| /* linux/arch/arm/mach-exynos4/mct.c |
| * |
| * Copyright (c) 2011 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com |
| * |
| * EXYNOS4 MCT(Multi-Core Timer) support |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/err.h> |
| #include <linux/clk.h> |
| #include <linux/clockchips.h> |
| #include <linux/platform_device.h> |
| #include <linux/delay.h> |
| #include <linux/percpu.h> |
| |
| #include <asm/hardware/gic.h> |
| #include <asm/localtimer.h> |
| |
| #include <plat/cpu.h> |
| |
| #include <mach/map.h> |
| #include <mach/irqs.h> |
| #include <mach/regs-mct.h> |
| #include <asm/mach/time.h> |
| |
| #define TICK_BASE_CNT 1 |
| |
| enum { |
| MCT_INT_SPI, |
| MCT_INT_PPI |
| }; |
| |
| static unsigned long clk_rate; |
| static unsigned int mct_int_type; |
| |
| struct mct_clock_event_device { |
| struct clock_event_device *evt; |
| void __iomem *base; |
| char name[10]; |
| }; |
| |
| static void exynos4_mct_write(unsigned int value, void *addr) |
| { |
| void __iomem *stat_addr; |
| u32 mask; |
| u32 i; |
| |
| __raw_writel(value, addr); |
| |
| if (likely(addr >= EXYNOS4_MCT_L_BASE(0))) { |
| u32 base = (u32) addr & EXYNOS4_MCT_L_MASK; |
| switch ((u32) addr & ~EXYNOS4_MCT_L_MASK) { |
| case (u32) MCT_L_TCON_OFFSET: |
| stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET; |
| mask = 1 << 3; /* L_TCON write status */ |
| break; |
| case (u32) MCT_L_ICNTB_OFFSET: |
| stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET; |
| mask = 1 << 1; /* L_ICNTB write status */ |
| break; |
| case (u32) MCT_L_TCNTB_OFFSET: |
| stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET; |
| mask = 1 << 0; /* L_TCNTB write status */ |
| break; |
| default: |
| return; |
| } |
| } else { |
| switch ((u32) addr) { |
| case (u32) EXYNOS4_MCT_G_TCON: |
| stat_addr = EXYNOS4_MCT_G_WSTAT; |
| mask = 1 << 16; /* G_TCON write status */ |
| break; |
| case (u32) EXYNOS4_MCT_G_COMP0_L: |
| stat_addr = EXYNOS4_MCT_G_WSTAT; |
| mask = 1 << 0; /* G_COMP0_L write status */ |
| break; |
| case (u32) EXYNOS4_MCT_G_COMP0_U: |
| stat_addr = EXYNOS4_MCT_G_WSTAT; |
| mask = 1 << 1; /* G_COMP0_U write status */ |
| break; |
| case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR: |
| stat_addr = EXYNOS4_MCT_G_WSTAT; |
| mask = 1 << 2; /* G_COMP0_ADD_INCR w status */ |
| break; |
| case (u32) EXYNOS4_MCT_G_CNT_L: |
| stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; |
| mask = 1 << 0; /* G_CNT_L write status */ |
| break; |
| case (u32) EXYNOS4_MCT_G_CNT_U: |
| stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; |
| mask = 1 << 1; /* G_CNT_U write status */ |
| break; |
| default: |
| return; |
| } |
| } |
| |
| /* Wait maximum 1 ms until written values are applied */ |
| for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++) |
| if (__raw_readl(stat_addr) & mask) { |
| __raw_writel(mask, stat_addr); |
| return; |
| } |
| |
| panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr); |
| } |
| |
| /* Clocksource handling */ |
| static void exynos4_mct_frc_start(u32 hi, u32 lo) |
| { |
| u32 reg; |
| |
| exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L); |
| exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U); |
| |
| reg = __raw_readl(EXYNOS4_MCT_G_TCON); |
| reg |= MCT_G_TCON_START; |
| exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON); |
| } |
| |
| static cycle_t exynos4_frc_read(struct clocksource *cs) |
| { |
| unsigned int lo, hi; |
| u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U); |
| |
| do { |
| hi = hi2; |
| lo = __raw_readl(EXYNOS4_MCT_G_CNT_L); |
| hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U); |
| } while (hi != hi2); |
| |
| return ((cycle_t)hi << 32) | lo; |
| } |
| |
| static void exynos4_frc_resume(struct clocksource *cs) |
| { |
| exynos4_mct_frc_start(0, 0); |
| } |
| |
| struct clocksource mct_frc = { |
| .name = "mct-frc", |
| .rating = 400, |
| .read = exynos4_frc_read, |
| .mask = CLOCKSOURCE_MASK(64), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| .resume = exynos4_frc_resume, |
| }; |
| |
| static void __init exynos4_clocksource_init(void) |
| { |
| exynos4_mct_frc_start(0, 0); |
| |
| if (clocksource_register_hz(&mct_frc, clk_rate)) |
| panic("%s: can't register clocksource\n", mct_frc.name); |
| } |
| |
| static void exynos4_mct_comp0_stop(void) |
| { |
| unsigned int tcon; |
| |
| tcon = __raw_readl(EXYNOS4_MCT_G_TCON); |
| tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC); |
| |
| exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON); |
| exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB); |
| } |
| |
| static void exynos4_mct_comp0_start(enum clock_event_mode mode, |
| unsigned long cycles) |
| { |
| unsigned int tcon; |
| cycle_t comp_cycle; |
| |
| tcon = __raw_readl(EXYNOS4_MCT_G_TCON); |
| |
| if (mode == CLOCK_EVT_MODE_PERIODIC) { |
| tcon |= MCT_G_TCON_COMP0_AUTO_INC; |
| exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR); |
| } |
| |
| comp_cycle = exynos4_frc_read(&mct_frc) + cycles; |
| exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L); |
| exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U); |
| |
| exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB); |
| |
| tcon |= MCT_G_TCON_COMP0_ENABLE; |
| exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON); |
| } |
| |
| static int exynos4_comp_set_next_event(unsigned long cycles, |
| struct clock_event_device *evt) |
| { |
| exynos4_mct_comp0_start(evt->mode, cycles); |
| |
| return 0; |
| } |
| |
| static void exynos4_comp_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| unsigned long cycles_per_jiffy; |
| exynos4_mct_comp0_stop(); |
| |
| switch (mode) { |
| case CLOCK_EVT_MODE_PERIODIC: |
| cycles_per_jiffy = |
| (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift); |
| exynos4_mct_comp0_start(mode, cycles_per_jiffy); |
| break; |
| |
| case CLOCK_EVT_MODE_ONESHOT: |
| case CLOCK_EVT_MODE_UNUSED: |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| case CLOCK_EVT_MODE_RESUME: |
| break; |
| } |
| } |
| |
| static struct clock_event_device mct_comp_device = { |
| .name = "mct-comp", |
| .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, |
| .rating = 250, |
| .set_next_event = exynos4_comp_set_next_event, |
| .set_mode = exynos4_comp_set_mode, |
| }; |
| |
| static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = dev_id; |
| |
| exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT); |
| |
| evt->event_handler(evt); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static struct irqaction mct_comp_event_irq = { |
| .name = "mct_comp_irq", |
| .flags = IRQF_TIMER | IRQF_IRQPOLL, |
| .handler = exynos4_mct_comp_isr, |
| .dev_id = &mct_comp_device, |
| }; |
| |
| static void exynos4_clockevent_init(void) |
| { |
| clockevents_calc_mult_shift(&mct_comp_device, clk_rate, 5); |
| mct_comp_device.max_delta_ns = |
| clockevent_delta2ns(0xffffffff, &mct_comp_device); |
| mct_comp_device.min_delta_ns = |
| clockevent_delta2ns(0xf, &mct_comp_device); |
| mct_comp_device.cpumask = cpumask_of(0); |
| clockevents_register_device(&mct_comp_device); |
| |
| if (soc_is_exynos5250()) |
| setup_irq(EXYNOS5_IRQ_MCT_G0, &mct_comp_event_irq); |
| else |
| setup_irq(EXYNOS4_IRQ_MCT_G0, &mct_comp_event_irq); |
| } |
| |
| #ifdef CONFIG_LOCAL_TIMERS |
| |
| static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick); |
| |
| /* Clock event handling */ |
| static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt) |
| { |
| unsigned long tmp; |
| unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START; |
| void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET; |
| |
| tmp = __raw_readl(addr); |
| if (tmp & mask) { |
| tmp &= ~mask; |
| exynos4_mct_write(tmp, addr); |
| } |
| } |
| |
| static void exynos4_mct_tick_start(unsigned long cycles, |
| struct mct_clock_event_device *mevt) |
| { |
| unsigned long tmp; |
| |
| exynos4_mct_tick_stop(mevt); |
| |
| tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */ |
| |
| /* update interrupt count buffer */ |
| exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET); |
| |
| /* enable MCT tick interrupt */ |
| exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET); |
| |
| tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET); |
| tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START | |
| MCT_L_TCON_INTERVAL_MODE; |
| exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET); |
| } |
| |
| static int exynos4_tick_set_next_event(unsigned long cycles, |
| struct clock_event_device *evt) |
| { |
| struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick); |
| |
| exynos4_mct_tick_start(cycles, mevt); |
| |
| return 0; |
| } |
| |
| static inline void exynos4_tick_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick); |
| unsigned long cycles_per_jiffy; |
| |
| exynos4_mct_tick_stop(mevt); |
| |
| switch (mode) { |
| case CLOCK_EVT_MODE_PERIODIC: |
| cycles_per_jiffy = |
| (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift); |
| exynos4_mct_tick_start(cycles_per_jiffy, mevt); |
| break; |
| |
| case CLOCK_EVT_MODE_ONESHOT: |
| case CLOCK_EVT_MODE_UNUSED: |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| case CLOCK_EVT_MODE_RESUME: |
| break; |
| } |
| } |
| |
| static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt) |
| { |
| struct clock_event_device *evt = mevt->evt; |
| |
| /* |
| * This is for supporting oneshot mode. |
| * Mct would generate interrupt periodically |
| * without explicit stopping. |
| */ |
| if (evt->mode != CLOCK_EVT_MODE_PERIODIC) |
| exynos4_mct_tick_stop(mevt); |
| |
| /* Clear the MCT tick interrupt */ |
| if (__raw_readl(mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) { |
| exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET); |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id) |
| { |
| struct mct_clock_event_device *mevt = dev_id; |
| struct clock_event_device *evt = mevt->evt; |
| |
| exynos4_mct_tick_clear(mevt); |
| |
| evt->event_handler(evt); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static struct irqaction mct_tick0_event_irq = { |
| .name = "mct_tick0_irq", |
| .flags = IRQF_TIMER | IRQF_NOBALANCING, |
| .handler = exynos4_mct_tick_isr, |
| }; |
| |
| static struct irqaction mct_tick1_event_irq = { |
| .name = "mct_tick1_irq", |
| .flags = IRQF_TIMER | IRQF_NOBALANCING, |
| .handler = exynos4_mct_tick_isr, |
| }; |
| |
| static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt) |
| { |
| struct mct_clock_event_device *mevt; |
| unsigned int cpu = smp_processor_id(); |
| int mct_lx_irq; |
| |
| mevt = this_cpu_ptr(&percpu_mct_tick); |
| mevt->evt = evt; |
| |
| mevt->base = EXYNOS4_MCT_L_BASE(cpu); |
| sprintf(mevt->name, "mct_tick%d", cpu); |
| |
| evt->name = mevt->name; |
| evt->cpumask = cpumask_of(cpu); |
| evt->set_next_event = exynos4_tick_set_next_event; |
| evt->set_mode = exynos4_tick_set_mode; |
| evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; |
| evt->rating = 450; |
| |
| clockevents_calc_mult_shift(evt, clk_rate / (TICK_BASE_CNT + 1), 5); |
| evt->max_delta_ns = |
| clockevent_delta2ns(0x7fffffff, evt); |
| evt->min_delta_ns = |
| clockevent_delta2ns(0xf, evt); |
| |
| clockevents_register_device(evt); |
| |
| exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET); |
| |
| if (mct_int_type == MCT_INT_SPI) { |
| if (cpu == 0) { |
| mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L0 : |
| EXYNOS5_IRQ_MCT_L0; |
| mct_tick0_event_irq.dev_id = mevt; |
| evt->irq = mct_lx_irq; |
| setup_irq(mct_lx_irq, &mct_tick0_event_irq); |
| } else { |
| mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L1 : |
| EXYNOS5_IRQ_MCT_L1; |
| mct_tick1_event_irq.dev_id = mevt; |
| evt->irq = mct_lx_irq; |
| setup_irq(mct_lx_irq, &mct_tick1_event_irq); |
| irq_set_affinity(mct_lx_irq, cpumask_of(1)); |
| } |
| } else { |
| enable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER, 0); |
| } |
| |
| return 0; |
| } |
| |
| static void exynos4_local_timer_stop(struct clock_event_device *evt) |
| { |
| unsigned int cpu = smp_processor_id(); |
| evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt); |
| if (mct_int_type == MCT_INT_SPI) |
| if (cpu == 0) |
| remove_irq(evt->irq, &mct_tick0_event_irq); |
| else |
| remove_irq(evt->irq, &mct_tick1_event_irq); |
| else |
| disable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER); |
| } |
| |
| static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = { |
| .setup = exynos4_local_timer_setup, |
| .stop = exynos4_local_timer_stop, |
| }; |
| #endif /* CONFIG_LOCAL_TIMERS */ |
| |
| static void __init exynos4_timer_resources(void) |
| { |
| struct clk *mct_clk; |
| mct_clk = clk_get(NULL, "xtal"); |
| |
| clk_rate = clk_get_rate(mct_clk); |
| |
| #ifdef CONFIG_LOCAL_TIMERS |
| if (mct_int_type == MCT_INT_PPI) { |
| int err; |
| |
| err = request_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER, |
| exynos4_mct_tick_isr, "MCT", |
| &percpu_mct_tick); |
| WARN(err, "MCT: can't request IRQ %d (%d)\n", |
| EXYNOS_IRQ_MCT_LOCALTIMER, err); |
| } |
| |
| local_timer_register(&exynos4_mct_tick_ops); |
| #endif /* CONFIG_LOCAL_TIMERS */ |
| } |
| |
| static void __init exynos4_timer_init(void) |
| { |
| if ((soc_is_exynos4210()) || (soc_is_exynos5250())) |
| mct_int_type = MCT_INT_SPI; |
| else |
| mct_int_type = MCT_INT_PPI; |
| |
| exynos4_timer_resources(); |
| exynos4_clocksource_init(); |
| exynos4_clockevent_init(); |
| } |
| |
| struct sys_timer exynos4_timer = { |
| .init = exynos4_timer_init, |
| }; |