| /* |
| * KVM paravirt_ops implementation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| * |
| * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
| * Copyright IBM Corporation, 2007 |
| * Authors: Anthony Liguori <aliguori@us.ibm.com> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/kvm_para.h> |
| #include <linux/cpu.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/hardirq.h> |
| #include <linux/notifier.h> |
| #include <linux/reboot.h> |
| #include <linux/hash.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/kprobes.h> |
| #include <asm/timer.h> |
| #include <asm/cpu.h> |
| #include <asm/traps.h> |
| #include <asm/desc.h> |
| #include <asm/tlbflush.h> |
| |
| #define MMU_QUEUE_SIZE 1024 |
| |
| static int kvmapf = 1; |
| |
| static int parse_no_kvmapf(char *arg) |
| { |
| kvmapf = 0; |
| return 0; |
| } |
| |
| early_param("no-kvmapf", parse_no_kvmapf); |
| |
| struct kvm_para_state { |
| u8 mmu_queue[MMU_QUEUE_SIZE]; |
| int mmu_queue_len; |
| }; |
| |
| static DEFINE_PER_CPU(struct kvm_para_state, para_state); |
| static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64); |
| |
| static struct kvm_para_state *kvm_para_state(void) |
| { |
| return &per_cpu(para_state, raw_smp_processor_id()); |
| } |
| |
| /* |
| * No need for any "IO delay" on KVM |
| */ |
| static void kvm_io_delay(void) |
| { |
| } |
| |
| #define KVM_TASK_SLEEP_HASHBITS 8 |
| #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS) |
| |
| struct kvm_task_sleep_node { |
| struct hlist_node link; |
| wait_queue_head_t wq; |
| u32 token; |
| int cpu; |
| bool halted; |
| struct mm_struct *mm; |
| }; |
| |
| static struct kvm_task_sleep_head { |
| spinlock_t lock; |
| struct hlist_head list; |
| } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE]; |
| |
| static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b, |
| u32 token) |
| { |
| struct hlist_node *p; |
| |
| hlist_for_each(p, &b->list) { |
| struct kvm_task_sleep_node *n = |
| hlist_entry(p, typeof(*n), link); |
| if (n->token == token) |
| return n; |
| } |
| |
| return NULL; |
| } |
| |
| void kvm_async_pf_task_wait(u32 token) |
| { |
| u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); |
| struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; |
| struct kvm_task_sleep_node n, *e; |
| DEFINE_WAIT(wait); |
| int cpu, idle; |
| |
| cpu = get_cpu(); |
| idle = idle_cpu(cpu); |
| put_cpu(); |
| |
| spin_lock(&b->lock); |
| e = _find_apf_task(b, token); |
| if (e) { |
| /* dummy entry exist -> wake up was delivered ahead of PF */ |
| hlist_del(&e->link); |
| kfree(e); |
| spin_unlock(&b->lock); |
| return; |
| } |
| |
| n.token = token; |
| n.cpu = smp_processor_id(); |
| n.mm = current->active_mm; |
| n.halted = idle || preempt_count() > 1; |
| atomic_inc(&n.mm->mm_count); |
| init_waitqueue_head(&n.wq); |
| hlist_add_head(&n.link, &b->list); |
| spin_unlock(&b->lock); |
| |
| for (;;) { |
| if (!n.halted) |
| prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE); |
| if (hlist_unhashed(&n.link)) |
| break; |
| |
| if (!n.halted) { |
| local_irq_enable(); |
| schedule(); |
| local_irq_disable(); |
| } else { |
| /* |
| * We cannot reschedule. So halt. |
| */ |
| native_safe_halt(); |
| local_irq_disable(); |
| } |
| } |
| if (!n.halted) |
| finish_wait(&n.wq, &wait); |
| |
| return; |
| } |
| EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait); |
| |
| static void apf_task_wake_one(struct kvm_task_sleep_node *n) |
| { |
| hlist_del_init(&n->link); |
| if (!n->mm) |
| return; |
| mmdrop(n->mm); |
| if (n->halted) |
| smp_send_reschedule(n->cpu); |
| else if (waitqueue_active(&n->wq)) |
| wake_up(&n->wq); |
| } |
| |
| static void apf_task_wake_all(void) |
| { |
| int i; |
| |
| for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) { |
| struct hlist_node *p, *next; |
| struct kvm_task_sleep_head *b = &async_pf_sleepers[i]; |
| spin_lock(&b->lock); |
| hlist_for_each_safe(p, next, &b->list) { |
| struct kvm_task_sleep_node *n = |
| hlist_entry(p, typeof(*n), link); |
| if (n->cpu == smp_processor_id()) |
| apf_task_wake_one(n); |
| } |
| spin_unlock(&b->lock); |
| } |
| } |
| |
| void kvm_async_pf_task_wake(u32 token) |
| { |
| u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); |
| struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; |
| struct kvm_task_sleep_node *n; |
| |
| if (token == ~0) { |
| apf_task_wake_all(); |
| return; |
| } |
| |
| again: |
| spin_lock(&b->lock); |
| n = _find_apf_task(b, token); |
| if (!n) { |
| /* |
| * async PF was not yet handled. |
| * Add dummy entry for the token. |
| */ |
| n = kmalloc(sizeof(*n), GFP_ATOMIC); |
| if (!n) { |
| /* |
| * Allocation failed! Busy wait while other cpu |
| * handles async PF. |
| */ |
| spin_unlock(&b->lock); |
| cpu_relax(); |
| goto again; |
| } |
| n->token = token; |
| n->cpu = smp_processor_id(); |
| n->mm = NULL; |
| init_waitqueue_head(&n->wq); |
| hlist_add_head(&n->link, &b->list); |
| } else |
| apf_task_wake_one(n); |
| spin_unlock(&b->lock); |
| return; |
| } |
| EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake); |
| |
| u32 kvm_read_and_reset_pf_reason(void) |
| { |
| u32 reason = 0; |
| |
| if (__get_cpu_var(apf_reason).enabled) { |
| reason = __get_cpu_var(apf_reason).reason; |
| __get_cpu_var(apf_reason).reason = 0; |
| } |
| |
| return reason; |
| } |
| EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason); |
| |
| dotraplinkage void __kprobes |
| do_async_page_fault(struct pt_regs *regs, unsigned long error_code) |
| { |
| switch (kvm_read_and_reset_pf_reason()) { |
| default: |
| do_page_fault(regs, error_code); |
| break; |
| case KVM_PV_REASON_PAGE_NOT_PRESENT: |
| /* page is swapped out by the host. */ |
| kvm_async_pf_task_wait((u32)read_cr2()); |
| break; |
| case KVM_PV_REASON_PAGE_READY: |
| kvm_async_pf_task_wake((u32)read_cr2()); |
| break; |
| } |
| } |
| |
| static void kvm_mmu_op(void *buffer, unsigned len) |
| { |
| int r; |
| unsigned long a1, a2; |
| |
| do { |
| a1 = __pa(buffer); |
| a2 = 0; /* on i386 __pa() always returns <4G */ |
| r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2); |
| buffer += r; |
| len -= r; |
| } while (len); |
| } |
| |
| static void mmu_queue_flush(struct kvm_para_state *state) |
| { |
| if (state->mmu_queue_len) { |
| kvm_mmu_op(state->mmu_queue, state->mmu_queue_len); |
| state->mmu_queue_len = 0; |
| } |
| } |
| |
| static void kvm_deferred_mmu_op(void *buffer, int len) |
| { |
| struct kvm_para_state *state = kvm_para_state(); |
| |
| if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) { |
| kvm_mmu_op(buffer, len); |
| return; |
| } |
| if (state->mmu_queue_len + len > sizeof state->mmu_queue) |
| mmu_queue_flush(state); |
| memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len); |
| state->mmu_queue_len += len; |
| } |
| |
| static void kvm_mmu_write(void *dest, u64 val) |
| { |
| __u64 pte_phys; |
| struct kvm_mmu_op_write_pte wpte; |
| |
| #ifdef CONFIG_HIGHPTE |
| struct page *page; |
| unsigned long dst = (unsigned long) dest; |
| |
| page = kmap_atomic_to_page(dest); |
| pte_phys = page_to_pfn(page); |
| pte_phys <<= PAGE_SHIFT; |
| pte_phys += (dst & ~(PAGE_MASK)); |
| #else |
| pte_phys = (unsigned long)__pa(dest); |
| #endif |
| wpte.header.op = KVM_MMU_OP_WRITE_PTE; |
| wpte.pte_val = val; |
| wpte.pte_phys = pte_phys; |
| |
| kvm_deferred_mmu_op(&wpte, sizeof wpte); |
| } |
| |
| /* |
| * We only need to hook operations that are MMU writes. We hook these so that |
| * we can use lazy MMU mode to batch these operations. We could probably |
| * improve the performance of the host code if we used some of the information |
| * here to simplify processing of batched writes. |
| */ |
| static void kvm_set_pte(pte_t *ptep, pte_t pte) |
| { |
| kvm_mmu_write(ptep, pte_val(pte)); |
| } |
| |
| static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| kvm_mmu_write(ptep, pte_val(pte)); |
| } |
| |
| static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd) |
| { |
| kvm_mmu_write(pmdp, pmd_val(pmd)); |
| } |
| |
| #if PAGETABLE_LEVELS >= 3 |
| #ifdef CONFIG_X86_PAE |
| static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte) |
| { |
| kvm_mmu_write(ptep, pte_val(pte)); |
| } |
| |
| static void kvm_pte_clear(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| kvm_mmu_write(ptep, 0); |
| } |
| |
| static void kvm_pmd_clear(pmd_t *pmdp) |
| { |
| kvm_mmu_write(pmdp, 0); |
| } |
| #endif |
| |
| static void kvm_set_pud(pud_t *pudp, pud_t pud) |
| { |
| kvm_mmu_write(pudp, pud_val(pud)); |
| } |
| |
| #if PAGETABLE_LEVELS == 4 |
| static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd) |
| { |
| kvm_mmu_write(pgdp, pgd_val(pgd)); |
| } |
| #endif |
| #endif /* PAGETABLE_LEVELS >= 3 */ |
| |
| static void kvm_flush_tlb(void) |
| { |
| struct kvm_mmu_op_flush_tlb ftlb = { |
| .header.op = KVM_MMU_OP_FLUSH_TLB, |
| }; |
| |
| kvm_deferred_mmu_op(&ftlb, sizeof ftlb); |
| } |
| |
| static void kvm_release_pt(unsigned long pfn) |
| { |
| struct kvm_mmu_op_release_pt rpt = { |
| .header.op = KVM_MMU_OP_RELEASE_PT, |
| .pt_phys = (u64)pfn << PAGE_SHIFT, |
| }; |
| |
| kvm_mmu_op(&rpt, sizeof rpt); |
| } |
| |
| static void kvm_enter_lazy_mmu(void) |
| { |
| paravirt_enter_lazy_mmu(); |
| } |
| |
| static void kvm_leave_lazy_mmu(void) |
| { |
| struct kvm_para_state *state = kvm_para_state(); |
| |
| mmu_queue_flush(state); |
| paravirt_leave_lazy_mmu(); |
| } |
| |
| static void __init paravirt_ops_setup(void) |
| { |
| pv_info.name = "KVM"; |
| pv_info.paravirt_enabled = 1; |
| |
| if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY)) |
| pv_cpu_ops.io_delay = kvm_io_delay; |
| |
| if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) { |
| pv_mmu_ops.set_pte = kvm_set_pte; |
| pv_mmu_ops.set_pte_at = kvm_set_pte_at; |
| pv_mmu_ops.set_pmd = kvm_set_pmd; |
| #if PAGETABLE_LEVELS >= 3 |
| #ifdef CONFIG_X86_PAE |
| pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic; |
| pv_mmu_ops.pte_clear = kvm_pte_clear; |
| pv_mmu_ops.pmd_clear = kvm_pmd_clear; |
| #endif |
| pv_mmu_ops.set_pud = kvm_set_pud; |
| #if PAGETABLE_LEVELS == 4 |
| pv_mmu_ops.set_pgd = kvm_set_pgd; |
| #endif |
| #endif |
| pv_mmu_ops.flush_tlb_user = kvm_flush_tlb; |
| pv_mmu_ops.release_pte = kvm_release_pt; |
| pv_mmu_ops.release_pmd = kvm_release_pt; |
| pv_mmu_ops.release_pud = kvm_release_pt; |
| |
| pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu; |
| pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu; |
| } |
| #ifdef CONFIG_X86_IO_APIC |
| no_timer_check = 1; |
| #endif |
| } |
| |
| void __cpuinit kvm_guest_cpu_init(void) |
| { |
| if (!kvm_para_available()) |
| return; |
| |
| if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) { |
| u64 pa = __pa(&__get_cpu_var(apf_reason)); |
| |
| #ifdef CONFIG_PREEMPT |
| pa |= KVM_ASYNC_PF_SEND_ALWAYS; |
| #endif |
| wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED); |
| __get_cpu_var(apf_reason).enabled = 1; |
| printk(KERN_INFO"KVM setup async PF for cpu %d\n", |
| smp_processor_id()); |
| } |
| } |
| |
| static void kvm_pv_disable_apf(void *unused) |
| { |
| if (!__get_cpu_var(apf_reason).enabled) |
| return; |
| |
| wrmsrl(MSR_KVM_ASYNC_PF_EN, 0); |
| __get_cpu_var(apf_reason).enabled = 0; |
| |
| printk(KERN_INFO"Unregister pv shared memory for cpu %d\n", |
| smp_processor_id()); |
| } |
| |
| static int kvm_pv_reboot_notify(struct notifier_block *nb, |
| unsigned long code, void *unused) |
| { |
| if (code == SYS_RESTART) |
| on_each_cpu(kvm_pv_disable_apf, NULL, 1); |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block kvm_pv_reboot_nb = { |
| .notifier_call = kvm_pv_reboot_notify, |
| }; |
| |
| #ifdef CONFIG_SMP |
| static void __init kvm_smp_prepare_boot_cpu(void) |
| { |
| WARN_ON(kvm_register_clock("primary cpu clock")); |
| kvm_guest_cpu_init(); |
| native_smp_prepare_boot_cpu(); |
| } |
| |
| static void kvm_guest_cpu_online(void *dummy) |
| { |
| kvm_guest_cpu_init(); |
| } |
| |
| static void kvm_guest_cpu_offline(void *dummy) |
| { |
| kvm_pv_disable_apf(NULL); |
| apf_task_wake_all(); |
| } |
| |
| static int __cpuinit kvm_cpu_notify(struct notifier_block *self, |
| unsigned long action, void *hcpu) |
| { |
| int cpu = (unsigned long)hcpu; |
| switch (action) { |
| case CPU_ONLINE: |
| case CPU_DOWN_FAILED: |
| case CPU_ONLINE_FROZEN: |
| smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0); |
| break; |
| case CPU_DOWN_PREPARE: |
| case CPU_DOWN_PREPARE_FROZEN: |
| smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1); |
| break; |
| default: |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block __cpuinitdata kvm_cpu_notifier = { |
| .notifier_call = kvm_cpu_notify, |
| }; |
| #endif |
| |
| static void __init kvm_apf_trap_init(void) |
| { |
| set_intr_gate(14, &async_page_fault); |
| } |
| |
| void __init kvm_guest_init(void) |
| { |
| int i; |
| |
| if (!kvm_para_available()) |
| return; |
| |
| paravirt_ops_setup(); |
| register_reboot_notifier(&kvm_pv_reboot_nb); |
| for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) |
| spin_lock_init(&async_pf_sleepers[i].lock); |
| if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF)) |
| x86_init.irqs.trap_init = kvm_apf_trap_init; |
| |
| #ifdef CONFIG_SMP |
| smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu; |
| register_cpu_notifier(&kvm_cpu_notifier); |
| #else |
| kvm_guest_cpu_init(); |
| #endif |
| } |