| /* |
| * arch/sh/mm/pmb.c |
| * |
| * Privileged Space Mapping Buffer (PMB) Support. |
| * |
| * Copyright (C) 2005 - 2010 Paul Mundt |
| * Copyright (C) 2010 Matt Fleming |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/sysdev.h> |
| #include <linux/cpu.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/bitops.h> |
| #include <linux/debugfs.h> |
| #include <linux/fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/err.h> |
| #include <linux/io.h> |
| #include <linux/spinlock.h> |
| #include <linux/vmalloc.h> |
| #include <asm/cacheflush.h> |
| #include <asm/sizes.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| #include <asm/page.h> |
| #include <asm/mmu.h> |
| #include <asm/mmu_context.h> |
| |
| struct pmb_entry; |
| |
| struct pmb_entry { |
| unsigned long vpn; |
| unsigned long ppn; |
| unsigned long flags; |
| unsigned long size; |
| |
| spinlock_t lock; |
| |
| /* |
| * 0 .. NR_PMB_ENTRIES for specific entry selection, or |
| * PMB_NO_ENTRY to search for a free one |
| */ |
| int entry; |
| |
| /* Adjacent entry link for contiguous multi-entry mappings */ |
| struct pmb_entry *link; |
| }; |
| |
| static struct { |
| unsigned long size; |
| int flag; |
| } pmb_sizes[] = { |
| { .size = SZ_512M, .flag = PMB_SZ_512M, }, |
| { .size = SZ_128M, .flag = PMB_SZ_128M, }, |
| { .size = SZ_64M, .flag = PMB_SZ_64M, }, |
| { .size = SZ_16M, .flag = PMB_SZ_16M, }, |
| }; |
| |
| static void pmb_unmap_entry(struct pmb_entry *, int depth); |
| |
| static DEFINE_RWLOCK(pmb_rwlock); |
| static struct pmb_entry pmb_entry_list[NR_PMB_ENTRIES]; |
| static DECLARE_BITMAP(pmb_map, NR_PMB_ENTRIES); |
| |
| static unsigned int pmb_iomapping_enabled; |
| |
| static __always_inline unsigned long mk_pmb_entry(unsigned int entry) |
| { |
| return (entry & PMB_E_MASK) << PMB_E_SHIFT; |
| } |
| |
| static __always_inline unsigned long mk_pmb_addr(unsigned int entry) |
| { |
| return mk_pmb_entry(entry) | PMB_ADDR; |
| } |
| |
| static __always_inline unsigned long mk_pmb_data(unsigned int entry) |
| { |
| return mk_pmb_entry(entry) | PMB_DATA; |
| } |
| |
| static __always_inline unsigned int pmb_ppn_in_range(unsigned long ppn) |
| { |
| return ppn >= __pa(memory_start) && ppn < __pa(memory_end); |
| } |
| |
| /* |
| * Ensure that the PMB entries match our cache configuration. |
| * |
| * When we are in 32-bit address extended mode, CCR.CB becomes |
| * invalid, so care must be taken to manually adjust cacheable |
| * translations. |
| */ |
| static __always_inline unsigned long pmb_cache_flags(void) |
| { |
| unsigned long flags = 0; |
| |
| #if defined(CONFIG_CACHE_OFF) |
| flags |= PMB_WT | PMB_UB; |
| #elif defined(CONFIG_CACHE_WRITETHROUGH) |
| flags |= PMB_C | PMB_WT | PMB_UB; |
| #elif defined(CONFIG_CACHE_WRITEBACK) |
| flags |= PMB_C; |
| #endif |
| |
| return flags; |
| } |
| |
| /* |
| * Convert typical pgprot value to the PMB equivalent |
| */ |
| static inline unsigned long pgprot_to_pmb_flags(pgprot_t prot) |
| { |
| unsigned long pmb_flags = 0; |
| u64 flags = pgprot_val(prot); |
| |
| if (flags & _PAGE_CACHABLE) |
| pmb_flags |= PMB_C; |
| if (flags & _PAGE_WT) |
| pmb_flags |= PMB_WT | PMB_UB; |
| |
| return pmb_flags; |
| } |
| |
| static inline bool pmb_can_merge(struct pmb_entry *a, struct pmb_entry *b) |
| { |
| return (b->vpn == (a->vpn + a->size)) && |
| (b->ppn == (a->ppn + a->size)) && |
| (b->flags == a->flags); |
| } |
| |
| static bool pmb_mapping_exists(unsigned long vaddr, phys_addr_t phys, |
| unsigned long size) |
| { |
| int i; |
| |
| read_lock(&pmb_rwlock); |
| |
| for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) { |
| struct pmb_entry *pmbe, *iter; |
| unsigned long span; |
| |
| if (!test_bit(i, pmb_map)) |
| continue; |
| |
| pmbe = &pmb_entry_list[i]; |
| |
| /* |
| * See if VPN and PPN are bounded by an existing mapping. |
| */ |
| if ((vaddr < pmbe->vpn) || (vaddr >= (pmbe->vpn + pmbe->size))) |
| continue; |
| if ((phys < pmbe->ppn) || (phys >= (pmbe->ppn + pmbe->size))) |
| continue; |
| |
| /* |
| * Now see if we're in range of a simple mapping. |
| */ |
| if (size <= pmbe->size) { |
| read_unlock(&pmb_rwlock); |
| return true; |
| } |
| |
| span = pmbe->size; |
| |
| /* |
| * Finally for sizes that involve compound mappings, walk |
| * the chain. |
| */ |
| for (iter = pmbe->link; iter; iter = iter->link) |
| span += iter->size; |
| |
| /* |
| * Nothing else to do if the range requirements are met. |
| */ |
| if (size <= span) { |
| read_unlock(&pmb_rwlock); |
| return true; |
| } |
| } |
| |
| read_unlock(&pmb_rwlock); |
| return false; |
| } |
| |
| static bool pmb_size_valid(unsigned long size) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(pmb_sizes); i++) |
| if (pmb_sizes[i].size == size) |
| return true; |
| |
| return false; |
| } |
| |
| static inline bool pmb_addr_valid(unsigned long addr, unsigned long size) |
| { |
| return (addr >= P1SEG && (addr + size - 1) < P3SEG); |
| } |
| |
| static inline bool pmb_prot_valid(pgprot_t prot) |
| { |
| return (pgprot_val(prot) & _PAGE_USER) == 0; |
| } |
| |
| static int pmb_size_to_flags(unsigned long size) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(pmb_sizes); i++) |
| if (pmb_sizes[i].size == size) |
| return pmb_sizes[i].flag; |
| |
| return 0; |
| } |
| |
| static int pmb_alloc_entry(void) |
| { |
| int pos; |
| |
| pos = find_first_zero_bit(pmb_map, NR_PMB_ENTRIES); |
| if (pos >= 0 && pos < NR_PMB_ENTRIES) |
| __set_bit(pos, pmb_map); |
| else |
| pos = -ENOSPC; |
| |
| return pos; |
| } |
| |
| static struct pmb_entry *pmb_alloc(unsigned long vpn, unsigned long ppn, |
| unsigned long flags, int entry) |
| { |
| struct pmb_entry *pmbe; |
| unsigned long irqflags; |
| void *ret = NULL; |
| int pos; |
| |
| write_lock_irqsave(&pmb_rwlock, irqflags); |
| |
| if (entry == PMB_NO_ENTRY) { |
| pos = pmb_alloc_entry(); |
| if (unlikely(pos < 0)) { |
| ret = ERR_PTR(pos); |
| goto out; |
| } |
| } else { |
| if (__test_and_set_bit(entry, pmb_map)) { |
| ret = ERR_PTR(-ENOSPC); |
| goto out; |
| } |
| |
| pos = entry; |
| } |
| |
| write_unlock_irqrestore(&pmb_rwlock, irqflags); |
| |
| pmbe = &pmb_entry_list[pos]; |
| |
| memset(pmbe, 0, sizeof(struct pmb_entry)); |
| |
| spin_lock_init(&pmbe->lock); |
| |
| pmbe->vpn = vpn; |
| pmbe->ppn = ppn; |
| pmbe->flags = flags; |
| pmbe->entry = pos; |
| |
| return pmbe; |
| |
| out: |
| write_unlock_irqrestore(&pmb_rwlock, irqflags); |
| return ret; |
| } |
| |
| static void pmb_free(struct pmb_entry *pmbe) |
| { |
| __clear_bit(pmbe->entry, pmb_map); |
| |
| pmbe->entry = PMB_NO_ENTRY; |
| pmbe->link = NULL; |
| } |
| |
| /* |
| * Must be run uncached. |
| */ |
| static void __set_pmb_entry(struct pmb_entry *pmbe) |
| { |
| unsigned long addr, data; |
| |
| addr = mk_pmb_addr(pmbe->entry); |
| data = mk_pmb_data(pmbe->entry); |
| |
| jump_to_uncached(); |
| |
| /* Set V-bit */ |
| __raw_writel(pmbe->vpn | PMB_V, addr); |
| __raw_writel(pmbe->ppn | pmbe->flags | PMB_V, data); |
| |
| back_to_cached(); |
| } |
| |
| static void __clear_pmb_entry(struct pmb_entry *pmbe) |
| { |
| unsigned long addr, data; |
| unsigned long addr_val, data_val; |
| |
| addr = mk_pmb_addr(pmbe->entry); |
| data = mk_pmb_data(pmbe->entry); |
| |
| addr_val = __raw_readl(addr); |
| data_val = __raw_readl(data); |
| |
| /* Clear V-bit */ |
| writel_uncached(addr_val & ~PMB_V, addr); |
| writel_uncached(data_val & ~PMB_V, data); |
| } |
| |
| static void set_pmb_entry(struct pmb_entry *pmbe) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pmbe->lock, flags); |
| __set_pmb_entry(pmbe); |
| spin_unlock_irqrestore(&pmbe->lock, flags); |
| } |
| |
| int pmb_bolt_mapping(unsigned long vaddr, phys_addr_t phys, |
| unsigned long size, pgprot_t prot) |
| { |
| struct pmb_entry *pmbp, *pmbe; |
| unsigned long orig_addr, orig_size; |
| unsigned long flags, pmb_flags; |
| int i, mapped; |
| |
| if (!pmb_addr_valid(vaddr, size)) |
| return -EFAULT; |
| if (pmb_mapping_exists(vaddr, phys, size)) |
| return 0; |
| |
| orig_addr = vaddr; |
| orig_size = size; |
| |
| flush_tlb_kernel_range(vaddr, vaddr + size); |
| |
| pmb_flags = pgprot_to_pmb_flags(prot); |
| pmbp = NULL; |
| |
| do { |
| for (i = mapped = 0; i < ARRAY_SIZE(pmb_sizes); i++) { |
| if (size < pmb_sizes[i].size) |
| continue; |
| |
| pmbe = pmb_alloc(vaddr, phys, pmb_flags | |
| pmb_sizes[i].flag, PMB_NO_ENTRY); |
| if (IS_ERR(pmbe)) { |
| pmb_unmap_entry(pmbp, mapped); |
| return PTR_ERR(pmbe); |
| } |
| |
| spin_lock_irqsave(&pmbe->lock, flags); |
| |
| pmbe->size = pmb_sizes[i].size; |
| |
| __set_pmb_entry(pmbe); |
| |
| phys += pmbe->size; |
| vaddr += pmbe->size; |
| size -= pmbe->size; |
| |
| /* |
| * Link adjacent entries that span multiple PMB |
| * entries for easier tear-down. |
| */ |
| if (likely(pmbp)) { |
| spin_lock(&pmbp->lock); |
| pmbp->link = pmbe; |
| spin_unlock(&pmbp->lock); |
| } |
| |
| pmbp = pmbe; |
| |
| /* |
| * Instead of trying smaller sizes on every |
| * iteration (even if we succeed in allocating |
| * space), try using pmb_sizes[i].size again. |
| */ |
| i--; |
| mapped++; |
| |
| spin_unlock_irqrestore(&pmbe->lock, flags); |
| } |
| } while (size >= SZ_16M); |
| |
| flush_cache_vmap(orig_addr, orig_addr + orig_size); |
| |
| return 0; |
| } |
| |
| void __iomem *pmb_remap_caller(phys_addr_t phys, unsigned long size, |
| pgprot_t prot, void *caller) |
| { |
| unsigned long vaddr; |
| phys_addr_t offset, last_addr; |
| phys_addr_t align_mask; |
| unsigned long aligned; |
| struct vm_struct *area; |
| int i, ret; |
| |
| if (!pmb_iomapping_enabled) |
| return NULL; |
| |
| /* |
| * Small mappings need to go through the TLB. |
| */ |
| if (size < SZ_16M) |
| return ERR_PTR(-EINVAL); |
| if (!pmb_prot_valid(prot)) |
| return ERR_PTR(-EINVAL); |
| |
| for (i = 0; i < ARRAY_SIZE(pmb_sizes); i++) |
| if (size >= pmb_sizes[i].size) |
| break; |
| |
| last_addr = phys + size; |
| align_mask = ~(pmb_sizes[i].size - 1); |
| offset = phys & ~align_mask; |
| phys &= align_mask; |
| aligned = ALIGN(last_addr, pmb_sizes[i].size) - phys; |
| |
| /* |
| * XXX: This should really start from uncached_end, but this |
| * causes the MMU to reset, so for now we restrict it to the |
| * 0xb000...0xc000 range. |
| */ |
| area = __get_vm_area_caller(aligned, VM_IOREMAP, 0xb0000000, |
| P3SEG, caller); |
| if (!area) |
| return NULL; |
| |
| area->phys_addr = phys; |
| vaddr = (unsigned long)area->addr; |
| |
| ret = pmb_bolt_mapping(vaddr, phys, size, prot); |
| if (unlikely(ret != 0)) |
| return ERR_PTR(ret); |
| |
| return (void __iomem *)(offset + (char *)vaddr); |
| } |
| |
| int pmb_unmap(void __iomem *addr) |
| { |
| struct pmb_entry *pmbe = NULL; |
| unsigned long vaddr = (unsigned long __force)addr; |
| int i, found = 0; |
| |
| read_lock(&pmb_rwlock); |
| |
| for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) { |
| if (test_bit(i, pmb_map)) { |
| pmbe = &pmb_entry_list[i]; |
| if (pmbe->vpn == vaddr) { |
| found = 1; |
| break; |
| } |
| } |
| } |
| |
| read_unlock(&pmb_rwlock); |
| |
| if (found) { |
| pmb_unmap_entry(pmbe, NR_PMB_ENTRIES); |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static void __pmb_unmap_entry(struct pmb_entry *pmbe, int depth) |
| { |
| do { |
| struct pmb_entry *pmblink = pmbe; |
| |
| /* |
| * We may be called before this pmb_entry has been |
| * entered into the PMB table via set_pmb_entry(), but |
| * that's OK because we've allocated a unique slot for |
| * this entry in pmb_alloc() (even if we haven't filled |
| * it yet). |
| * |
| * Therefore, calling __clear_pmb_entry() is safe as no |
| * other mapping can be using that slot. |
| */ |
| __clear_pmb_entry(pmbe); |
| |
| flush_cache_vunmap(pmbe->vpn, pmbe->vpn + pmbe->size); |
| |
| pmbe = pmblink->link; |
| |
| pmb_free(pmblink); |
| } while (pmbe && --depth); |
| } |
| |
| static void pmb_unmap_entry(struct pmb_entry *pmbe, int depth) |
| { |
| unsigned long flags; |
| |
| if (unlikely(!pmbe)) |
| return; |
| |
| write_lock_irqsave(&pmb_rwlock, flags); |
| __pmb_unmap_entry(pmbe, depth); |
| write_unlock_irqrestore(&pmb_rwlock, flags); |
| } |
| |
| static void __init pmb_notify(void) |
| { |
| int i; |
| |
| pr_info("PMB: boot mappings:\n"); |
| |
| read_lock(&pmb_rwlock); |
| |
| for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) { |
| struct pmb_entry *pmbe; |
| |
| if (!test_bit(i, pmb_map)) |
| continue; |
| |
| pmbe = &pmb_entry_list[i]; |
| |
| pr_info(" 0x%08lx -> 0x%08lx [ %4ldMB %2scached ]\n", |
| pmbe->vpn >> PAGE_SHIFT, pmbe->ppn >> PAGE_SHIFT, |
| pmbe->size >> 20, (pmbe->flags & PMB_C) ? "" : "un"); |
| } |
| |
| read_unlock(&pmb_rwlock); |
| } |
| |
| /* |
| * Sync our software copy of the PMB mappings with those in hardware. The |
| * mappings in the hardware PMB were either set up by the bootloader or |
| * very early on by the kernel. |
| */ |
| static void __init pmb_synchronize(void) |
| { |
| struct pmb_entry *pmbp = NULL; |
| int i, j; |
| |
| /* |
| * Run through the initial boot mappings, log the established |
| * ones, and blow away anything that falls outside of the valid |
| * PPN range. Specifically, we only care about existing mappings |
| * that impact the cached/uncached sections. |
| * |
| * Note that touching these can be a bit of a minefield; the boot |
| * loader can establish multi-page mappings with the same caching |
| * attributes, so we need to ensure that we aren't modifying a |
| * mapping that we're presently executing from, or may execute |
| * from in the case of straddling page boundaries. |
| * |
| * In the future we will have to tidy up after the boot loader by |
| * jumping between the cached and uncached mappings and tearing |
| * down alternating mappings while executing from the other. |
| */ |
| for (i = 0; i < NR_PMB_ENTRIES; i++) { |
| unsigned long addr, data; |
| unsigned long addr_val, data_val; |
| unsigned long ppn, vpn, flags; |
| unsigned long irqflags; |
| unsigned int size; |
| struct pmb_entry *pmbe; |
| |
| addr = mk_pmb_addr(i); |
| data = mk_pmb_data(i); |
| |
| addr_val = __raw_readl(addr); |
| data_val = __raw_readl(data); |
| |
| /* |
| * Skip over any bogus entries |
| */ |
| if (!(data_val & PMB_V) || !(addr_val & PMB_V)) |
| continue; |
| |
| ppn = data_val & PMB_PFN_MASK; |
| vpn = addr_val & PMB_PFN_MASK; |
| |
| /* |
| * Only preserve in-range mappings. |
| */ |
| if (!pmb_ppn_in_range(ppn)) { |
| /* |
| * Invalidate anything out of bounds. |
| */ |
| writel_uncached(addr_val & ~PMB_V, addr); |
| writel_uncached(data_val & ~PMB_V, data); |
| continue; |
| } |
| |
| /* |
| * Update the caching attributes if necessary |
| */ |
| if (data_val & PMB_C) { |
| data_val &= ~PMB_CACHE_MASK; |
| data_val |= pmb_cache_flags(); |
| |
| writel_uncached(data_val, data); |
| } |
| |
| size = data_val & PMB_SZ_MASK; |
| flags = size | (data_val & PMB_CACHE_MASK); |
| |
| pmbe = pmb_alloc(vpn, ppn, flags, i); |
| if (IS_ERR(pmbe)) { |
| WARN_ON_ONCE(1); |
| continue; |
| } |
| |
| spin_lock_irqsave(&pmbe->lock, irqflags); |
| |
| for (j = 0; j < ARRAY_SIZE(pmb_sizes); j++) |
| if (pmb_sizes[j].flag == size) |
| pmbe->size = pmb_sizes[j].size; |
| |
| if (pmbp) { |
| spin_lock(&pmbp->lock); |
| |
| /* |
| * Compare the previous entry against the current one to |
| * see if the entries span a contiguous mapping. If so, |
| * setup the entry links accordingly. Compound mappings |
| * are later coalesced. |
| */ |
| if (pmb_can_merge(pmbp, pmbe)) |
| pmbp->link = pmbe; |
| |
| spin_unlock(&pmbp->lock); |
| } |
| |
| pmbp = pmbe; |
| |
| spin_unlock_irqrestore(&pmbe->lock, irqflags); |
| } |
| } |
| |
| static void __init pmb_merge(struct pmb_entry *head) |
| { |
| unsigned long span, newsize; |
| struct pmb_entry *tail; |
| int i = 1, depth = 0; |
| |
| span = newsize = head->size; |
| |
| tail = head->link; |
| while (tail) { |
| span += tail->size; |
| |
| if (pmb_size_valid(span)) { |
| newsize = span; |
| depth = i; |
| } |
| |
| /* This is the end of the line.. */ |
| if (!tail->link) |
| break; |
| |
| tail = tail->link; |
| i++; |
| } |
| |
| /* |
| * The merged page size must be valid. |
| */ |
| if (!pmb_size_valid(newsize)) |
| return; |
| |
| head->flags &= ~PMB_SZ_MASK; |
| head->flags |= pmb_size_to_flags(newsize); |
| |
| head->size = newsize; |
| |
| __pmb_unmap_entry(head->link, depth); |
| __set_pmb_entry(head); |
| } |
| |
| static void __init pmb_coalesce(void) |
| { |
| unsigned long flags; |
| int i; |
| |
| write_lock_irqsave(&pmb_rwlock, flags); |
| |
| for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) { |
| struct pmb_entry *pmbe; |
| |
| if (!test_bit(i, pmb_map)) |
| continue; |
| |
| pmbe = &pmb_entry_list[i]; |
| |
| /* |
| * We're only interested in compound mappings |
| */ |
| if (!pmbe->link) |
| continue; |
| |
| /* |
| * Nothing to do if it already uses the largest possible |
| * page size. |
| */ |
| if (pmbe->size == SZ_512M) |
| continue; |
| |
| pmb_merge(pmbe); |
| } |
| |
| write_unlock_irqrestore(&pmb_rwlock, flags); |
| } |
| |
| #ifdef CONFIG_UNCACHED_MAPPING |
| static void __init pmb_resize(void) |
| { |
| int i; |
| |
| /* |
| * If the uncached mapping was constructed by the kernel, it will |
| * already be a reasonable size. |
| */ |
| if (uncached_size == SZ_16M) |
| return; |
| |
| read_lock(&pmb_rwlock); |
| |
| for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) { |
| struct pmb_entry *pmbe; |
| unsigned long flags; |
| |
| if (!test_bit(i, pmb_map)) |
| continue; |
| |
| pmbe = &pmb_entry_list[i]; |
| |
| if (pmbe->vpn != uncached_start) |
| continue; |
| |
| /* |
| * Found it, now resize it. |
| */ |
| spin_lock_irqsave(&pmbe->lock, flags); |
| |
| pmbe->size = SZ_16M; |
| pmbe->flags &= ~PMB_SZ_MASK; |
| pmbe->flags |= pmb_size_to_flags(pmbe->size); |
| |
| uncached_resize(pmbe->size); |
| |
| __set_pmb_entry(pmbe); |
| |
| spin_unlock_irqrestore(&pmbe->lock, flags); |
| } |
| |
| read_lock(&pmb_rwlock); |
| } |
| #endif |
| |
| static int __init early_pmb(char *p) |
| { |
| if (!p) |
| return 0; |
| |
| if (strstr(p, "iomap")) |
| pmb_iomapping_enabled = 1; |
| |
| return 0; |
| } |
| early_param("pmb", early_pmb); |
| |
| void __init pmb_init(void) |
| { |
| /* Synchronize software state */ |
| pmb_synchronize(); |
| |
| /* Attempt to combine compound mappings */ |
| pmb_coalesce(); |
| |
| #ifdef CONFIG_UNCACHED_MAPPING |
| /* Resize initial mappings, if necessary */ |
| pmb_resize(); |
| #endif |
| |
| /* Log them */ |
| pmb_notify(); |
| |
| writel_uncached(0, PMB_IRMCR); |
| |
| /* Flush out the TLB */ |
| local_flush_tlb_all(); |
| ctrl_barrier(); |
| } |
| |
| bool __in_29bit_mode(void) |
| { |
| return (__raw_readl(PMB_PASCR) & PASCR_SE) == 0; |
| } |
| |
| static int pmb_seq_show(struct seq_file *file, void *iter) |
| { |
| int i; |
| |
| seq_printf(file, "V: Valid, C: Cacheable, WT: Write-Through\n" |
| "CB: Copy-Back, B: Buffered, UB: Unbuffered\n"); |
| seq_printf(file, "ety vpn ppn size flags\n"); |
| |
| for (i = 0; i < NR_PMB_ENTRIES; i++) { |
| unsigned long addr, data; |
| unsigned int size; |
| char *sz_str = NULL; |
| |
| addr = __raw_readl(mk_pmb_addr(i)); |
| data = __raw_readl(mk_pmb_data(i)); |
| |
| size = data & PMB_SZ_MASK; |
| sz_str = (size == PMB_SZ_16M) ? " 16MB": |
| (size == PMB_SZ_64M) ? " 64MB": |
| (size == PMB_SZ_128M) ? "128MB": |
| "512MB"; |
| |
| /* 02: V 0x88 0x08 128MB C CB B */ |
| seq_printf(file, "%02d: %c 0x%02lx 0x%02lx %s %c %s %s\n", |
| i, ((addr & PMB_V) && (data & PMB_V)) ? 'V' : ' ', |
| (addr >> 24) & 0xff, (data >> 24) & 0xff, |
| sz_str, (data & PMB_C) ? 'C' : ' ', |
| (data & PMB_WT) ? "WT" : "CB", |
| (data & PMB_UB) ? "UB" : " B"); |
| } |
| |
| return 0; |
| } |
| |
| static int pmb_debugfs_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, pmb_seq_show, NULL); |
| } |
| |
| static const struct file_operations pmb_debugfs_fops = { |
| .owner = THIS_MODULE, |
| .open = pmb_debugfs_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int __init pmb_debugfs_init(void) |
| { |
| struct dentry *dentry; |
| |
| dentry = debugfs_create_file("pmb", S_IFREG | S_IRUGO, |
| sh_debugfs_root, NULL, &pmb_debugfs_fops); |
| if (!dentry) |
| return -ENOMEM; |
| if (IS_ERR(dentry)) |
| return PTR_ERR(dentry); |
| |
| return 0; |
| } |
| subsys_initcall(pmb_debugfs_init); |
| |
| #ifdef CONFIG_PM |
| static int pmb_sysdev_suspend(struct sys_device *dev, pm_message_t state) |
| { |
| static pm_message_t prev_state; |
| int i; |
| |
| /* Restore the PMB after a resume from hibernation */ |
| if (state.event == PM_EVENT_ON && |
| prev_state.event == PM_EVENT_FREEZE) { |
| struct pmb_entry *pmbe; |
| |
| read_lock(&pmb_rwlock); |
| |
| for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) { |
| if (test_bit(i, pmb_map)) { |
| pmbe = &pmb_entry_list[i]; |
| set_pmb_entry(pmbe); |
| } |
| } |
| |
| read_unlock(&pmb_rwlock); |
| } |
| |
| prev_state = state; |
| |
| return 0; |
| } |
| |
| static int pmb_sysdev_resume(struct sys_device *dev) |
| { |
| return pmb_sysdev_suspend(dev, PMSG_ON); |
| } |
| |
| static struct sysdev_driver pmb_sysdev_driver = { |
| .suspend = pmb_sysdev_suspend, |
| .resume = pmb_sysdev_resume, |
| }; |
| |
| static int __init pmb_sysdev_init(void) |
| { |
| return sysdev_driver_register(&cpu_sysdev_class, &pmb_sysdev_driver); |
| } |
| subsys_initcall(pmb_sysdev_init); |
| #endif |