blob: ead104ea1e35aabf5fde9e3bb2149becf9afe3ac [file] [log] [blame]
/**
* Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
*
* This source file is released under GPL v2 license (no other versions).
* See the COPYING file included in the main directory of this source
* distribution for the license terms and conditions.
*
* @File ctatc.c
*
* @Brief
* This file contains the implementation of the device resource management
* object.
*
* @Author Liu Chun
* @Date Mar 28 2008
*/
#include "ctatc.h"
#include "ctpcm.h"
#include "ctmixer.h"
#include "cthardware.h"
#include "ctsrc.h"
#include "ctamixer.h"
#include "ctdaio.h"
#include <linux/delay.h>
#include <sound/pcm.h>
#include <sound/control.h>
#include <sound/asoundef.h>
#define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
#define DAIONUM 7
#define MAX_MULTI_CHN 8
#define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
| IEC958_AES0_CON_NOT_COPYRIGHT) \
| ((IEC958_AES1_CON_MIXER \
| IEC958_AES1_CON_ORIGINAL) << 8) \
| (0x10 << 16) \
| ((IEC958_AES3_CON_FS_48000) << 24))
static const struct ct_atc_chip_sub_details atc_sub_details[NUM_CTCARDS] = {
[CTSB0760] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB0760,
.nm_model = "SB076x"},
[CTHENDRIX] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_HENDRIX,
.nm_model = "Hendrix"},
[CTSB08801] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08801,
.nm_model = "SB0880"},
[CTSB08802] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08802,
.nm_model = "SB0880"},
[CTSB08803] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08803,
.nm_model = "SB0880"}
};
static struct ct_atc_chip_details atc_chip_details[] = {
{.vendor = PCI_VENDOR_ID_CREATIVE,
.device = PCI_DEVICE_ID_CREATIVE_20K1,
.sub_details = NULL,
.nm_card = "X-Fi 20k1"},
{.vendor = PCI_VENDOR_ID_CREATIVE,
.device = PCI_DEVICE_ID_CREATIVE_20K2,
.sub_details = atc_sub_details,
.nm_card = "X-Fi 20k2"},
{} /* terminator */
};
static struct {
int (*create)(struct ct_atc *atc,
enum CTALSADEVS device, const char *device_name);
int (*destroy)(void *alsa_dev);
const char *public_name;
} alsa_dev_funcs[NUM_CTALSADEVS] = {
[FRONT] = { .create = ct_alsa_pcm_create,
.destroy = NULL,
.public_name = "Front/WaveIn"},
[REAR] = { .create = ct_alsa_pcm_create,
.destroy = NULL,
.public_name = "Rear"},
[CLFE] = { .create = ct_alsa_pcm_create,
.destroy = NULL,
.public_name = "Center/LFE"},
[SURROUND] = { .create = ct_alsa_pcm_create,
.destroy = NULL,
.public_name = "Surround"},
[IEC958] = { .create = ct_alsa_pcm_create,
.destroy = NULL,
.public_name = "IEC958 Non-audio"},
[MIXER] = { .create = ct_alsa_mix_create,
.destroy = NULL,
.public_name = "Mixer"}
};
typedef int (*create_t)(void *, void **);
typedef int (*destroy_t)(void *);
static struct {
int (*create)(void *hw, void **rmgr);
int (*destroy)(void *mgr);
} rsc_mgr_funcs[NUM_RSCTYP] = {
[SRC] = { .create = (create_t)src_mgr_create,
.destroy = (destroy_t)src_mgr_destroy },
[SRCIMP] = { .create = (create_t)srcimp_mgr_create,
.destroy = (destroy_t)srcimp_mgr_destroy },
[AMIXER] = { .create = (create_t)amixer_mgr_create,
.destroy = (destroy_t)amixer_mgr_destroy },
[SUM] = { .create = (create_t)sum_mgr_create,
.destroy = (destroy_t)sum_mgr_destroy },
[DAIO] = { .create = (create_t)daio_mgr_create,
.destroy = (destroy_t)daio_mgr_destroy }
};
static int
atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
/* *
* Only mono and interleaved modes are supported now.
* Always allocates a contiguous channel block.
* */
static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
{
unsigned long flags;
struct snd_pcm_runtime *runtime;
struct ct_vm *vm;
if (NULL == apcm->substream)
return 0;
runtime = apcm->substream->runtime;
vm = atc->vm;
spin_lock_irqsave(&atc->vm_lock, flags);
apcm->vm_block = vm->map(vm, runtime->dma_area, runtime->dma_bytes);
spin_unlock_irqrestore(&atc->vm_lock, flags);
if (NULL == apcm->vm_block)
return -ENOENT;
return 0;
}
static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
{
unsigned long flags;
struct ct_vm *vm;
if (NULL == apcm->vm_block)
return;
vm = atc->vm;
spin_lock_irqsave(&atc->vm_lock, flags);
vm->unmap(vm, apcm->vm_block);
spin_unlock_irqrestore(&atc->vm_lock, flags);
apcm->vm_block = NULL;
}
static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
{
struct ct_vm *vm;
void *kvirt_addr;
unsigned long phys_addr;
unsigned long flags;
spin_lock_irqsave(&atc->vm_lock, flags);
vm = atc->vm;
kvirt_addr = vm->get_ptp_virt(vm, index);
if (kvirt_addr == NULL)
phys_addr = (~0UL);
else
phys_addr = virt_to_phys(kvirt_addr);
spin_unlock_irqrestore(&atc->vm_lock, flags);
return phys_addr;
}
static unsigned int convert_format(snd_pcm_format_t snd_format)
{
switch (snd_format) {
case SNDRV_PCM_FORMAT_U8:
case SNDRV_PCM_FORMAT_S8:
return SRC_SF_U8;
case SNDRV_PCM_FORMAT_S16_LE:
case SNDRV_PCM_FORMAT_U16_LE:
return SRC_SF_S16;
case SNDRV_PCM_FORMAT_S24_3LE:
return SRC_SF_S24;
case SNDRV_PCM_FORMAT_S24_LE:
case SNDRV_PCM_FORMAT_S32_LE:
return SRC_SF_S32;
default:
printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
snd_format);
return SRC_SF_S16;
}
}
static unsigned int
atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
{
unsigned int pitch = 0;
int b = 0;
/* get pitch and convert to fixed-point 8.24 format. */
pitch = (input_rate / output_rate) << 24;
input_rate %= output_rate;
input_rate /= 100;
output_rate /= 100;
for (b = 31; ((b >= 0) && !(input_rate >> b)); )
b--;
if (b >= 0) {
input_rate <<= (31 - b);
input_rate /= output_rate;
b = 24 - (31 - b);
if (b >= 0)
input_rate <<= b;
else
input_rate >>= -b;
pitch |= input_rate;
}
return pitch;
}
static int select_rom(unsigned int pitch)
{
if ((pitch > 0x00428f5c) && (pitch < 0x01b851ec)) {
/* 0.26 <= pitch <= 1.72 */
return 1;
} else if ((0x01d66666 == pitch) || (0x01d66667 == pitch)) {
/* pitch == 1.8375 */
return 2;
} else if (0x02000000 == pitch) {
/* pitch == 2 */
return 3;
} else if ((pitch >= 0x0) && (pitch <= 0x08000000)) {
/* 0 <= pitch <= 8 */
return 0;
} else {
return -ENOENT;
}
}
static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
{
struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
struct src_desc desc = {0};
struct amixer_desc mix_dsc = {0};
struct src *src = NULL;
struct amixer *amixer = NULL;
int err = 0;
int n_amixer = apcm->substream->runtime->channels, i = 0;
int device = apcm->substream->pcm->device;
unsigned int pitch = 0;
unsigned long flags;
if (NULL != apcm->src) {
/* Prepared pcm playback */
return 0;
}
/* Get SRC resource */
desc.multi = apcm->substream->runtime->channels;
desc.msr = atc->msr;
desc.mode = MEMRD;
err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
if (err)
goto error1;
pitch = atc_get_pitch(apcm->substream->runtime->rate,
(atc->rsr * atc->msr));
src = apcm->src;
src->ops->set_pitch(src, pitch);
src->ops->set_rom(src, select_rom(pitch));
src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
/* Get AMIXER resource */
n_amixer = (n_amixer < 2) ? 2 : n_amixer;
apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
if (NULL == apcm->amixers) {
err = -ENOMEM;
goto error1;
}
mix_dsc.msr = atc->msr;
for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
(struct amixer **)&apcm->amixers[i]);
if (err)
goto error1;
apcm->n_amixer++;
}
/* Set up device virtual mem map */
err = ct_map_audio_buffer(atc, apcm);
if (err < 0)
goto error1;
/* Connect resources */
src = apcm->src;
for (i = 0; i < n_amixer; i++) {
amixer = apcm->amixers[i];
spin_lock_irqsave(&atc->atc_lock, flags);
amixer->ops->setup(amixer, &src->rsc,
INIT_VOL, atc->pcm[i+device*2]);
spin_unlock_irqrestore(&atc->atc_lock, flags);
src = src->ops->next_interleave(src);
if (NULL == src)
src = apcm->src;
}
return 0;
error1:
atc_pcm_release_resources(atc, apcm);
return err;
}
static int
atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
{
struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
struct srcimp *srcimp = NULL;
int i = 0;
if (NULL != apcm->srcimps) {
for (i = 0; i < apcm->n_srcimp; i++) {
srcimp = apcm->srcimps[i];
srcimp->ops->unmap(srcimp);
srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
apcm->srcimps[i] = NULL;
}
kfree(apcm->srcimps);
apcm->srcimps = NULL;
}
if (NULL != apcm->srccs) {
for (i = 0; i < apcm->n_srcc; i++) {
src_mgr->put_src(src_mgr, apcm->srccs[i]);
apcm->srccs[i] = NULL;
}
kfree(apcm->srccs);
apcm->srccs = NULL;
}
if (NULL != apcm->amixers) {
for (i = 0; i < apcm->n_amixer; i++) {
amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
apcm->amixers[i] = NULL;
}
kfree(apcm->amixers);
apcm->amixers = NULL;
}
if (NULL != apcm->mono) {
sum_mgr->put_sum(sum_mgr, apcm->mono);
apcm->mono = NULL;
}
if (NULL != apcm->src) {
src_mgr->put_src(src_mgr, apcm->src);
apcm->src = NULL;
}
if (NULL != apcm->vm_block) {
/* Undo device virtual mem map */
ct_unmap_audio_buffer(atc, apcm);
apcm->vm_block = NULL;
}
return 0;
}
static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
{
unsigned int max_cisz = 0;
struct src *src = apcm->src;
max_cisz = src->multi * src->rsc.msr;
max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
src->ops->set_sa(src, apcm->vm_block->addr);
src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
src->ops->set_cisz(src, max_cisz);
src->ops->set_bm(src, 1);
src->ops->set_state(src, SRC_STATE_INIT);
src->ops->commit_write(src);
return 0;
}
static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
{
struct src *src = NULL;
int i = 0;
src = apcm->src;
src->ops->set_bm(src, 0);
src->ops->set_state(src, SRC_STATE_OFF);
src->ops->commit_write(src);
if (NULL != apcm->srccs) {
for (i = 0; i < apcm->n_srcc; i++) {
src = apcm->srccs[i];
src->ops->set_bm(src, 0);
src->ops->set_state(src, SRC_STATE_OFF);
src->ops->commit_write(src);
}
}
apcm->started = 0;
return 0;
}
static int
atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
{
struct src *src = apcm->src;
u32 size = 0, max_cisz = 0;
int position = 0;
position = src->ops->get_ca(src);
size = apcm->vm_block->size;
max_cisz = src->multi * src->rsc.msr;
max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
return (position + size - max_cisz - apcm->vm_block->addr) % size;
}
struct src_node_conf_t {
unsigned int pitch;
unsigned int msr:8;
unsigned int mix_msr:8;
unsigned int imp_msr:8;
unsigned int vo:1;
};
static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
struct src_node_conf_t *conf, int *n_srcc)
{
unsigned int pitch = 0;
/* get pitch and convert to fixed-point 8.24 format. */
pitch = atc_get_pitch((atc->rsr * atc->msr),
apcm->substream->runtime->rate);
*n_srcc = 0;
if (1 == atc->msr) {
*n_srcc = apcm->substream->runtime->channels;
conf[0].pitch = pitch;
conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
conf[0].vo = 1;
} else if (2 == atc->msr) {
if (0x8000000 < pitch) {
/* Need two-stage SRCs, SRCIMPs and
* AMIXERs for converting format */
conf[0].pitch = (atc->msr << 24);
conf[0].msr = conf[0].mix_msr = 1;
conf[0].imp_msr = atc->msr;
conf[0].vo = 0;
conf[1].pitch = atc_get_pitch(atc->rsr,
apcm->substream->runtime->rate);
conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
conf[1].vo = 1;
*n_srcc = apcm->substream->runtime->channels * 2;
} else if (0x1000000 < pitch) {
/* Need one-stage SRCs, SRCIMPs and
* AMIXERs for converting format */
conf[0].pitch = pitch;
conf[0].msr = conf[0].mix_msr
= conf[0].imp_msr = atc->msr;
conf[0].vo = 1;
*n_srcc = apcm->substream->runtime->channels;
}
}
}
static int
atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
{
struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
struct src_desc src_dsc = {0};
struct src *src = NULL;
struct srcimp_desc srcimp_dsc = {0};
struct srcimp *srcimp = NULL;
struct amixer_desc mix_dsc = {0};
struct sum_desc sum_dsc = {0};
unsigned int pitch = 0;
int multi = 0, err = 0, i = 0;
int n_srcimp = 0, n_amixer = 0, n_srcc = 0, n_sum = 0;
struct src_node_conf_t src_node_conf[2] = {{0} };
/* The numbers of converting SRCs and SRCIMPs should be determined
* by pitch value. */
multi = apcm->substream->runtime->channels;
/* get pitch and convert to fixed-point 8.24 format. */
pitch = atc_get_pitch((atc->rsr * atc->msr),
apcm->substream->runtime->rate);
setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
n_sum = (1 == multi) ? 1 : 0;
n_amixer += n_sum * 2 + n_srcc;
n_srcimp += n_srcc;
if ((multi > 1) && (0x8000000 >= pitch)) {
/* Need extra AMIXERs and SRCIMPs for special treatment
* of interleaved recording of conjugate channels */
n_amixer += multi * atc->msr;
n_srcimp += multi * atc->msr;
} else {
n_srcimp += multi;
}
if (n_srcc) {
apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
if (NULL == apcm->srccs)
return -ENOMEM;
}
if (n_amixer) {
apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
if (NULL == apcm->amixers) {
err = -ENOMEM;
goto error1;
}
}
apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
if (NULL == apcm->srcimps) {
err = -ENOMEM;
goto error1;
}
/* Allocate SRCs for sample rate conversion if needed */
src_dsc.multi = 1;
src_dsc.mode = ARCRW;
for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
src_dsc.msr = src_node_conf[i/multi].msr;
err = src_mgr->get_src(src_mgr, &src_dsc,
(struct src **)&apcm->srccs[i]);
if (err)
goto error1;
src = apcm->srccs[i];
pitch = src_node_conf[i/multi].pitch;
src->ops->set_pitch(src, pitch);
src->ops->set_rom(src, select_rom(pitch));
src->ops->set_vo(src, src_node_conf[i/multi].vo);
apcm->n_srcc++;
}
/* Allocate AMIXERs for routing SRCs of conversion if needed */
for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
if (i < (n_sum*2))
mix_dsc.msr = atc->msr;
else if (i < (n_sum*2+n_srcc))
mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
else
mix_dsc.msr = 1;
err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
(struct amixer **)&apcm->amixers[i]);
if (err)
goto error1;
apcm->n_amixer++;
}
/* Allocate a SUM resource to mix all input channels together */
sum_dsc.msr = atc->msr;
err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
if (err)
goto error1;
pitch = atc_get_pitch((atc->rsr * atc->msr),
apcm->substream->runtime->rate);
/* Allocate SRCIMP resources */
for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
if (i < (n_srcc))
srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
else if (1 == multi)
srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
else
srcimp_dsc.msr = 1;
err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
if (err)
goto error1;
apcm->srcimps[i] = srcimp;
apcm->n_srcimp++;
}
/* Allocate a SRC for writing data to host memory */
src_dsc.multi = apcm->substream->runtime->channels;
src_dsc.msr = 1;
src_dsc.mode = MEMWR;
err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
if (err)
goto error1;
src = apcm->src;
src->ops->set_pitch(src, pitch);
/* Set up device virtual mem map */
err = ct_map_audio_buffer(atc, apcm);
if (err < 0)
goto error1;
return 0;
error1:
atc_pcm_release_resources(atc, apcm);
return err;
}
static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
{
struct src *src = NULL;
struct amixer *amixer = NULL;
struct srcimp *srcimp = NULL;
struct ct_mixer *mixer = atc->mixer;
struct sum *mono = NULL;
struct rsc *out_ports[8] = {NULL};
int err = 0, i = 0, j = 0, n_sum = 0, multi = 0;
unsigned int pitch = 0;
int mix_base = 0, imp_base = 0;
if (NULL != apcm->src) {
/* Prepared pcm capture */
return 0;
}
/* Get needed resources. */
err = atc_pcm_capture_get_resources(atc, apcm);
if (err)
return err;
/* Connect resources */
mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
&out_ports[0], &out_ports[1]);
multi = apcm->substream->runtime->channels;
if (1 == multi) {
mono = apcm->mono;
for (i = 0; i < 2; i++) {
amixer = apcm->amixers[i];
amixer->ops->setup(amixer, out_ports[i],
MONO_SUM_SCALE, mono);
}
out_ports[0] = &mono->rsc;
n_sum = 1;
mix_base = n_sum * 2;
}
for (i = 0; i < apcm->n_srcc; i++) {
src = apcm->srccs[i];
srcimp = apcm->srcimps[imp_base+i];
amixer = apcm->amixers[mix_base+i];
srcimp->ops->map(srcimp, src, out_ports[i%multi]);
amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
out_ports[i%multi] = &amixer->rsc;
}
pitch = atc_get_pitch((atc->rsr * atc->msr),
apcm->substream->runtime->rate);
if ((multi > 1) && (pitch <= 0x8000000)) {
/* Special connection for interleaved
* recording with conjugate channels */
for (i = 0; i < multi; i++) {
out_ports[i]->ops->master(out_ports[i]);
for (j = 0; j < atc->msr; j++) {
amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
amixer->ops->set_input(amixer, out_ports[i]);
amixer->ops->set_scale(amixer, INIT_VOL);
amixer->ops->set_sum(amixer, NULL);
amixer->ops->commit_raw_write(amixer);
out_ports[i]->ops->next_conj(out_ports[i]);
srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
srcimp->ops->map(srcimp, apcm->src,
&amixer->rsc);
}
}
} else {
for (i = 0; i < multi; i++) {
srcimp = apcm->srcimps[apcm->n_srcc+i];
srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
}
}
return 0;
}
static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
{
struct src *src = NULL;
struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
int i = 0, multi = 0;
if (apcm->started)
return 0;
apcm->started = 1;
multi = apcm->substream->runtime->channels;
/* Set up converting SRCs */
for (i = 0; i < apcm->n_srcc; i++) {
src = apcm->srccs[i];
src->ops->set_pm(src, ((i%multi) != (multi-1)));
src_mgr->src_disable(src_mgr, src);
}
/* Set up recording SRC */
src = apcm->src;
src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
src->ops->set_sa(src, apcm->vm_block->addr);
src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
src->ops->set_ca(src, apcm->vm_block->addr);
src_mgr->src_disable(src_mgr, src);
/* Disable relevant SRCs firstly */
src_mgr->commit_write(src_mgr);
/* Enable SRCs respectively */
for (i = 0; i < apcm->n_srcc; i++) {
src = apcm->srccs[i];
src->ops->set_state(src, SRC_STATE_RUN);
src->ops->commit_write(src);
src_mgr->src_enable_s(src_mgr, src);
}
src = apcm->src;
src->ops->set_bm(src, 1);
src->ops->set_state(src, SRC_STATE_RUN);
src->ops->commit_write(src);
src_mgr->src_enable_s(src_mgr, src);
/* Enable relevant SRCs synchronously */
src_mgr->commit_write(src_mgr);
return 0;
}
static int
atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
{
struct src *src = apcm->src;
return src->ops->get_ca(src) - apcm->vm_block->addr;
}
static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
struct ct_atc_pcm *apcm)
{
struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
struct src_desc desc = {0};
struct amixer_desc mix_dsc = {0};
struct src *src = NULL;
int err = 0;
int n_amixer = apcm->substream->runtime->channels, i = 0;
unsigned int pitch = 0, rsr = atc->pll_rate;
/* Get SRC resource */
desc.multi = apcm->substream->runtime->channels;
desc.msr = 1;
while (apcm->substream->runtime->rate > (rsr * desc.msr))
desc.msr <<= 1;
desc.mode = MEMRD;
err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
if (err)
goto error1;
pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
src = apcm->src;
src->ops->set_pitch(src, pitch);
src->ops->set_rom(src, select_rom(pitch));
src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
src->ops->set_bp(src, 1);
/* Get AMIXER resource */
n_amixer = (n_amixer < 2) ? 2 : n_amixer;
apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
if (NULL == apcm->amixers) {
err = -ENOMEM;
goto error1;
}
mix_dsc.msr = desc.msr;
for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
(struct amixer **)&apcm->amixers[i]);
if (err)
goto error1;
apcm->n_amixer++;
}
/* Set up device virtual mem map */
err = ct_map_audio_buffer(atc, apcm);
if (err < 0)
goto error1;
return 0;
error1:
atc_pcm_release_resources(atc, apcm);
return err;
}
static int
spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
{
struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
unsigned long flags;
unsigned int rate = apcm->substream->runtime->rate;
unsigned int status = 0;
int err = 0;
unsigned char iec958_con_fs = 0;
switch (rate) {
case 48000:
iec958_con_fs = IEC958_AES3_CON_FS_48000;
break;
case 44100:
iec958_con_fs = IEC958_AES3_CON_FS_44100;
break;
case 32000:
iec958_con_fs = IEC958_AES3_CON_FS_32000;
break;
default:
return -ENOENT;
}
spin_lock_irqsave(&atc->atc_lock, flags);
dao->ops->get_spos(dao, &status);
if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
status &= ((~IEC958_AES3_CON_FS) << 24);
status |= (iec958_con_fs << 24);
dao->ops->set_spos(dao, status);
dao->ops->commit_write(dao);
}
if ((rate != atc->pll_rate) && (32000 != rate)) {
err = ((struct hw *)atc->hw)->pll_init(atc->hw, rate);
atc->pll_rate = err ? 0 : rate;
}
spin_unlock_irqrestore(&atc->atc_lock, flags);
return err;
}
static int
spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
{
struct src *src = NULL;
struct amixer *amixer = NULL;
struct dao *dao = NULL;
int err = 0;
int i = 0;
unsigned long flags;
if (NULL != apcm->src)
return 0;
/* Configure SPDIFOO and PLL to passthrough mode;
* determine pll_rate. */
err = spdif_passthru_playback_setup(atc, apcm);
if (err)
return err;
/* Get needed resources. */
err = spdif_passthru_playback_get_resources(atc, apcm);
if (err)
return err;
/* Connect resources */
src = apcm->src;
for (i = 0; i < apcm->n_amixer; i++) {
amixer = apcm->amixers[i];
amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
src = src->ops->next_interleave(src);
if (NULL == src)
src = apcm->src;
}
/* Connect to SPDIFOO */
spin_lock_irqsave(&atc->atc_lock, flags);
dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
amixer = apcm->amixers[0];
dao->ops->set_left_input(dao, &amixer->rsc);
amixer = apcm->amixers[1];
dao->ops->set_right_input(dao, &amixer->rsc);
spin_unlock_irqrestore(&atc->atc_lock, flags);
return 0;
}
static int atc_select_line_in(struct ct_atc *atc)
{
struct hw *hw = atc->hw;
struct ct_mixer *mixer = atc->mixer;
struct src *src = NULL;
if (hw->is_adc_source_selected(hw, ADC_LINEIN))
return 0;
mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
hw->select_adc_source(hw, ADC_LINEIN);
src = atc->srcs[2];
mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
src = atc->srcs[3];
mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
return 0;
}
static int atc_select_mic_in(struct ct_atc *atc)
{
struct hw *hw = atc->hw;
struct ct_mixer *mixer = atc->mixer;
struct src *src = NULL;
if (hw->is_adc_source_selected(hw, ADC_MICIN))
return 0;
mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
hw->select_adc_source(hw, ADC_MICIN);
src = atc->srcs[2];
mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
src = atc->srcs[3];
mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
return 0;
}
static int atc_have_digit_io_switch(struct ct_atc *atc)
{
struct hw *hw = atc->hw;
return hw->have_digit_io_switch(hw);
}
static int atc_select_digit_io(struct ct_atc *atc)
{
struct hw *hw = atc->hw;
if (hw->is_adc_source_selected(hw, ADC_NONE))
return 0;
hw->select_adc_source(hw, ADC_NONE);
return 0;
}
static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
{
struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
if (state)
daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
else
daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
daio_mgr->commit_write(daio_mgr);
return 0;
}
static int
atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
{
struct dao *dao = container_of(atc->daios[type], struct dao, daio);
return dao->ops->get_spos(dao, status);
}
static int
atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
{
struct dao *dao = container_of(atc->daios[type], struct dao, daio);
dao->ops->set_spos(dao, status);
dao->ops->commit_write(dao);
return 0;
}
static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
{
return atc_daio_unmute(atc, state, LINEO1);
}
static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
{
return atc_daio_unmute(atc, state, LINEO4);
}
static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
{
return atc_daio_unmute(atc, state, LINEO3);
}
static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
{
return atc_daio_unmute(atc, state, LINEO2);
}
static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
{
return atc_daio_unmute(atc, state, LINEIM);
}
static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
{
return atc_daio_unmute(atc, state, SPDIFOO);
}
static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
{
return atc_daio_unmute(atc, state, SPDIFIO);
}
static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
{
return atc_dao_get_status(atc, status, SPDIFOO);
}
static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
{
return atc_dao_set_status(atc, status, SPDIFOO);
}
static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
{
unsigned long flags;
struct dao_desc da_dsc = {0};
struct dao *dao = NULL;
int err = 0;
struct ct_mixer *mixer = atc->mixer;
struct rsc *rscs[2] = {NULL};
unsigned int spos = 0;
spin_lock_irqsave(&atc->atc_lock, flags);
dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
da_dsc.msr = state ? 1 : atc->msr;
da_dsc.passthru = state ? 1 : 0;
err = dao->ops->reinit(dao, &da_dsc);
if (state) {
spos = IEC958_DEFAULT_CON;
} else {
mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
&rscs[0], &rscs[1]);
dao->ops->set_left_input(dao, rscs[0]);
dao->ops->set_right_input(dao, rscs[1]);
/* Restore PLL to atc->rsr if needed. */
if (atc->pll_rate != atc->rsr) {
err = ((struct hw *)atc->hw)->pll_init(atc->hw,
atc->rsr);
atc->pll_rate = err ? 0 : atc->rsr;
}
}
dao->ops->set_spos(dao, spos);
dao->ops->commit_write(dao);
spin_unlock_irqrestore(&atc->atc_lock, flags);
return err;
}
static int ct_atc_destroy(struct ct_atc *atc)
{
struct daio_mgr *daio_mgr = NULL;
struct dao *dao = NULL;
struct dai *dai = NULL;
struct daio *daio = NULL;
struct sum_mgr *sum_mgr = NULL;
struct src_mgr *src_mgr = NULL;
struct srcimp_mgr *srcimp_mgr = NULL;
struct srcimp *srcimp = NULL;
struct ct_mixer *mixer = NULL;
int i = 0;
if (NULL == atc)
return 0;
/* Stop hardware and disable all interrupts */
if (NULL != atc->hw)
((struct hw *)atc->hw)->card_stop(atc->hw);
/* Destroy internal mixer objects */
if (NULL != atc->mixer) {
mixer = atc->mixer;
mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
ct_mixer_destroy(atc->mixer);
}
if (NULL != atc->daios) {
daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
for (i = 0; i < atc->n_daio; i++) {
daio = atc->daios[i];
if (daio->type < LINEIM) {
dao = container_of(daio, struct dao, daio);
dao->ops->clear_left_input(dao);
dao->ops->clear_right_input(dao);
} else {
dai = container_of(daio, struct dai, daio);
/* some thing to do for dai ... */
}
daio_mgr->put_daio(daio_mgr, daio);
}
kfree(atc->daios);
}
if (NULL != atc->pcm) {
sum_mgr = atc->rsc_mgrs[SUM];
for (i = 0; i < atc->n_pcm; i++)
sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
kfree(atc->pcm);
}
if (NULL != atc->srcs) {
src_mgr = atc->rsc_mgrs[SRC];
for (i = 0; i < atc->n_src; i++)
src_mgr->put_src(src_mgr, atc->srcs[i]);
kfree(atc->srcs);
}
if (NULL != atc->srcimps) {
srcimp_mgr = atc->rsc_mgrs[SRCIMP];
for (i = 0; i < atc->n_srcimp; i++) {
srcimp = atc->srcimps[i];
srcimp->ops->unmap(srcimp);
srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
}
kfree(atc->srcimps);
}
for (i = 0; i < NUM_RSCTYP; i++) {
if ((NULL != rsc_mgr_funcs[i].destroy) &&
(NULL != atc->rsc_mgrs[i]))
rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
}
if (NULL != atc->hw)
destroy_hw_obj((struct hw *)atc->hw);
/* Destroy device virtual memory manager object */
if (NULL != atc->vm) {
ct_vm_destroy(atc->vm);
atc->vm = NULL;
}
kfree(atc);
return 0;
}
static int atc_dev_free(struct snd_device *dev)
{
struct ct_atc *atc = dev->device_data;
return ct_atc_destroy(atc);
}
static int atc_identify_card(struct ct_atc *atc)
{
u16 subsys;
u8 revision;
struct pci_dev *pci = atc->pci;
const struct ct_atc_chip_details *d;
enum CTCARDS i;
subsys = pci->subsystem_device;
revision = pci->revision;
atc->chip_details = NULL;
atc->model = NUM_CTCARDS;
for (d = atc_chip_details; d->vendor; d++) {
if (d->vendor != pci->vendor || d->device != pci->device)
continue;
if (NULL == d->sub_details) {
atc->chip_details = d;
break;
}
for (i = 0; i < NUM_CTCARDS; i++) {
if ((d->sub_details[i].subsys == subsys) ||
(((subsys & 0x6000) == 0x6000) &&
((d->sub_details[i].subsys & 0x6000) == 0x6000))) {
atc->model = i;
break;
}
}
if (i >= NUM_CTCARDS)
continue;
atc->chip_details = d;
break;
/* not take revision into consideration now */
}
if (!d->vendor)
return -ENOENT;
return 0;
}
static int ct_create_alsa_devs(struct ct_atc *atc)
{
enum CTALSADEVS i;
struct hw *hw = atc->hw;
int err;
switch (hw->get_chip_type(hw)) {
case ATC20K1:
alsa_dev_funcs[MIXER].public_name = "20K1";
break;
case ATC20K2:
alsa_dev_funcs[MIXER].public_name = "20K2";
break;
default:
alsa_dev_funcs[MIXER].public_name = "Unknown";
break;
}
for (i = 0; i < NUM_CTALSADEVS; i++) {
if (NULL == alsa_dev_funcs[i].create)
continue;
err = alsa_dev_funcs[i].create(atc, i,
alsa_dev_funcs[i].public_name);
if (err) {
printk(KERN_ERR "ctxfi: "
"Creating alsa device %d failed!\n", i);
return err;
}
}
return 0;
}
static int atc_create_hw_devs(struct ct_atc *atc)
{
struct hw *hw = NULL;
struct card_conf info = {0};
int i = 0, err = 0;
err = create_hw_obj(atc->pci, &hw);
if (err) {
printk(KERN_ERR "Failed to create hw obj!!!\n");
return err;
}
atc->hw = hw;
/* Initialize card hardware. */
info.rsr = atc->rsr;
info.msr = atc->msr;
info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
err = hw->card_init(hw, &info);
if (err < 0)
return err;
for (i = 0; i < NUM_RSCTYP; i++) {
if (NULL == rsc_mgr_funcs[i].create)
continue;
err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
if (err) {
printk(KERN_ERR "ctxfi: "
"Failed to create rsc_mgr %d!!!\n", i);
return err;
}
}
return 0;
}
static int atc_get_resources(struct ct_atc *atc)
{
struct daio_desc da_desc = {0};
struct daio_mgr *daio_mgr = NULL;
struct src_desc src_dsc = {0};
struct src_mgr *src_mgr = NULL;
struct srcimp_desc srcimp_dsc = {0};
struct srcimp_mgr *srcimp_mgr = NULL;
struct sum_desc sum_dsc = {0};
struct sum_mgr *sum_mgr = NULL;
int err = 0, i = 0;
unsigned short subsys_id;
atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
if (NULL == atc->daios)
return -ENOMEM;
atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
if (NULL == atc->srcs)
return -ENOMEM;
atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
if (NULL == atc->srcimps)
return -ENOMEM;
atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
if (NULL == atc->pcm)
return -ENOMEM;
daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
da_desc.msr = atc->msr;
for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
da_desc.type = i;
err = daio_mgr->get_daio(daio_mgr, &da_desc,
(struct daio **)&atc->daios[i]);
if (err) {
printk(KERN_ERR "ctxfi: Failed to get DAIO "
"resource %d!!!\n", i);
return err;
}
atc->n_daio++;
}
subsys_id = atc->pci->subsystem_device;
if ((subsys_id == 0x0029) || (subsys_id == 0x0031)) {
/* SB073x cards */
da_desc.type = SPDIFI1;
} else {
da_desc.type = SPDIFIO;
}
err = daio_mgr->get_daio(daio_mgr, &da_desc,
(struct daio **)&atc->daios[i]);
if (err) {
printk(KERN_ERR "ctxfi: Failed to get S/PDIF-in resource!!!\n");
return err;
}
atc->n_daio++;
src_mgr = atc->rsc_mgrs[SRC];
src_dsc.multi = 1;
src_dsc.msr = atc->msr;
src_dsc.mode = ARCRW;
for (i = 0, atc->n_src = 0; i < (2*2); i++) {
err = src_mgr->get_src(src_mgr, &src_dsc,
(struct src **)&atc->srcs[i]);
if (err)
return err;
atc->n_src++;
}
srcimp_mgr = atc->rsc_mgrs[SRCIMP];
srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
(struct srcimp **)&atc->srcimps[i]);
if (err)
return err;
atc->n_srcimp++;
}
srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
for (i = 0; i < (2*1); i++) {
err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
(struct srcimp **)&atc->srcimps[2*1+i]);
if (err)
return err;
atc->n_srcimp++;
}
sum_mgr = atc->rsc_mgrs[SUM];
sum_dsc.msr = atc->msr;
for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
(struct sum **)&atc->pcm[i]);
if (err)
return err;
atc->n_pcm++;
}
err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
if (err) {
printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
return err;
}
return 0;
}
static void
atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
struct src **srcs, struct srcimp **srcimps)
{
struct rsc *rscs[2] = {NULL};
struct src *src = NULL;
struct srcimp *srcimp = NULL;
int i = 0;
rscs[0] = &dai->daio.rscl;
rscs[1] = &dai->daio.rscr;
for (i = 0; i < 2; i++) {
src = srcs[i];
srcimp = srcimps[i];
srcimp->ops->map(srcimp, src, rscs[i]);
src_mgr->src_disable(src_mgr, src);
}
src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
src = srcs[0];
src->ops->set_pm(src, 1);
for (i = 0; i < 2; i++) {
src = srcs[i];
src->ops->set_state(src, SRC_STATE_RUN);
src->ops->commit_write(src);
src_mgr->src_enable_s(src_mgr, src);
}
dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
dai->ops->set_enb_src(dai, 1);
dai->ops->set_enb_srt(dai, 1);
dai->ops->commit_write(dai);
src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
}
static void atc_connect_resources(struct ct_atc *atc)
{
struct dai *dai = NULL;
struct dao *dao = NULL;
struct src *src = NULL;
struct sum *sum = NULL;
struct ct_mixer *mixer = NULL;
struct rsc *rscs[2] = {NULL};
int i = 0, j = 0;
mixer = atc->mixer;
for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
dao = container_of(atc->daios[j], struct dao, daio);
dao->ops->set_left_input(dao, rscs[0]);
dao->ops->set_right_input(dao, rscs[1]);
}
dai = container_of(atc->daios[LINEIM], struct dai, daio);
atc_connect_dai(atc->rsc_mgrs[SRC], dai,
(struct src **)&atc->srcs[2],
(struct srcimp **)&atc->srcimps[2]);
src = atc->srcs[2];
mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
src = atc->srcs[3];
mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
atc_connect_dai(atc->rsc_mgrs[SRC], dai,
(struct src **)&atc->srcs[0],
(struct srcimp **)&atc->srcimps[0]);
src = atc->srcs[0];
mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
src = atc->srcs[1];
mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
sum = atc->pcm[j];
mixer->set_input_left(mixer, i, &sum->rsc);
sum = atc->pcm[j+1];
mixer->set_input_right(mixer, i, &sum->rsc);
}
}
static void atc_set_ops(struct ct_atc *atc)
{
/* Set operations */
atc->map_audio_buffer = ct_map_audio_buffer;
atc->unmap_audio_buffer = ct_unmap_audio_buffer;
atc->pcm_playback_prepare = atc_pcm_playback_prepare;
atc->pcm_release_resources = atc_pcm_release_resources;
atc->pcm_playback_start = atc_pcm_playback_start;
atc->pcm_playback_stop = atc_pcm_stop;
atc->pcm_playback_position = atc_pcm_playback_position;
atc->pcm_capture_prepare = atc_pcm_capture_prepare;
atc->pcm_capture_start = atc_pcm_capture_start;
atc->pcm_capture_stop = atc_pcm_stop;
atc->pcm_capture_position = atc_pcm_capture_position;
atc->spdif_passthru_playback_prepare = spdif_passthru_playback_prepare;
atc->get_ptp_phys = atc_get_ptp_phys;
atc->select_line_in = atc_select_line_in;
atc->select_mic_in = atc_select_mic_in;
atc->select_digit_io = atc_select_digit_io;
atc->line_front_unmute = atc_line_front_unmute;
atc->line_surround_unmute = atc_line_surround_unmute;
atc->line_clfe_unmute = atc_line_clfe_unmute;
atc->line_rear_unmute = atc_line_rear_unmute;
atc->line_in_unmute = atc_line_in_unmute;
atc->spdif_out_unmute = atc_spdif_out_unmute;
atc->spdif_in_unmute = atc_spdif_in_unmute;
atc->spdif_out_get_status = atc_spdif_out_get_status;
atc->spdif_out_set_status = atc_spdif_out_set_status;
atc->spdif_out_passthru = atc_spdif_out_passthru;
atc->have_digit_io_switch = atc_have_digit_io_switch;
}
/**
* ct_atc_create - create and initialize a hardware manager
* @card: corresponding alsa card object
* @pci: corresponding kernel pci device object
* @ratc: return created object address in it
*
* Creates and initializes a hardware manager.
*
* Creates kmallocated ct_atc structure. Initializes hardware.
* Returns 0 if suceeds, or negative error code if fails.
*/
int ct_atc_create(struct snd_card *card, struct pci_dev *pci,
unsigned int rsr, unsigned int msr, struct ct_atc **ratc)
{
struct ct_atc *atc = NULL;
static struct snd_device_ops ops = {
.dev_free = atc_dev_free,
};
int err = 0;
*ratc = NULL;
atc = kzalloc(sizeof(*atc), GFP_KERNEL);
if (NULL == atc)
return -ENOMEM;
atc->card = card;
atc->pci = pci;
atc->rsr = rsr;
atc->msr = msr;
/* Set operations */
atc_set_ops(atc);
spin_lock_init(&atc->atc_lock);
spin_lock_init(&atc->vm_lock);
/* Find card model */
err = atc_identify_card(atc);
if (err < 0) {
printk(KERN_ERR "ctatc: Card not recognised\n");
goto error1;
}
/* Set up device virtual memory management object */
err = ct_vm_create(&atc->vm);
if (err < 0)
goto error1;
/* Create all atc hw devices */
err = atc_create_hw_devs(atc);
if (err < 0)
goto error1;
/* Get resources */
err = atc_get_resources(atc);
if (err < 0)
goto error1;
/* Build topology */
atc_connect_resources(atc);
atc->create_alsa_devs = ct_create_alsa_devs;
err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
if (err < 0)
goto error1;
snd_card_set_dev(card, &pci->dev);
*ratc = atc;
return 0;
error1:
ct_atc_destroy(atc);
printk(KERN_ERR "ctxfi: Something wrong!!!\n");
return err;
}