |
| } else { |
| if (level == 1 && |
| (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| goto skip; |
| } |
| |
| if (!btrfs_buffer_uptodate(next, generation)) { |
| btrfs_tree_unlock(next); |
| free_extent_buffer(next); |
| next = NULL; |
| *lookup_info = 1; |
| } |
| |
| if (!next) { |
| if (reada && level == 1) |
| reada_walk_down(trans, root, wc, path); |
| next = read_tree_block(root, bytenr, blocksize, generation); |
| btrfs_tree_lock(next); |
| btrfs_set_lock_blocking(next); |
| } |
| |
| level--; |
| BUG_ON(level != btrfs_header_level(next)); |
| path->nodes[level] = next; |
| path->slots[level] = 0; |
| path->locks[level] = 1; |
| wc->level = level; |
| if (wc->level == 1) |
| wc->reada_slot = 0; |
| return 0; |
| skip: |
| wc->refs[level - 1] = 0; |
| wc->flags[level - 1] = 0; |
| if (wc->stage == DROP_REFERENCE) { |
| if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { |
| parent = path->nodes[level]->start; |
| } else { |
| BUG_ON(root->root_key.objectid != |
| btrfs_header_owner(path->nodes[level])); |
| parent = 0; |
| } |
| |
| ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, |
| root->root_key.objectid, level - 1, 0); |
| BUG_ON(ret); |
| } |
| btrfs_tree_unlock(next); |
| free_extent_buffer(next); |
| *lookup_info = 1; |
| return 1; |
| } |
| |
| /* |
| * hepler to process tree block while walking up the tree. |
| * |
| * when wc->stage == DROP_REFERENCE, this function drops |
| * reference count on the block. |
| * |
| * when wc->stage == UPDATE_BACKREF, this function changes |
| * wc->stage back to DROP_REFERENCE if we changed wc->stage |
| * to UPDATE_BACKREF previously while processing the block. |
| * |
| * NOTE: return value 1 means we should stop walking up. |
| */ |
| static noinline int walk_up_proc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc) |
| { |
| int ret = 0; |
| int level = wc->level; |
| struct extent_buffer *eb = path->nodes[level]; |
| u64 parent = 0; |
| |
| if (wc->stage == UPDATE_BACKREF) { |
| BUG_ON(wc->shared_level < level); |
| if (level < wc->shared_level) |
| goto out; |
| |
| ret = find_next_key(path, level + 1, &wc->update_progress); |
| if (ret > 0) |
| wc->update_ref = 0; |
| |
| wc->stage = DROP_REFERENCE; |
| wc->shared_level = -1; |
| path->slots[level] = 0; |
| |
| /* |
| * check reference count again if the block isn't locked. |
| * we should start walking down the tree again if reference |
| * count is one. |
| */ |
| if (!path->locks[level]) { |
| BUG_ON(level == 0); |
| btrfs_tree_lock(eb); |
| btrfs_set_lock_blocking(eb); |
| path->locks[level] = 1; |
| |
| ret = btrfs_lookup_extent_info(trans, root, |
| eb->start, eb->len, |
| &wc->refs[level], |
| &wc->flags[level]); |
| BUG_ON(ret); |
| BUG_ON(wc->refs[level] == 0); |
| if (wc->refs[level] == 1) { |
| btrfs_tree_unlock(eb); |
| path->locks[level] = 0; |
| return 1; |
| } |
| } |
| } |
| |
| /* wc->stage == DROP_REFERENCE */ |
| BUG_ON(wc->refs[level] > 1 && !path->locks[level]); |
| |
| if (wc->refs[level] == 1) { |
| if (level == 0) { |
| if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| ret = btrfs_dec_ref(trans, root, eb, 1); |
| else |
| ret = btrfs_dec_ref(trans, root, eb, 0); |
| BUG_ON(ret); |
| } |
| /* make block locked assertion in clean_tree_block happy */ |
| if (!path->locks[level] && |
| btrfs_header_generation(eb) == trans->transid) { |
| btrfs_tree_lock(eb); |
| btrfs_set_lock_blocking(eb); |
| path->locks[level] = 1; |
| } |
| clean_tree_block(trans, root, eb); |
| } |
| |
| if (eb == root->node) { |
| if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| parent = eb->start; |
| else |
| BUG_ON(root->root_key.objectid != |
| btrfs_header_owner(eb)); |
| } else { |
| if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| parent = path->nodes[level + 1]->start; |
| else |
| BUG_ON(root->root_key.objectid != |
| btrfs_header_owner(path->nodes[level + 1])); |
| } |
| |
| ret = btrfs_free_extent(trans, root, eb->start, eb->len, parent, |
| root->root_key.objectid, level, 0); |
| BUG_ON(ret); |
| out: |
| wc->refs[level] = 0; |
| wc->flags[level] = 0; |
| return ret; |
| } |
| |
| static noinline int walk_down_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc) |
| { |
| int level = wc->level; |
| int lookup_info = 1; |
| int ret; |
| |
| while (level >= 0) { |
| ret = walk_down_proc(trans, root, path, wc, lookup_info); |
| if (ret > 0) |
| break; |
| |
| if (level == 0) |
| break; |
| |
| if (path->slots[level] >= |
| btrfs_header_nritems(path->nodes[level])) |
| break; |
| |
| ret = do_walk_down(trans, root, path, wc, &lookup_info); |
| if (ret > 0) { |
| path->slots[level]++; |
| continue; |
| } else if (ret < 0) |
| return ret; |
| level = wc->level; |
| } |
| return 0; |
| } |
| |
| static noinline int walk_up_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc, int max_level) |
| { |
| int level = wc->level; |
| int ret; |
| |
| path->slots[level] = btrfs_header_nritems(path->nodes[level]); |
| while (level < max_level && path->nodes[level]) { |
| wc->level = level; |
| if (path->slots[level] + 1 < |
| btrfs_header_nritems(path->nodes[level])) { |
| path->slots[level]++; |
| return 0; |
| } else { |
| ret = walk_up_proc(trans, root, path, wc); |
| if (ret > 0) |
| return 0; |
| |
| if (path->locks[level]) { |
| btrfs_tree_unlock(path->nodes[level]); |
| path->locks[level] = 0; |
| } |
| free_extent_buffer(path->nodes[level]); |
| path->nodes[level] = NULL; |
| level++; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * drop a subvolume tree. |
| * |
| * this function traverses the tree freeing any blocks that only |
| * referenced by the tree. |
| * |
| * when a shared tree block is found. this function decreases its |
| * reference count by one. if update_ref is true, this function |
| * also make sure backrefs for the shared block and all lower level |
| * blocks are properly updated. |
| */ |
| int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref) |
| { |
| struct btrfs_path *path; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *tree_root = root->fs_info->tree_root; |
| struct btrfs_root_item *root_item = &root->root_item; |
| struct walk_control *wc; |
| struct btrfs_key key; |
| int err = 0; |
| int ret; |
| int level; |
| |
| path = btrfs_alloc_path(); |
| BUG_ON(!path); |
| |
| wc = kzalloc(sizeof(*wc), GFP_NOFS); |
| BUG_ON(!wc); |
| |
| trans = btrfs_start_transaction(tree_root, 1); |
| |
| if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { |
| level = btrfs_header_level(root->node); |
| path->nodes[level] = btrfs_lock_root_node(root); |
| btrfs_set_lock_blocking(path->nodes[level]); |
| path->slots[level] = 0; |
| path->locks[level] = 1; |
| memset(&wc->update_progress, 0, |
| sizeof(wc->update_progress)); |
| } else { |
| btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); |
| memcpy(&wc->update_progress, &key, |
| sizeof(wc->update_progress)); |
| |
| level = root_item->drop_level; |
| BUG_ON(level == 0); |
| path->lowest_level = level; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| path->lowest_level = 0; |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| WARN_ON(ret > 0); |
| |
| /* |
| * unlock our path, this is safe because only this |
| * function is allowed to delete this snapshot |
| */ |
| btrfs_unlock_up_safe(path, 0); |
| |
| level = btrfs_header_level(root->node); |
| while (1) { |
| btrfs_tree_lock(path->nodes[level]); |
| btrfs_set_lock_blocking(path->nodes[level]); |
| |
| ret = btrfs_lookup_extent_info(trans, root, |
| path->nodes[level]->start, |
| path->nodes[level]->len, |
| &wc->refs[level], |
| &wc->flags[level]); |
| BUG_ON(ret); |
| BUG_ON(wc->refs[level] == 0); |
| |
| if (level == root_item->drop_level) |
| break; |
| |
| btrfs_tree_unlock(path->nodes[level]); |
| WARN_ON(wc->refs[level] != 1); |
| level--; |
| } |
| } |
| |
| wc->level = level; |
| wc->shared_level = -1; |
| wc->stage = DROP_REFERENCE; |
| wc->update_ref = update_ref; |
| wc->keep_locks = 0; |
| wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); |
| |
| while (1) { |
| ret = walk_down_tree(trans, root, path, wc); |
| if (ret < 0) { |
| err = ret; |
| break; |
| } |
| |
| ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); |
| if (ret < 0) { |
| err = ret; |
| break; |
| } |
| |
| if (ret > 0) { |
| BUG_ON(wc->stage != DROP_REFERENCE); |
| break; |
| } |
| |
| if (wc->stage == DROP_REFERENCE) { |
| level = wc->level; |
| btrfs_node_key(path->nodes[level], |
| &root_item->drop_progress, |
| path->slots[level]); |
| root_item->drop_level = level; |
| } |
| |
| BUG_ON(wc->level == 0); |
| if (trans->transaction->in_commit || |
| trans->transaction->delayed_refs.flushing) { |
| ret = btrfs_update_root(trans, tree_root, |
| &root->root_key, |
| root_item); |
| BUG_ON(ret); |
| |
| btrfs_end_transaction(trans, tree_root); |
| trans = btrfs_start_transaction(tree_root, 1); |
| } else { |
| unsigned long update; |
| update = trans->delayed_ref_updates; |
| trans->delayed_ref_updates = 0; |
| if (update) |
| btrfs_run_delayed_refs(trans, tree_root, |
| update); |
| } |
| } |
| btrfs_release_path(root, path); |
| BUG_ON(err); |
| |
| ret = btrfs_del_root(trans, tree_root, &root->root_key); |
| BUG_ON(ret); |
| |
| if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { |
| ret = btrfs_find_last_root(tree_root, root->root_key.objectid, |
| NULL, NULL); |
| BUG_ON(ret < 0); |
| if (ret > 0) { |
| ret = btrfs_del_orphan_item(trans, tree_root, |
| root->root_key.objectid); |
| BUG_ON(ret); |
| } |
| } |
| |
| if (root->in_radix) { |
| btrfs_free_fs_root(tree_root->fs_info, root); |
| } else { |
| free_extent_buffer(root->node); |
| free_extent_buffer(root->commit_root); |
| kfree(root); |
| } |
| out: |
| btrfs_end_transaction(trans, tree_root); |
| kfree(wc); |
| btrfs_free_path(path); |
| return err; |
| } |
| |
| /* |
| * drop subtree rooted at tree block 'node'. |
| * |
| * NOTE: this function will unlock and release tree block 'node' |
| */ |
| int btrfs_drop_subtree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *node, |
| struct extent_buffer *parent) |
| { |
| struct btrfs_path *path; |
| struct walk_control *wc; |
| int level; |
| int parent_level; |
| int ret = 0; |
| int wret; |
| |
| BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); |
| |
| path = btrfs_alloc_path(); |
| BUG_ON(!path); |
| |
| wc = kzalloc(sizeof(*wc), GFP_NOFS); |
| BUG_ON(!wc); |
| |
| btrfs_assert_tree_locked(parent); |
| parent_level = btrfs_header_level(parent); |
| extent_buffer_get(parent); |
| path->nodes[parent_level] = parent; |
| path->slots[parent_level] = btrfs_header_nritems(parent); |
| |
| btrfs_assert_tree_locked(node); |
| level = btrfs_header_level(node); |
| path->nodes[level] = node; |
| path->slots[level] = 0; |
| path->locks[level] = 1; |
| |
| wc->refs[parent_level] = 1; |
| wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| wc->level = level; |
| wc->shared_level = -1; |
| wc->stage = DROP_REFERENCE; |
| wc->update_ref = 0; |
| wc->keep_locks = 1; |
| wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); |
| |
| while (1) { |
| wret = walk_down_tree(trans, root, path, wc); |
| if (wret < 0) { |
| ret = wret; |
| break; |
| } |
| |
| wret = walk_up_tree(trans, root, path, wc, parent_level); |
| if (wret < 0) |
| ret = wret; |
| if (wret != 0) |
| break; |
| } |
| |
| kfree(wc); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| #if 0 |
| static unsigned long calc_ra(unsigned long start, unsigned long last, |
| unsigned long nr) |
| { |
| return min(last, start + nr - 1); |
| } |
| |
| static noinline int relocate_inode_pages(struct inode *inode, u64 start, |
| u64 len) |
| { |
| u64 page_start; |
| u64 page_end; |
| unsigned long first_index; |
| unsigned long last_index; |
| unsigned long i; |
| struct page *page; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct file_ra_state *ra; |
| struct btrfs_ordered_extent *ordered; |
| unsigned int total_read = 0; |
| unsigned int total_dirty = 0; |
| int ret = 0; |
| |
| ra = kzalloc(sizeof(*ra), GFP_NOFS); |
| |
| mutex_lock(&inode->i_mutex); |
| first_index = start >> PAGE_CACHE_SHIFT; |
| last_index = (start + len - 1) >> PAGE_CACHE_SHIFT; |
| |
| /* make sure the dirty trick played by the caller work */ |
| ret = invalidate_inode_pages2_range(inode->i_mapping, |
| first_index, last_index); |
| if (ret) |
| goto out_unlock; |
| |
| file_ra_state_init(ra, inode->i_mapping); |
| |
| for (i = first_index ; i <= last_index; i++) { |
| if (total_read % ra->ra_pages == 0) { |
| btrfs_force_ra(inode->i_mapping, ra, NULL, i, |
| calc_ra(i, last_index, ra->ra_pages)); |
| } |
| total_read++; |
| again: |
| if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode)) |
| BUG_ON(1); |
| page = grab_cache_page(inode->i_mapping, i); |
| if (!page) { |
| ret = -ENOMEM; |
| goto out_unlock; |
| } |
| if (!PageUptodate(page)) { |
| btrfs_readpage(NULL, page); |
| lock_page(page); |
| if (!PageUptodate(page)) { |
| unlock_page(page); |
| page_cache_release(page); |
| ret = -EIO; |
| goto out_unlock; |
| } |
| } |
| wait_on_page_writeback(page); |
| |
| page_start = (u64)page->index << PAGE_CACHE_SHIFT; |
| page_end = page_start + PAGE_CACHE_SIZE - 1; |
| lock_extent(io_tree, page_start, page_end, GFP_NOFS); |
| |
| ordered = btrfs_lookup_ordered_extent(inode, page_start); |
| if (ordered) { |
| unlock_extent(io_tree, page_start, page_end, GFP_NOFS); |
| unlock_page(page); |
| page_cache_release(page); |
| btrfs_start_ordered_extent(inode, ordered, 1); |
| btrfs_put_ordered_extent(ordered); |
| goto again; |
| } |
| set_page_extent_mapped(page); |
| |
| if (i == first_index) |
| set_extent_bits(io_tree, page_start, page_end, |
| EXTENT_BOUNDARY, GFP_NOFS); |
| btrfs_set_extent_delalloc(inode, page_start, page_end); |
| |
| set_page_dirty(page); |
| total_dirty++; |
| |
| unlock_extent(io_tree, page_start, page_end, GFP_NOFS); |
| unlock_page(page); |
| page_cache_release(page); |
| } |
| |
| out_unlock: |
| kfree(ra); |
| mutex_unlock(&inode->i_mutex); |
| balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty); |
| return ret; |
| } |
| |
| static noinline int relocate_data_extent(struct inode *reloc_inode, |
| struct btrfs_key *extent_key, |
| u64 offset) |
| { |
| struct btrfs_root *root = BTRFS_I(reloc_inode)->root; |
| struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree; |
| struct extent_map *em; |
| u64 start = extent_key->objectid - offset; |
| u64 end = start + extent_key->offset - 1; |
| |
| em = alloc_extent_map(GFP_NOFS); |
| BUG_ON(!em || IS_ERR(em)); |
| |
| em->start = start; |
| em->len = extent_key->offset; |
| em->block_len = extent_key->offset; |
| em->block_start = extent_key->objectid; |
| em->bdev = root->fs_info->fs_devices->latest_bdev; |
| set_bit(EXTENT_FLAG_PINNED, &em->flags); |
| |
| /* setup extent map to cheat btrfs_readpage */ |
| lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); |
| while (1) { |
| int ret; |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em); |
| write_unlock(&em_tree->lock); |
| if (ret != -EEXIST) { |
| free_extent_map(em); |
| break; |
| } |
| btrfs_drop_extent_cache(reloc_inode, start, end, 0); |
| } |
| unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); |
| |
| return relocate_inode_pages(reloc_inode, start, extent_key->offset); |
| } |
| |
| struct btrfs_ref_path { |
| u64 extent_start; |
| u64 nodes[BTRFS_MAX_LEVEL]; |
| u64 root_objectid; |
| u64 root_generation; |
| u64 owner_objectid; |
| u32 num_refs; |
| int lowest_level; |
| int current_level; |
| int shared_level; |
| |
| struct btrfs_key node_keys[BTRFS_MAX_LEVEL]; |
| u64 new_nodes[BTRFS_MAX_LEVEL]; |
| }; |
| |
| struct disk_extent { |
| u64 ram_bytes; |
| u64 disk_bytenr; |
| u64 disk_num_bytes; |
| u64 offset; |
| u64 num_bytes; |
| u8 compression; |
| u8 encryption; |
| u16 other_encoding; |
| }; |
| |
| static int is_cowonly_root(u64 root_objectid) |
| { |
| if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || |
| root_objectid == BTRFS_EXTENT_TREE_OBJECTID || |
| root_objectid == BTRFS_CHUNK_TREE_OBJECTID || |
| root_objectid == BTRFS_DEV_TREE_OBJECTID || |
| root_objectid == BTRFS_TREE_LOG_OBJECTID || |
| root_objectid == BTRFS_CSUM_TREE_OBJECTID) |
| return 1; |
| return 0; |
| } |
| |
| static noinline int __next_ref_path(struct btrfs_trans_handle *trans, |
| struct btrfs_root *extent_root, |
| struct btrfs_ref_path *ref_path, |
| int first_time) |
| { |
| struct extent_buffer *leaf; |
| struct btrfs_path *path; |
| struct btrfs_extent_ref *ref; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| u64 bytenr; |
| u32 nritems; |
| int level; |
| int ret = 1; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| if (first_time) { |
| ref_path->lowest_level = -1; |
| ref_path->current_level = -1; |
| ref_path->shared_level = -1; |
| goto walk_up; |
| } |
| walk_down: |
| level = ref_path->current_level - 1; |
| while (level >= -1) { |
| u64 parent; |
| if (level < ref_path->lowest_level) |
| break; |
| |
| if (level >= 0) |
| bytenr = ref_path->nodes[level]; |
| else |
| bytenr = ref_path->extent_start; |
| BUG_ON(bytenr == 0); |
| |
| parent = ref_path->nodes[level + 1]; |
| ref_path->nodes[level + 1] = 0; |
| ref_path->current_level = level; |
| BUG_ON(parent == 0); |
| |
| key.objectid = bytenr; |
| key.offset = parent + 1; |
| key.type = BTRFS_EXTENT_REF_KEY; |
| |
| ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| BUG_ON(ret == 0); |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| if (path->slots[0] >= nritems) { |
| ret = btrfs_next_leaf(extent_root, path); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) |
| goto next; |
| leaf = path->nodes[0]; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| if (found_key.objectid == bytenr && |
| found_key.type == BTRFS_EXTENT_REF_KEY) { |
| if (level < ref_path->shared_level) |
| ref_path->shared_level = level; |
| goto found; |
| } |
| next: |
| level--; |
| btrfs_release_path(extent_root, path); |
| cond_resched(); |
| } |
| /* reached lowest level */ |
| ret = 1; |
| goto out; |
| walk_up: |
| level = ref_path->current_level; |
| while (level < BTRFS_MAX_LEVEL - 1) { |
| u64 ref_objectid; |
| |
| if (level >= 0) |
| bytenr = ref_path->nodes[level]; |
| else |
| bytenr = ref_path->extent_start; |
| |
| BUG_ON(bytenr == 0); |
| |
| key.objectid = bytenr; |
| key.offset = 0; |
| key.type = BTRFS_EXTENT_REF_KEY; |
| |
| ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| if (path->slots[0] >= nritems) { |
| ret = btrfs_next_leaf(extent_root, path); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| /* the extent was freed by someone */ |
| if (ref_path->lowest_level == level) |
| goto out; |
| btrfs_release_path(extent_root, path); |
| goto walk_down; |
| } |
| leaf = path->nodes[0]; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| if (found_key.objectid != bytenr || |
| found_key.type != BTRFS_EXTENT_REF_KEY) { |
| /* the extent was freed by someone */ |
| if (ref_path->lowest_level == level) { |
| ret = 1; |
| goto out; |
| } |
| btrfs_release_path(extent_root, path); |
| goto walk_down; |
| } |
| found: |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_ref); |
| ref_objectid = btrfs_ref_objectid(leaf, ref); |
| if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) { |
| if (first_time) { |
| level = (int)ref_objectid; |
| BUG_ON(level >= BTRFS_MAX_LEVEL); |
| ref_path->lowest_level = level; |
| ref_path->current_level = level; |
| ref_path->nodes[level] = bytenr; |
| } else { |
| WARN_ON(ref_objectid != level); |
| } |
| } else { |
| WARN_ON(level != -1); |
| } |
| first_time = 0; |
| |
| if (ref_path->lowest_level == level) { |
| ref_path->owner_objectid = ref_objectid; |
| ref_path->num_refs = btrfs_ref_num_refs(leaf, ref); |
| } |
| |
| /* |
| * the block is tree root or the block isn't in reference |
| * counted tree. |
| */ |
| if (found_key.objectid == found_key.offset || |
| is_cowonly_root(btrfs_ref_root(leaf, ref))) { |
| ref_path->root_objectid = btrfs_ref_root(leaf, ref); |
| ref_path->root_generation = |
| btrfs_ref_generation(leaf, ref); |
| if (level < 0) { |
| /* special reference from the tree log */ |
| ref_path->nodes[0] = found_key.offset; |
| ref_path->current_level = 0; |
| } |
| ret = 0; |
| goto out; |
| } |
| |
| level++; |
| BUG_ON(ref_path->nodes[level] != 0); |
| ref_path->nodes[level] = found_key.offset; |
| ref_path->current_level = level; |
| |
| /* |
| * the reference was created in the running transaction, |
| * no need to continue walking up. |
| */ |
| if (btrfs_ref_generation(leaf, ref) == trans->transid) { |
| ref_path->root_objectid = btrfs_ref_root(leaf, ref); |
| ref_path->root_generation = |
| btrfs_ref_generation(leaf, ref); |
| ret = 0; |
| goto out; |
| } |
| |
| btrfs_release_path(extent_root, path); |
| cond_resched(); |
| } |
| /* reached max tree level, but no tree root found. */ |
| BUG(); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int btrfs_first_ref_path(struct btrfs_trans_handle *trans, |
| struct btrfs_root *extent_root, |
| struct btrfs_ref_path *ref_path, |
| u64 extent_start) |
| { |
| memset(ref_path, 0, sizeof(*ref_path)); |
| ref_path->extent_start = extent_start; |
| |
| return __next_ref_path(trans, extent_root, ref_path, 1); |
| } |
| |
| static int btrfs_next_ref_path(struct btrfs_trans_handle *trans, |
| struct btrfs_root *extent_root, |
| struct btrfs_ref_path *ref_path) |
| { |
| return __next_ref_path(trans, extent_root, ref_path, 0); |
| } |
| |
| static noinline int get_new_locations(struct inode *reloc_inode, |
| struct btrfs_key *extent_key, |
| u64 offset, int no_fragment, |
| struct disk_extent **extents, |
| int *nr_extents) |
| { |
| struct btrfs_root *root = BTRFS_I(reloc_inode)->root; |
| struct btrfs_path *path; |
| struct btrfs_file_extent_item *fi; |
| struct extent_buffer *leaf; |
| struct disk_extent *exts = *extents; |
| struct btrfs_key found_key; |
| u64 cur_pos; |
| u64 last_byte; |
| u32 nritems; |
| int nr = 0; |
| int max = *nr_extents; |
| int ret; |
| |
| WARN_ON(!no_fragment && *extents); |
| if (!exts) { |
| max = 1; |
| exts = kmalloc(sizeof(*exts) * max, GFP_NOFS); |
| if (!exts) |
| return -ENOMEM; |
| } |
| |
| path = btrfs_alloc_path(); |
| BUG_ON(!path); |
| |
| cur_pos = extent_key->objectid - offset; |
| last_byte = extent_key->objectid + extent_key->offset; |
| ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino, |
| cur_pos, 0); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| while (1) { |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| if (path->slots[0] >= nritems) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) |
| break; |
| leaf = path->nodes[0]; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| if (found_key.offset != cur_pos || |
| found_key.type != BTRFS_EXTENT_DATA_KEY || |
| found_key.objectid != reloc_inode->i_ino) |
| break; |
| |
| fi = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| if (btrfs_file_extent_type(leaf, fi) != |
| BTRFS_FILE_EXTENT_REG || |
| btrfs_file_extent_disk_bytenr(leaf, fi) == 0) |
| break; |
| |
| if (nr == max) { |
| struct disk_extent *old = exts; |
| max *= 2; |
| exts = kzalloc(sizeof(*exts) * max, GFP_NOFS); |
| memcpy(exts, old, sizeof(*exts) * nr); |
| if (old != *extents) |
| kfree(old); |
| } |
| |
| exts[nr].disk_bytenr = |
| btrfs_file_extent_disk_bytenr(leaf, fi); |
| exts[nr].disk_num_bytes = |
| btrfs_file_extent_disk_num_bytes(leaf, fi); |
| exts[nr].offset = btrfs_file_extent_offset(leaf, fi); |
| exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi); |
| exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); |
| exts[nr].compression = btrfs_file_extent_compression(leaf, fi); |
| exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi); |
| exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf, |
| fi); |
| BUG_ON(exts[nr].offset > 0); |
| BUG_ON(exts[nr].compression || exts[nr].encryption); |
| BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes); |
| |
| cur_pos += exts[nr].num_bytes; |
| nr++; |
| |
| if (cur_pos + offset >= last_byte) |
| break; |
| |
| if (no_fragment) { |
| ret = 1; |
| goto out; |
| } |
| path->slots[0]++; |
| } |
| |
| BUG_ON(cur_pos + offset > last_byte); |
| if (cur_pos + offset < last_byte) { |
| ret = -ENOENT; |
| goto out; |
| } |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| if (ret) { |
| if (exts != *extents) |
| kfree(exts); |
| } else { |
| *extents = exts; |
| *nr_extents = nr; |
| } |
| return ret; |
| } |
| |
| static noinline int replace_one_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_key *extent_key, |
| struct btrfs_key *leaf_key, |
| struct btrfs_ref_path *ref_path, |
| struct disk_extent *new_extents, |
| int nr_extents) |
| { |
| struct extent_buffer *leaf; |
| struct btrfs_file_extent_item *fi; |
| struct inode *inode = NULL; |
| struct btrfs_key key; |
| u64 lock_start = 0; |
| u64 lock_end = 0; |
| u64 num_bytes; |
| u64 ext_offset; |
| u64 search_end = (u64)-1; |
| u32 nritems; |
| int nr_scaned = 0; |
| int extent_locked = 0; |
| int extent_type; |
| int ret; |
| |
| memcpy(&key, leaf_key, sizeof(key)); |
| if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { |
| if (key.objectid < ref_path->owner_objectid || |
| (key.objectid == ref_path->owner_objectid && |
| key.type < BTRFS_EXTENT_DATA_KEY)) { |
| key.objectid = ref_path->owner_objectid; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = 0; |
| } |
| } |
| |
| while (1) { |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| if (ret < 0) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| next: |
| if (extent_locked && ret > 0) { |
| /* |
| * the file extent item was modified by someone |
| * before the extent got locked. |
| */ |
| unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, |
| lock_end, GFP_NOFS); |
| extent_locked = 0; |
| } |
| |
| if (path->slots[0] >= nritems) { |
| if (++nr_scaned > 2) |
| break; |
| |
| BUG_ON(extent_locked); |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) |
| break; |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { |
| if ((key.objectid > ref_path->owner_objectid) || |
| (key.objectid == ref_path->owner_objectid && |
| key.type > BTRFS_EXTENT_DATA_KEY) || |
| key.offset >= search_end) |
| break; |
| } |
| |
| if (inode && key.objectid != inode->i_ino) { |
| BUG_ON(extent_locked); |
| btrfs_release_path(root, path); |
| mutex_unlock(&inode->i_mutex); |
| iput(inode); |
| inode = NULL; |
| continue; |
| } |
| |
| if (key.type != BTRFS_EXTENT_DATA_KEY) { |
| path->slots[0]++; |
| ret = 1; |
| goto next; |
| } |
| fi = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| extent_type = btrfs_file_extent_type(leaf, fi); |
| if ((extent_type != BTRFS_FILE_EXTENT_REG && |
| extent_type != BTRFS_FILE_EXTENT_PREALLOC) || |
| (btrfs_file_extent_disk_bytenr(leaf, fi) != |
| extent_key->objectid)) { |
| path->slots[0]++; |
| ret = 1; |
| goto next; |
| } |
| |
| num_bytes = btrfs_file_extent_num_bytes(leaf, fi); |
| ext_offset = btrfs_file_extent_offset(leaf, fi); |
| |
| if (search_end == (u64)-1) { |
| search_end = key.offset - ext_offset + |
| btrfs_file_extent_ram_bytes(leaf, fi); |
| } |
| |
| if (!extent_locked) { |
| lock_start = key.offset; |
| lock_end = lock_start + num_bytes - 1; |
| } else { |
| if (lock_start > key.offset || |
| lock_end + 1 < key.offset + num_bytes) { |
| unlock_extent(&BTRFS_I(inode)->io_tree, |
| lock_start, lock_end, GFP_NOFS); |
| extent_locked = 0; |
| } |
| } |
| |
| if (!inode) { |
| btrfs_release_path(root, path); |
| |
| inode = btrfs_iget_locked(root->fs_info->sb, |
| key.objectid, root); |
| if (inode->i_state & I_NEW) { |
| BTRFS_I(inode)->root = root; |
| BTRFS_I(inode)->location.objectid = |
| key.objectid; |
| BTRFS_I(inode)->location.type = |
| BTRFS_INODE_ITEM_KEY; |
| BTRFS_I(inode)->location.offset = 0; |
| btrfs_read_locked_inode(inode); |
| unlock_new_inode(inode); |
| } |
| /* |
| * some code call btrfs_commit_transaction while |
| * holding the i_mutex, so we can't use mutex_lock |
| * here. |
| */ |
| if (is_bad_inode(inode) || |
| !mutex_trylock(&inode->i_mutex)) { |
| iput(inode); |
| inode = NULL; |
| key.offset = (u64)-1; |
| goto skip; |
| } |
| } |
| |
| if (!extent_locked) { |
| struct btrfs_ordered_extent *ordered; |
| |
| btrfs_release_path(root, path); |
| |
| lock_extent(&BTRFS_I(inode)->io_tree, lock_start, |
| lock_end, GFP_NOFS); |
| ordered = btrfs_lookup_first_ordered_extent(inode, |
| lock_end); |
| if (ordered && |
| ordered->file_offset <= lock_end && |
| ordered->file_offset + ordered->len > lock_start) { |
| unlock_extent(&BTRFS_I(inode)->io_tree, |
| lock_start, lock_end, GFP_NOFS); |
| btrfs_start_ordered_extent(inode, ordered, 1); |
| btrfs_put_ordered_extent(ordered); |
| key.offset += num_bytes; |
| goto skip; |
| } |
| if (ordered) |
| btrfs_put_ordered_extent(ordered); |
| |
| extent_locked = 1; |
| continue; |
| } |
| |
| if (nr_extents == 1) { |
| /* update extent pointer in place */ |
| btrfs_set_file_extent_disk_bytenr(leaf, fi, |
| new_extents[0].disk_bytenr); |
| btrfs_set_file_extent_disk_num_bytes(leaf, fi, |
| new_extents[0].disk_num_bytes); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| btrfs_drop_extent_cache(inode, key.offset, |
| key.offset + num_bytes - 1, 0); |
| |
| ret = btrfs_inc_extent_ref(trans, root, |
| new_extents[0].disk_bytenr, |
| new_extents[0].disk_num_bytes, |
| leaf->start, |
| root->root_key.objectid, |
| trans->transid, |
| key.objectid); |
| BUG_ON(ret); |
| |
| ret = btrfs_free_extent(trans, root, |
| extent_key->objectid, |
| extent_key->offset, |
| leaf->start, |
| btrfs_header_owner(leaf), |
| btrfs_header_generation(leaf), |
| key.objectid, 0); |
| BUG_ON(ret); |
| |
| btrfs_release_path(root, path); |
| key.offset += num_bytes; |
| } else { |
| BUG_ON(1); |
| #if 0 |
| u64 alloc_hint; |
| u64 extent_len; |
| int i; |
| /* |
| * drop old extent pointer at first, then insert the |
| * new pointers one bye one |
| */ |
| btrfs_release_path(root, path); |
| ret = btrfs_drop_extents(trans, root, inode, key.offset, |
| key.offset + num_bytes, |
| key.offset, &alloc_hint); |
| BUG_ON(ret); |
| |
| for (i = 0; i < nr_extents; i++) { |
| if (ext_offset >= new_extents[i].num_bytes) { |
| ext_offset -= new_extents[i].num_bytes; |
| continue; |
| } |
| extent_len = min(new_extents[i].num_bytes - |
| ext_offset, num_bytes); |
| |
| ret = btrfs_insert_empty_item(trans, root, |
| path, &key, |
| sizeof(*fi)); |
| BUG_ON(ret); |
| |
| leaf = path->nodes[0]; |
| fi = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| btrfs_set_file_extent_generation(leaf, fi, |
| trans->transid); |
| btrfs_set_file_extent_type(leaf, fi, |
| BTRFS_FILE_EXTENT_REG); |
| btrfs_set_file_extent_disk_bytenr(leaf, fi, |
| new_extents[i].disk_bytenr); |
| btrfs_set_file_extent_disk_num_bytes(leaf, fi, |
| new_extents[i].disk_num_bytes); |
| btrfs_set_file_extent_ram_bytes(leaf, fi, |
| new_extents[i].ram_bytes); |
| |
| btrfs_set_file_extent_compression(leaf, fi, |
| new_extents[i].compression); |
| btrfs_set_file_extent_encryption(leaf, fi, |
| new_extents[i].encryption); |
| btrfs_set_file_extent_other_encoding(leaf, fi, |
| new_extents[i].other_encoding); |
| |
| btrfs_set_file_extent_num_bytes(leaf, fi, |
| extent_len); |
| ext_offset += new_extents[i].offset; |
| btrfs_set_file_extent_offset(leaf, fi, |
| ext_offset); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| btrfs_drop_extent_cache(inode, key.offset, |
| key.offset + extent_len - 1, 0); |
| |
| ret = btrfs_inc_extent_ref(trans, root, |
| new_extents[i].disk_bytenr, |
| new_extents[i].disk_num_bytes, |
| leaf->start, |
| root->root_key.objectid, |
| trans->transid, key.objectid); |
| BUG_ON(ret); |
| btrfs_release_path(root, path); |
| |
| inode_add_bytes(inode, extent_len); |
| |
| ext_offset = 0; |
| num_bytes -= extent_len; |
| key.offset += extent_len; |
| |
| if (num_bytes == 0) |
| break; |
| } |
| BUG_ON(i >= nr_extents); |
| #endif |
| } |
| |
| if (extent_locked) { |
| unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, |
| lock_end, GFP_NOFS); |
| extent_locked = 0; |
| } |
| skip: |
| if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS && |
| key.offset >= search_end) |
| break; |
| |
| cond_resched(); |
| } |
| ret = 0; |
| out: |
| btrfs_release_path(root, path); |
| if (inode) { |
| mutex_unlock(&inode->i_mutex); |
| if (extent_locked) { |
| unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, |
| lock_end, GFP_NOFS); |
| } |
| iput(inode); |
| } |
| return ret; |
| } |
| |
| int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf, u64 orig_start) |
| { |
| int level; |
| int ret; |
| |
| BUG_ON(btrfs_header_generation(buf) != trans->transid); |
| BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); |
| |
| level = btrfs_header_level(buf); |
| if (level == 0) { |
| struct btrfs_leaf_ref *ref; |
| struct btrfs_leaf_ref *orig_ref; |
| |
| orig_ref = btrfs_lookup_leaf_ref(root, orig_start); |
| if (!orig_ref) |
| return -ENOENT; |
| |
| ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems); |
| if (!ref) { |
| btrfs_free_leaf_ref(root, orig_ref); |
| return -ENOMEM; |
| } |
| |
| ref->nritems = orig_ref->nritems; |
| memcpy(ref->extents, orig_ref->extents, |
| sizeof(ref->extents[0]) * ref->nritems); |
| |
| btrfs_free_leaf_ref(root, orig_ref); |
| |
| ref->root_gen = trans->transid; |
| ref->bytenr = buf->start; |
| ref->owner = btrfs_header_owner(buf); |
| ref->generation = btrfs_header_generation(buf); |
| |
| ret = btrfs_add_leaf_ref(root, ref, 0); |
| WARN_ON(ret); |
| btrfs_free_leaf_ref(root, ref); |
| } |
| return 0; |
| } |
| |
| static noinline int invalidate_extent_cache(struct btrfs_root *root, |
| struct extent_buffer *leaf, |
| struct btrfs_block_group_cache *group, |
| struct btrfs_root *target_root) |
| { |
| struct btrfs_key key; |
| struct inode *inode = NULL; |
| struct btrfs_file_extent_item *fi; |
| struct extent_state *cached_state = NULL; |
| u64 num_bytes; |
| u64 skip_objectid = 0; |
| u32 nritems; |
| u32 i; |
| |
| nritems = btrfs_header_nritems(leaf); |
| for (i = 0; i < nritems; i++) { |
| btrfs_item_key_to_cpu(leaf, &key, i); |
| if (key.objectid == skip_objectid || |
| key.type != BTRFS_EXTENT_DATA_KEY) |
| continue; |
| fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); |
| if (btrfs_file_extent_type(leaf, fi) == |
| BTRFS_FILE_EXTENT_INLINE) |
| continue; |
| if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) |
| continue; |
| if (!inode || inode->i_ino != key.objectid) { |
| iput(inode); |
| inode = btrfs_ilookup(target_root->fs_info->sb, |
| key.objectid, target_root, 1); |
| } |
| if (!inode) { |
| skip_objectid = key.objectid; |
| continue; |
| } |
| num_bytes = btrfs_file_extent_num_bytes(leaf, fi); |
| |
| lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset, |
| key.offset + num_bytes - 1, 0, &cached_state, |
| GFP_NOFS); |
| btrfs_drop_extent_cache(inode, key.offset, |
| key.offset + num_bytes - 1, 1); |
| unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset, |
| key.offset + num_bytes - 1, &cached_state, |
| GFP_NOFS); |
| cond_resched(); |
| } |
| iput(inode); |
| return 0; |
| } |
| |
| static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *leaf, |
| struct btrfs_block_group_cache *group, |
| struct inode *reloc_inode) |
| { |
| struct btrfs_key key; |
| struct btrfs_key extent_key; |
| struct btrfs_file_extent_item *fi; |
| struct btrfs_leaf_ref *ref; |
| struct disk_extent *new_extent; |
| u64 bytenr; |
| u64 num_bytes; |
| u32 nritems; |
| u32 i; |
| int ext_index; |
| int nr_extent; |
| int ret; |
| |
| new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS); |
| BUG_ON(!new_extent); |
| |
| ref = btrfs_lookup_leaf_ref(root, leaf->start); |
| BUG_ON(!ref); |
| |
| ext_index = -1; |
| nritems = btrfs_header_nritems(leaf); |
| for (i = 0; i < nritems; i++) { |
| btrfs_item_key_to_cpu(leaf, &key, i); |
| if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) |
| continue; |
| fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); |
| if (btrfs_file_extent_type(leaf, fi) == |
| BTRFS_FILE_EXTENT_INLINE) |
| continue; |
| bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); |
| num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); |
| if (bytenr == 0) |
| continue; |
| |
| ext_index++; |
| if (bytenr >= group->key.objectid + group->key.offset || |
| bytenr + num_bytes <= group->key.objectid) |
| continue; |
| |
| extent_key.objectid = bytenr; |
| extent_key.offset = num_bytes; |
| extent_key.type = BTRFS_EXTENT_ITEM_KEY; |
| nr_extent = 1; |
| ret = get_new_locations(reloc_inode, &extent_key, |
| group->key.objectid, 1, |
| &new_extent, &nr_extent); |
| if (ret > 0) |
| continue; |
| BUG_ON(ret < 0); |
| |
| BUG_ON(ref->extents[ext_index].bytenr != bytenr); |
| BUG_ON(ref->extents[ext_index].num_bytes != num_bytes); |
| ref->extents[ext_index].bytenr = new_extent->disk_bytenr; |
| ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes; |
| |
| btrfs_set_file_extent_disk_bytenr(leaf, fi, |
| new_extent->disk_bytenr); |
| btrfs_set_file_extent_disk_num_bytes(leaf, fi, |
| new_extent->disk_num_bytes); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| ret = btrfs_inc_extent_ref(trans, root, |
| new_extent->disk_bytenr, |
| new_extent->disk_num_bytes, |
| leaf->start, |
| root->root_key.objectid, |
| trans->transid, key.objectid); |
| BUG_ON(ret); |
| |
| ret = btrfs_free_extent(trans, root, |
| bytenr, num_bytes, leaf->start, |
| btrfs_header_owner(leaf), |
| btrfs_header_generation(leaf), |
| key.objectid, 0); |
| BUG_ON(ret); |
| cond_resched(); |
| } |
| kfree(new_extent); |
| BUG_ON(ext_index + 1 != ref->nritems); |
| btrfs_free_leaf_ref(root, ref); |
| return 0; |
| } |
| |
| int btrfs_free_reloc_root(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_root *reloc_root; |
| int ret; |
| |
| if (root->reloc_root) { |
| reloc_root = root->reloc_root; |
| root->reloc_root = NULL; |
| list_add(&reloc_root->dead_list, |
| &root->fs_info->dead_reloc_roots); |
| |
| btrfs_set_root_bytenr(&reloc_root->root_item, |
| reloc_root->node->start); |
| btrfs_set_root_level(&root->root_item, |
| btrfs_header_level(reloc_root->node)); |
| memset(&reloc_root->root_item.drop_progress, 0, |
| sizeof(struct btrfs_disk_key)); |
| reloc_root->root_item.drop_level = 0; |
| |
| ret = btrfs_update_root(trans, root->fs_info->tree_root, |
| &reloc_root->root_key, |
| &reloc_root->root_item); |
| BUG_ON(ret); |
| } |
| return 0; |
| } |
| |
| int btrfs_drop_dead_reloc_roots(struct btrfs_root *root) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *reloc_root; |
| struct btrfs_root *prev_root = NULL; |
| struct list_head dead_roots; |
| int ret; |
| unsigned long nr; |
| |
| INIT_LIST_HEAD(&dead_roots); |
| list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots); |
| |
| while (!list_empty(&dead_roots)) { |
| reloc_root = list_entry(dead_roots.prev, |
| struct btrfs_root, dead_list); |
| list_del_init(&reloc_root->dead_list); |
| |
| BUG_ON(reloc_root->commit_root != NULL); |
| while (1) { |
| trans = btrfs_join_transaction(root, 1); |
| BUG_ON(!trans); |
| |
| mutex_lock(&root->fs_info->drop_mutex); |
| ret = btrfs_drop_snapshot(trans, reloc_root); |
| if (ret != -EAGAIN) |
| break; |
| mutex_unlock(&root->fs_info->drop_mutex); |
| |
| nr = trans->blocks_used; |
| ret = btrfs_end_transaction(trans, root); |
| BUG_ON(ret); |
| btrfs_btree_balance_dirty(root, nr); |
| } |
| |
| free_extent_buffer(reloc_root->node); |
| |
| ret = btrfs_del_root(trans, root->fs_info->tree_root, |
| &reloc_root->root_key); |
| BUG_ON(ret); |
| mutex_unlock(&root->fs_info->drop_mutex); |
| |
| nr = trans->blocks_used; |
| ret = btrfs_end_transaction(trans, root); |
| BUG_ON(ret); |
| btrfs_btree_balance_dirty(root, nr); |
| |
| kfree(prev_root); |
| prev_root = reloc_root; |
| } |
| if (prev_root) { |
| btrfs_remove_leaf_refs(prev_root, (u64)-1, 0); |
| kfree(prev_root); |
| } |
| return 0; |
| } |
| |
| int btrfs_add_dead_reloc_root(struct btrfs_root *root) |
| { |
| list_add(&root->dead_list, &root->fs_info->dead_reloc_roots); |
| return 0; |
| } |
| |
| int btrfs_cleanup_reloc_trees(struct btrfs_root *root) |
| { |
| struct btrfs_root *reloc_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_key location; |
| int found; |
| int ret; |
| |
| mutex_lock(&root->fs_info->tree_reloc_mutex); |
| ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL); |
| BUG_ON(ret); |
| found = !list_empty(&root->fs_info->dead_reloc_roots); |
| mutex_unlock(&root->fs_info->tree_reloc_mutex); |
| |
| if (found) { |
| trans = btrfs_start_transaction(root, 1); |
| BUG_ON(!trans); |
| ret = btrfs_commit_transaction(trans, root); |
| BUG_ON(ret); |
| } |
| |
| location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; |
| location.offset = (u64)-1; |
| location.type = BTRFS_ROOT_ITEM_KEY; |
| |
| reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location); |
| BUG_ON(!reloc_root); |
| btrfs_orphan_cleanup(reloc_root); |
| return 0; |
| } |
| |
| static noinline int init_reloc_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_root *reloc_root; |
| struct extent_buffer *eb; |
| struct btrfs_root_item *root_item; |
| struct btrfs_key root_key; |
| int ret; |
| |
| BUG_ON(!root->ref_cows); |
| if (root->reloc_root) |
| return 0; |
| |
| root_item = kmalloc(sizeof(*root_item), GFP_NOFS); |
| BUG_ON(!root_item); |
| |
| ret = btrfs_copy_root(trans, root, root->commit_root, |
| &eb, BTRFS_TREE_RELOC_OBJECTID); |
| BUG_ON(ret); |
| |
| root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; |
| root_key.offset = root->root_key.objectid; |
| root_key.type = BTRFS_ROOT_ITEM_KEY; |
| |
| memcpy(root_item, &root->root_item, sizeof(root_item)); |
| btrfs_set_root_refs(root_item, 0); |
| btrfs_set_root_bytenr(root_item, eb->start); |
| btrfs_set_root_level(root_item, btrfs_header_level(eb)); |
| btrfs_set_root_generation(root_item, trans->transid); |
| |
| btrfs_tree_unlock(eb); |
| free_extent_buffer(eb); |
| |
| ret = btrfs_insert_root(trans, root->fs_info->tree_root, |
| &root_key, root_item); |
| BUG_ON(ret); |
| kfree(root_item); |
| |
| reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, |
| &root_key); |
| BUG_ON(!reloc_root); |
| reloc_root->last_trans = trans->transid; |
| reloc_root->commit_root = NULL; |
| reloc_root->ref_tree = &root->fs_info->reloc_ref_tree; |
| |
| root->reloc_root = reloc_root; |
| return 0; |
| } |
| |
| /* |
| * Core function of space balance. |
| * |
| * The idea is using reloc trees to relocate tree blocks in reference |
| * counted roots. There is one reloc tree for each subvol, and all |
| * reloc trees share same root key objectid. Reloc trees are snapshots |
| * of the latest committed roots of subvols (root->commit_root). |
| * |
| * To relocate a tree block referenced by a subvol, there are two steps. |
| * COW the block through subvol's reloc tree, then update block pointer |
| * in the subvol to point to the new block. Since all reloc trees share |
| * same root key objectid, doing special handing for tree blocks owned |
| * by them is easy. Once a tree block has been COWed in one reloc tree, |
| * we can use the resulting new block directly when the same block is |
| * required to COW again through other reloc trees. By this way, relocated |
| * tree blocks are shared between reloc trees, so they are also shared |
| * between subvols. |
| */ |
| static noinline int relocate_one_path(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_key *first_key, |
| struct btrfs_ref_path *ref_path, |
| struct btrfs_block_group_cache *group, |
| struct inode *reloc_inode) |
| { |
| struct btrfs_root *reloc_root; |
| struct extent_buffer *eb = NULL; |
| struct btrfs_key *keys; |
| u64 *nodes; |
| int level; |
| int shared_level; |
| int lowest_level = 0; |
| int ret; |
| |
| if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID) |
| lowest_level = ref_path->owner_objectid; |
| |
| if (!root->ref_cows) { |
| path->lowest_level = lowest_level; |
| ret = btrfs_search_slot(trans, root, first_key, path, 0, 1); |
| BUG_ON(ret < 0); |
| path->lowest_level = 0; |
| btrfs_release_path(root, path); |
| return 0; |
| } |
| |
| mutex_lock(&root->fs_info->tree_reloc_mutex); |
| ret = init_reloc_tree(trans, root); |
| BUG_ON(ret); |
| reloc_root = root->reloc_root; |
| |
| shared_level = ref_path->shared_level; |
| ref_path->shared_level = BTRFS_MAX_LEVEL - 1; |
| |
| keys = ref_path->node_keys; |
| nodes = ref_path->new_nodes; |
| memset(&keys[shared_level + 1], 0, |
| sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1)); |
| memset(&nodes[shared_level + 1], 0, |
| sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1)); |
| |
| if (nodes[lowest_level] == 0) { |
| path->lowest_level = lowest_level; |
| ret = btrfs_search_slot(trans, reloc_root, first_key, path, |
| 0, 1); |
| BUG_ON(ret); |
| for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) { |
| eb = path->nodes[level]; |
| if (!eb || eb == reloc_root->node) |
| break; |
| nodes[level] = eb->start; |
| if (level == 0) |
| btrfs_item_key_to_cpu(eb, &keys[level], 0); |
| else |
| btrfs_node_key_to_cpu(eb, &keys[level], 0); |
| } |
| if (nodes[0] && |
| ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { |
| eb = path->nodes[0]; |
| ret = replace_extents_in_leaf(trans, reloc_root, eb, |
| group, reloc_inode); |
| BUG_ON(ret); |
| } |
| btrfs_release_path(reloc_root, path); |
| } else { |
| ret = btrfs_merge_path(trans, reloc_root, keys, nodes, |
| lowest_level); |
| BUG_ON(ret); |
| } |
| |
| /* |
| * replace tree blocks in the fs tree with tree blocks in |
| * the reloc tree. |
| */ |
| ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level); |
| BUG_ON(ret < 0); |
| |
| if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { |
| ret = btrfs_search_slot(trans, reloc_root, first_key, path, |
| 0, 0); |
| BUG_ON(ret); |
| extent_buffer_get(path->nodes[0]); |
| eb = path->nodes[0]; |
| btrfs_release_path(reloc_root, path); |
| ret = invalidate_extent_cache(reloc_root, eb, group, root); |
| BUG_ON(ret); |
| free_extent_buffer(eb); |
| } |
| |
| mutex_unlock(&root->fs_info->tree_reloc_mutex); |
| path->lowest_level = 0; |
| return 0; |
| } |
| |
| static noinline int relocate_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_key *first_key, |
| struct btrfs_ref_path *ref_path) |
| { |
| int ret; |
| |
| ret = relocate_one_path(trans, root, path, first_key, |
| ref_path, NULL, NULL); |
| BUG_ON(ret); |
| |
| return 0; |
| } |
| |
| static noinline int del_extent_zero(struct btrfs_trans_handle *trans, |
| struct btrfs_root *extent_root, |
| struct btrfs_path *path, |
| struct btrfs_key *extent_key) |
| { |
| int ret; |
| |
| ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1); |
| if (ret) |
| goto out; |
| ret = btrfs_del_item(trans, extent_root, path); |
| out: |
| btrfs_release_path(extent_root, path); |
| return ret; |
| } |
| |
| static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info, |
| struct btrfs_ref_path *ref_path) |
| { |
| struct btrfs_key root_key; |
| |
| root_key.objectid = ref_path->root_objectid; |
| root_key.type = BTRFS_ROOT_ITEM_KEY; |
| if (is_cowonly_root(ref_path->root_objectid)) |
| root_key.offset = 0; |
| else |
| root_key.offset = (u64)-1; |
| |
| return btrfs_read_fs_root_no_name(fs_info, &root_key); |
| } |
| |
| static noinline int relocate_one_extent(struct btrfs_root *extent_root, |
| struct btrfs_path *path, |
| struct btrfs_key *extent_key, |
| struct btrfs_block_group_cache *group, |
| struct inode *reloc_inode, int pass) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *found_root; |
| struct btrfs_ref_path *ref_path = NULL; |
| struct disk_extent *new_extents = NULL; |
| int nr_extents = 0; |
| int loops; |
| int ret; |
| int level; |
| struct btrfs_key first_key; |
| u64 prev_block = 0; |
| |
| |
| trans = btrfs_start_transaction(extent_root, 1); |
| BUG_ON(!trans); |
| |
| if (extent_key->objectid == 0) { |
| ret = del_extent_zero(trans, extent_root, path, extent_key); |
| goto out; |
| } |
| |
| ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS); |
| if (!ref_path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| for (loops = 0; ; loops++) { |
| if (loops == 0) { |
| ret = btrfs_first_ref_path(trans, extent_root, ref_path, |
| extent_key->objectid); |
| } else { |
| ret = btrfs_next_ref_path(trans, extent_root, ref_path); |
| } |
| if (ret < 0) |
| goto out; |
| if (ret > 0) |
| break; |
| |
| if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID || |
| ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID) |
| continue; |
| |
| found_root = read_ref_root(extent_root->fs_info, ref_path); |
| BUG_ON(!found_root); |
| /* |
| * for reference counted tree, only process reference paths |
| * rooted at the latest committed root. |
| */ |
| if (found_root->ref_cows && |
| ref_path->root_generation != found_root->root_key.offset) |
| continue; |
| |
| if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { |
| if (pass == 0) { |
| /* |
| * copy data extents to new locations |
| */ |
| u64 group_start = group->key.objectid; |
| ret = relocate_data_extent(reloc_inode, |
| extent_key, |
| group_start); |
| if (ret < 0) |
| goto out; |
| break; |
| } |
| level = 0; |
| } else { |
| level = ref_path->owner_objectid; |
| } |
| |
| if (prev_block != ref_path->nodes[level]) { |
| struct extent_buffer *eb; |
| u64 block_start = ref_path->nodes[level]; |
| u64 block_size = btrfs_level_size(found_root, level); |
| |
| eb = read_tree_block(found_root, block_start, |
| block_size, 0); |
| btrfs_tree_lock(eb); |
| BUG_ON(level != btrfs_header_level(eb)); |
| |
| if (level == 0) |
| btrfs_item_key_to_cpu(eb, &first_key, 0); |
| else |
| btrfs_node_key_to_cpu(eb, &first_key, 0); |
| |
| btrfs_tree_unlock(eb); |
| free_extent_buffer(eb); |
| prev_block = block_start; |
| } |
| |
| mutex_lock(&extent_root->fs_info->trans_mutex); |
| btrfs_record_root_in_trans(found_root); |
| mutex_unlock(&extent_root->fs_info->trans_mutex); |
| if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { |
| /* |
| * try to update data extent references while |
| * keeping metadata shared between snapshots. |
| */ |
| if (pass == 1) { |
| ret = relocate_one_path(trans, found_root, |
| path, &first_key, ref_path, |
| group, reloc_inode); |
| if (ret < 0) |
| goto out; |
| continue; |
| } |
| /* |
| * use fallback method to process the remaining |
| * references. |
| */ |
| if (!new_extents) { |
| u64 group_start = group->key.objectid; |
| new_extents = kmalloc(sizeof(*new_extents), |
| GFP_NOFS); |
| nr_extents = 1; |
| ret = get_new_locations(reloc_inode, |
| extent_key, |
| group_start, 1, |
| &new_extents, |
| &nr_extents); |
| if (ret) |
| goto out; |
| } |
| ret = replace_one_extent(trans, found_root, |
| path, extent_key, |
| &first_key, ref_path, |
| new_extents, nr_extents); |
| } else { |
| ret = relocate_tree_block(trans, found_root, path, |
| &first_key, ref_path); |
| } |
| if (ret < 0) |
| goto out; |
| } |
| ret = 0; |
| out: |
| btrfs_end_transaction(trans, extent_root); |
| kfree(new_extents); |
| kfree(ref_path); |
| return ret; |
| } |
| #endif |
| |
| static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) |
| { |
| u64 num_devices; |
| u64 stripped = BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; |
| |
| num_devices = root->fs_info->fs_devices->rw_devices; |
| if (num_devices == 1) { |
| stripped |= BTRFS_BLOCK_GROUP_DUP; |
| stripped = flags & ~stripped; |
| |
| /* turn raid0 into single device chunks */ |
| if (flags & BTRFS_BLOCK_GROUP_RAID0) |
| return stripped; |
| |
| /* turn mirroring into duplication */ |
| if (flags & (BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10)) |
| return stripped | BTRFS_BLOCK_GROUP_DUP; |
| return flags; |
| } else { |
| /* they already had raid on here, just return */ |
| if (flags & stripped) |
| return flags; |
| |
| stripped |= BTRFS_BLOCK_GROUP_DUP; |
| stripped = flags & ~stripped; |
| |
| /* switch duplicated blocks with raid1 */ |
| if (flags & BTRFS_BLOCK_GROUP_DUP) |
| return stripped | BTRFS_BLOCK_GROUP_RAID1; |
| |
| /* turn single device chunks into raid0 */ |
| return stripped | BTRFS_BLOCK_GROUP_RAID0; |
| } |
| return flags; |
| } |
| |
| static int __alloc_chunk_for_shrink(struct btrfs_root *root, |
| struct btrfs_block_group_cache *shrink_block_group, |
| int force) |
| { |
| struct btrfs_trans_handle *trans; |
| u64 new_alloc_flags; |
| u64 calc; |
| |
| spin_lock(&shrink_block_group->lock); |
| if (btrfs_block_group_used(&shrink_block_group->item) + |
| shrink_block_group->reserved > 0) { |
| spin_unlock(&shrink_block_group->lock); |
| |
| trans = btrfs_start_transaction(root, 1); |
| spin_lock(&shrink_block_group->lock); |
| |
| new_alloc_flags = update_block_group_flags(root, |
| shrink_block_group->flags); |
| if (new_alloc_flags != shrink_block_group->flags) { |
| calc = |
| btrfs_block_group_used(&shrink_block_group->item); |
| } else { |
| calc = shrink_block_group->key.offset; |
| } |
| spin_unlock(&shrink_block_group->lock); |
| |
| do_chunk_alloc(trans, root->fs_info->extent_root, |
| calc + 2 * 1024 * 1024, new_alloc_flags, force); |
| |
| btrfs_end_transaction(trans, root); |
| } else |
| spin_unlock(&shrink_block_group->lock); |
| return 0; |
| } |
| |
| |
| int btrfs_prepare_block_group_relocation(struct btrfs_root *root, |
| struct btrfs_block_group_cache *group) |
| |
| { |
| __alloc_chunk_for_shrink(root, group, 1); |
| set_block_group_readonly(group); |
| return 0; |
| } |
| |
| /* |
| * checks to see if its even possible to relocate this block group. |
| * |
| * @return - -1 if it's not a good idea to relocate this block group, 0 if its |
| * ok to go ahead and try. |
| */ |
| int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) |
| { |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_space_info *space_info; |
| struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; |
| struct btrfs_device *device; |
| int full = 0; |
| int ret = 0; |
| |
| block_group = btrfs_lookup_block_group(root->fs_info, bytenr); |
| |
| /* odd, couldn't find the block group, leave it alone */ |
| if (!block_group) |
| return -1; |
| |
| /* no bytes used, we're good */ |
| if (!btrfs_block_group_used(&block_group->item)) |
| goto out; |
| |
| space_info = block_group->space_info; |
| spin_lock(&space_info->lock); |
| |
| full = space_info->full; |
| |
| /* |
| * if this is the last block group we have in this space, we can't |
| * relocate it unless we're able to allocate a new chunk below. |
| * |
| * Otherwise, we need to make sure we have room in the space to handle |
| * all of the extents from this block group. If we can, we're good |
| */ |
| if ((space_info->total_bytes != block_group->key.offset) && |
| (space_info->bytes_used + space_info->bytes_reserved + |
| space_info->bytes_pinned + space_info->bytes_readonly + |
| btrfs_block_group_used(&block_group->item) < |
| space_info->total_bytes)) { |
| spin_unlock(&space_info->lock); |
| goto out; |
| } |
| spin_unlock(&space_info->lock); |
| |
| /* |
| * ok we don't have enough space, but maybe we have free space on our |
| * devices to allocate new chunks for relocation, so loop through our |
| * alloc devices and guess if we have enough space. However, if we |
| * were marked as full, then we know there aren't enough chunks, and we |
| * can just return. |
| */ |
| ret = -1; |
| if (full) |
| goto out; |
| |
| mutex_lock(&root->fs_info->chunk_mutex); |
| list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { |
| u64 min_free = btrfs_block_group_used(&block_group->item); |
| u64 dev_offset, max_avail; |
| |
| /* |
| * check to make sure we can actually find a chunk with enough |
| * space to fit our block group in. |
| */ |
| if (device->total_bytes > device->bytes_used + min_free) { |
| ret = find_free_dev_extent(NULL, device, min_free, |
| &dev_offset, &max_avail); |
| if (!ret) |
| break; |
| ret = -1; |
| } |
| } |
| mutex_unlock(&root->fs_info->chunk_mutex); |
| out: |
| btrfs_put_block_group(block_group); |
| return ret; |
| } |
| |
| static int find_first_block_group(struct btrfs_root *root, |
| struct btrfs_path *path, struct btrfs_key *key) |
| { |
| int ret = 0; |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf; |
| int slot; |
| |
| ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| while (1) { |
| slot = path->slots[0]; |
| leaf = path->nodes[0]; |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto out; |
| break; |
| } |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| |
| if (found_key.objectid >= key->objectid && |
| found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { |
| ret = 0; |
| goto out; |
| } |
| path->slots[0]++; |
| } |
| out: |
| return ret; |
| } |
| |
| int btrfs_free_block_groups(struct btrfs_fs_info *info) |
| { |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_space_info *space_info; |
| struct btrfs_caching_control *caching_ctl; |
| struct rb_node *n; |
| |
| down_write(&info->extent_commit_sem); |
| while (!list_empty(&info->caching_block_groups)) { |
| caching_ctl = list_entry(info->caching_block_groups.next, |
| struct btrfs_caching_control, list); |
| list_del(&caching_ctl->list); |
| put_caching_control(caching_ctl); |
| } |
| up_write(&info->extent_commit_sem); |
| |
| spin_lock(&info->block_group_cache_lock); |
| while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { |
| block_group = rb_entry(n, struct btrfs_block_group_cache, |
| cache_node); |
| rb_erase(&block_group->cache_node, |
| &info->block_group_cache_tree); |
| spin_unlock(&info->block_group_cache_lock); |
| |
| down_write(&block_group->space_info->groups_sem); |
| list_del(&block_group->list); |
| up_write(&block_group->space_info->groups_sem); |
| |
| if (block_group->cached == BTRFS_CACHE_STARTED) |
| wait_block_group_cache_done(block_group); |
| |
| btrfs_remove_free_space_cache(block_group); |
| btrfs_put_block_group(block_group); |
| |
| spin_lock(&info->block_group_cache_lock); |
| } |
| spin_unlock(&info->block_group_cache_lock); |
| |
| /* now that all the block groups are freed, go through and |
| * free all the space_info structs. This is only called during |
| * the final stages of unmount, and so we know nobody is |
| * using them. We call synchronize_rcu() once before we start, |
| * just to be on the safe side. |
| */ |
| synchronize_rcu(); |
| |
| while(!list_empty(&info->space_info)) { |
| space_info = list_entry(info->space_info.next, |
| struct btrfs_space_info, |
| list); |
| |
| list_del(&space_info->list); |
| kfree(space_info); |
| } |
| return 0; |
| } |
| |
| static void __link_block_group(struct btrfs_space_info *space_info, |
| struct btrfs_block_group_cache *cache) |
| { |
| int index = get_block_group_index(cache); |
| |
| down_write(&space_info->groups_sem); |
| list_add_tail(&cache->list, &space_info->block_groups[index]); |
| up_write(&space_info->groups_sem); |
| } |
| |
| int btrfs_read_block_groups(struct btrfs_root *root) |
| { |
| struct btrfs_path *path; |
| int ret; |
| struct btrfs_block_group_cache *cache; |
| struct btrfs_fs_info *info = root->fs_info; |
| struct btrfs_space_info *space_info; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf; |
| |
| root = info->extent_root; |
| key.objectid = 0; |
| key.offset = 0; |
| btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| while (1) { |
| ret = find_first_block_group(root, path, &key); |
| if (ret > 0) |
| break; |
| if (ret != 0) |
| goto error; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| cache = kzalloc(sizeof(*cache), GFP_NOFS); |
| if (!cache) { |
| ret = -ENOMEM; |
| break; |
| } |
| |
| atomic_set(&cache->count, 1); |
| spin_lock_init(&cache->lock); |
| spin_lock_init(&cache->tree_lock); |
| cache->fs_info = info; |
| INIT_LIST_HEAD(&cache->list); |
| INIT_LIST_HEAD(&cache->cluster_list); |
| |
| /* |
| * we only want to have 32k of ram per block group for keeping |
| * track of free space, and if we pass 1/2 of that we want to |
| * start converting things over to using bitmaps |
| */ |
| cache->extents_thresh = ((1024 * 32) / 2) / |
| sizeof(struct btrfs_free_space); |
| |
| read_extent_buffer(leaf, &cache->item, |
| btrfs_item_ptr_offset(leaf, path->slots[0]), |
| sizeof(cache->item)); |
| memcpy(&cache->key, &found_key, sizeof(found_key)); |
| |
| key.objectid = found_key.objectid + found_key.offset; |
| btrfs_release_path(root, path); |
| cache->flags = btrfs_block_group_flags(&cache->item); |
| cache->sectorsize = root->sectorsize; |
| |
| /* |
| * check for two cases, either we are full, and therefore |
| * don't need to bother with the caching work since we won't |
| * find any space, or we are empty, and we can just add all |
| * the space in and be done with it. This saves us _alot_ of |
| * time, particularly in the full case. |
| */ |
| if (found_key.offset == btrfs_block_group_used(&cache->item)) { |
| exclude_super_stripes(root, cache); |
| cache->last_byte_to_unpin = (u64)-1; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| free_excluded_extents(root, cache); |
| } else if (btrfs_block_group_used(&cache->item) == 0) { |
| exclude_super_stripes(root, cache); |
| cache->last_byte_to_unpin = (u64)-1; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| add_new_free_space(cache, root->fs_info, |
| found_key.objectid, |
| found_key.objectid + |
| found_key.offset); |
| free_excluded_extents(root, cache); |
| } |
| |
| ret = update_space_info(info, cache->flags, found_key.offset, |
| btrfs_block_group_used(&cache->item), |
| &space_info); |
| BUG_ON(ret); |
| cache->space_info = space_info; |
| spin_lock(&cache->space_info->lock); |
| cache->space_info->bytes_super += cache->bytes_super; |
| spin_unlock(&cache->space_info->lock); |
| |
| __link_block_group(space_info, cache); |
| |
| ret = btrfs_add_block_group_cache(root->fs_info, cache); |
| BUG_ON(ret); |
| |
| set_avail_alloc_bits(root->fs_info, cache->flags); |
| if (btrfs_chunk_readonly(root, cache->key.objectid)) |
| set_block_group_readonly(cache); |
| } |
| |
| list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { |
| if (!(get_alloc_profile(root, space_info->flags) & |
| (BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_DUP))) |
| continue; |
| /* |
| * avoid allocating from un-mirrored block group if there are |
| * mirrored block groups. |
| */ |
| list_for_each_entry(cache, &space_info->block_groups[3], list) |
| set_block_group_readonly(cache); |
| list_for_each_entry(cache, &space_info->block_groups[4], list) |
| set_block_group_readonly(cache); |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_make_block_group(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 bytes_used, |
| u64 type, u64 chunk_objectid, u64 chunk_offset, |
| u64 size) |
| { |
| int ret; |
| struct btrfs_root *extent_root; |
| struct btrfs_block_group_cache *cache; |
| |
| extent_root = root->fs_info->extent_root; |
| |
| root->fs_info->last_trans_log_full_commit = trans->transid; |
| |
| cache = kzalloc(sizeof(*cache), GFP_NOFS); |
| if (!cache) |
| return -ENOMEM; |
| |
| cache->key.objectid = chunk_offset; |
| cache->key.offset = size; |
| cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; |
| cache->sectorsize = root->sectorsize; |
| |
| /* |
| * we only want to have 32k of ram per block group for keeping track |
| * of free space, and if we pass 1/2 of that we want to start |
| * converting things over to using bitmaps |
| */ |
| cache->extents_thresh = ((1024 * 32) / 2) / |
| sizeof(struct btrfs_free_space); |
| atomic_set(&cache->count, 1); |
| spin_lock_init(&cache->lock); |
| spin_lock_init(&cache->tree_lock); |
| INIT_LIST_HEAD(&cache->list); |
| INIT_LIST_HEAD(&cache->cluster_list); |
| |
| btrfs_set_block_group_used(&cache->item, bytes_used); |
| btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); |
| cache->flags = type; |
| btrfs_set_block_group_flags(&cache->item, type); |
| |
| cache->last_byte_to_unpin = (u64)-1; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| exclude_super_stripes(root, cache); |
| |
| add_new_free_space(cache, root->fs_info, chunk_offset, |
| chunk_offset + size); |
| |
| free_excluded_extents(root, cache); |
| |
| ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, |
| &cache->space_info); |
| BUG_ON(ret); |
| |
| spin_lock(&cache->space_info->lock); |
| cache->space_info->bytes_super += cache->bytes_super; |
| spin_unlock(&cache->space_info->lock); |
| |
| __link_block_group(cache->space_info, cache); |
| |
| ret = btrfs_add_block_group_cache(root->fs_info, cache); |
| BUG_ON(ret); |
| |
| ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, |
| sizeof(cache->item)); |
| BUG_ON(ret); |
| |
| set_avail_alloc_bits(extent_root->fs_info, type); |
| |
| return 0; |
| } |
| |
| int btrfs_remove_block_group(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 group_start) |
| { |
| struct btrfs_path *path; |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_free_cluster *cluster; |
| struct btrfs_key key; |
| int ret; |
| |
| root = root->fs_info->extent_root; |
| |
| block_group = btrfs_lookup_block_group(root->fs_info, group_start); |
| BUG_ON(!block_group); |
| BUG_ON(!block_group->ro); |
| |
| memcpy(&key, &block_group->key, sizeof(key)); |
| |
| /* make sure this block group isn't part of an allocation cluster */ |
| cluster = &root->fs_info->data_alloc_cluster; |
| spin_lock(&cluster->refill_lock); |
| btrfs_return_cluster_to_free_space(block_group, cluster); |
| spin_unlock(&cluster->refill_lock); |
| |
| /* |
| * make sure this block group isn't part of a metadata |
| * allocation cluster |
| */ |
| cluster = &root->fs_info->meta_alloc_cluster; |
| spin_lock(&cluster->refill_lock); |
| btrfs_return_cluster_to_free_space(block_group, cluster); |
| spin_unlock(&cluster->refill_lock); |
| |
| path = btrfs_alloc_path(); |
| BUG_ON(!path); |
| |
| spin_lock(&root->fs_info->block_group_cache_lock); |
| rb_erase(&block_group->cache_node, |
| &root->fs_info->block_group_cache_tree); |
| spin_unlock(&root->fs_info->block_group_cache_lock); |
| |
| down_write(&block_group->space_info->groups_sem); |
| /* |
| * we must use list_del_init so people can check to see if they |
| * are still on the list after taking the semaphore |
| */ |
| list_del_init(&block_group->list); |
| up_write(&block_group->space_info->groups_sem); |
| |
| if (block_group->cached == BTRFS_CACHE_STARTED) |
| wait_block_group_cache_done(block_group); |
| |
| btrfs_remove_free_space_cache(block_group); |
| |
| spin_lock(&block_group->space_info->lock); |
| block_group->space_info->total_bytes -= block_group->key.offset; |
| block_group->space_info->bytes_readonly -= block_group->key.offset; |
| spin_unlock(&block_group->space_info->lock); |
| |
| btrfs_clear_space_info_full(root->fs_info); |
| |
| btrfs_put_block_group(block_group); |
| btrfs_put_block_group(block_group); |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) |
| ret = -EIO; |
| if (ret < 0) |
| goto out; |
| |
| ret = btrfs_del_item(trans, root, path); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |