| /* |
| * sched_clock for unstable cpu clocks |
| * |
| * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
| * |
| * Based on code by: |
| * Ingo Molnar <mingo@redhat.com> |
| * Guillaume Chazarain <guichaz@gmail.com> |
| * |
| * Create a semi stable clock from a mixture of other events, including: |
| * - gtod |
| * - jiffies |
| * - sched_clock() |
| * - explicit idle events |
| * |
| * We use gtod as base and the unstable clock deltas. The deltas are filtered, |
| * making it monotonic and keeping it within an expected window. This window |
| * is set up using jiffies. |
| * |
| * Furthermore, explicit sleep and wakeup hooks allow us to account for time |
| * that is otherwise invisible (TSC gets stopped). |
| * |
| * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat |
| * consistent between cpus (never more than 1 jiffies difference). |
| */ |
| #include <linux/sched.h> |
| #include <linux/percpu.h> |
| #include <linux/spinlock.h> |
| #include <linux/ktime.h> |
| #include <linux/module.h> |
| |
| |
| #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK |
| |
| struct sched_clock_data { |
| /* |
| * Raw spinlock - this is a special case: this might be called |
| * from within instrumentation code so we dont want to do any |
| * instrumentation ourselves. |
| */ |
| raw_spinlock_t lock; |
| |
| unsigned long tick_jiffies; |
| u64 prev_raw; |
| u64 tick_raw; |
| u64 tick_gtod; |
| u64 clock; |
| #ifdef CONFIG_NO_HZ |
| int check_max; |
| #endif |
| }; |
| |
| static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); |
| |
| static inline struct sched_clock_data *this_scd(void) |
| { |
| return &__get_cpu_var(sched_clock_data); |
| } |
| |
| static inline struct sched_clock_data *cpu_sdc(int cpu) |
| { |
| return &per_cpu(sched_clock_data, cpu); |
| } |
| |
| static __read_mostly int sched_clock_running; |
| |
| void sched_clock_init(void) |
| { |
| u64 ktime_now = ktime_to_ns(ktime_get()); |
| unsigned long now_jiffies = jiffies; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct sched_clock_data *scd = cpu_sdc(cpu); |
| |
| scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; |
| scd->tick_jiffies = now_jiffies; |
| scd->prev_raw = 0; |
| scd->tick_raw = 0; |
| scd->tick_gtod = ktime_now; |
| scd->clock = ktime_now; |
| #ifdef CONFIG_NO_HZ |
| scd->check_max = 1; |
| #endif |
| } |
| |
| sched_clock_running = 1; |
| } |
| |
| #ifdef CONFIG_NO_HZ |
| /* |
| * The dynamic ticks makes the delta jiffies inaccurate. This |
| * prevents us from checking the maximum time update. |
| * Disable the maximum check during stopped ticks. |
| */ |
| void sched_clock_tick_stop(int cpu) |
| { |
| struct sched_clock_data *scd = cpu_sdc(cpu); |
| |
| scd->check_max = 0; |
| } |
| |
| void sched_clock_tick_start(int cpu) |
| { |
| struct sched_clock_data *scd = cpu_sdc(cpu); |
| |
| scd->check_max = 1; |
| } |
| |
| static int check_max(struct sched_clock_data *scd) |
| { |
| return scd->check_max; |
| } |
| #else |
| static int check_max(struct sched_clock_data *scd) |
| { |
| return 1; |
| } |
| #endif /* CONFIG_NO_HZ */ |
| |
| /* |
| * update the percpu scd from the raw @now value |
| * |
| * - filter out backward motion |
| * - use jiffies to generate a min,max window to clip the raw values |
| */ |
| static void __update_sched_clock(struct sched_clock_data *scd, u64 now) |
| { |
| unsigned long now_jiffies = jiffies; |
| long delta_jiffies = now_jiffies - scd->tick_jiffies; |
| u64 clock = scd->clock; |
| u64 min_clock, max_clock; |
| s64 delta = now - scd->prev_raw; |
| |
| WARN_ON_ONCE(!irqs_disabled()); |
| |
| min_clock = scd->tick_gtod + |
| (delta_jiffies ? delta_jiffies - 1 : 0) * TICK_NSEC; |
| |
| if (unlikely(delta < 0)) { |
| clock++; |
| goto out; |
| } |
| |
| /* |
| * The clock must stay within a jiffie of the gtod. |
| * But since we may be at the start of a jiffy or the end of one |
| * we add another jiffy buffer. |
| */ |
| max_clock = scd->tick_gtod + (2 + delta_jiffies) * TICK_NSEC; |
| |
| if (unlikely(clock + delta > max_clock) && check_max(scd)) { |
| if (clock < max_clock) |
| clock = max_clock; |
| else |
| clock++; |
| } else { |
| clock += delta; |
| } |
| |
| out: |
| if (unlikely(clock < min_clock)) |
| clock = min_clock; |
| |
| scd->prev_raw = now; |
| scd->clock = clock; |
| } |
| |
| static void lock_double_clock(struct sched_clock_data *data1, |
| struct sched_clock_data *data2) |
| { |
| if (data1 < data2) { |
| __raw_spin_lock(&data1->lock); |
| __raw_spin_lock(&data2->lock); |
| } else { |
| __raw_spin_lock(&data2->lock); |
| __raw_spin_lock(&data1->lock); |
| } |
| } |
| |
| u64 sched_clock_cpu(int cpu) |
| { |
| struct sched_clock_data *scd = cpu_sdc(cpu); |
| u64 now, clock; |
| |
| if (unlikely(!sched_clock_running)) |
| return 0ull; |
| |
| WARN_ON_ONCE(!irqs_disabled()); |
| now = sched_clock(); |
| |
| if (cpu != raw_smp_processor_id()) { |
| /* |
| * in order to update a remote cpu's clock based on our |
| * unstable raw time rebase it against: |
| * tick_raw (offset between raw counters) |
| * tick_gotd (tick offset between cpus) |
| */ |
| struct sched_clock_data *my_scd = this_scd(); |
| |
| lock_double_clock(scd, my_scd); |
| |
| now -= my_scd->tick_raw; |
| now += scd->tick_raw; |
| |
| now -= my_scd->tick_gtod; |
| now += scd->tick_gtod; |
| |
| __raw_spin_unlock(&my_scd->lock); |
| } else { |
| __raw_spin_lock(&scd->lock); |
| } |
| |
| __update_sched_clock(scd, now); |
| clock = scd->clock; |
| |
| __raw_spin_unlock(&scd->lock); |
| |
| return clock; |
| } |
| |
| void sched_clock_tick(void) |
| { |
| struct sched_clock_data *scd = this_scd(); |
| unsigned long now_jiffies = jiffies; |
| u64 now, now_gtod; |
| |
| if (unlikely(!sched_clock_running)) |
| return; |
| |
| WARN_ON_ONCE(!irqs_disabled()); |
| |
| now = sched_clock(); |
| now_gtod = ktime_to_ns(ktime_get()); |
| |
| __raw_spin_lock(&scd->lock); |
| __update_sched_clock(scd, now); |
| /* |
| * update tick_gtod after __update_sched_clock() because that will |
| * already observe 1 new jiffy; adding a new tick_gtod to that would |
| * increase the clock 2 jiffies. |
| */ |
| scd->tick_jiffies = now_jiffies; |
| scd->tick_raw = now; |
| scd->tick_gtod = now_gtod; |
| __raw_spin_unlock(&scd->lock); |
| } |
| |
| /* |
| * We are going deep-idle (irqs are disabled): |
| */ |
| void sched_clock_idle_sleep_event(void) |
| { |
| sched_clock_cpu(smp_processor_id()); |
| } |
| EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); |
| |
| /* |
| * We just idled delta nanoseconds (called with irqs disabled): |
| */ |
| void sched_clock_idle_wakeup_event(u64 delta_ns) |
| { |
| struct sched_clock_data *scd = this_scd(); |
| u64 now = sched_clock(); |
| |
| /* |
| * Override the previous timestamp and ignore all |
| * sched_clock() deltas that occured while we idled, |
| * and use the PM-provided delta_ns to advance the |
| * rq clock: |
| */ |
| __raw_spin_lock(&scd->lock); |
| scd->prev_raw = now; |
| scd->clock += delta_ns; |
| __raw_spin_unlock(&scd->lock); |
| |
| touch_softlockup_watchdog(); |
| } |
| EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); |
| |
| #endif |
| |
| /* |
| * Scheduler clock - returns current time in nanosec units. |
| * This is default implementation. |
| * Architectures and sub-architectures can override this. |
| */ |
| unsigned long long __attribute__((weak)) sched_clock(void) |
| { |
| return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ); |
| } |