blob: 90f8d1604f5fbc8c6e7d1153169b99e97388e901 [file] [log] [blame]
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2010-2011 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/pci.h>
#include <linux/module.h>
#include "net_driver.h"
#include "efx.h"
#include "nic.h"
#include "io.h"
#include "mcdi.h"
#include "filter.h"
#include "mcdi_pcol.h"
#include "regs.h"
#include "vfdi.h"
/* Number of longs required to track all the VIs in a VF */
#define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
/* Maximum number of RX queues supported */
#define VF_MAX_RX_QUEUES 63
/**
* enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
* @VF_TX_FILTER_OFF: Disabled
* @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
* 2 TX queues allowed per VF.
* @VF_TX_FILTER_ON: Enabled
*/
enum efx_vf_tx_filter_mode {
VF_TX_FILTER_OFF,
VF_TX_FILTER_AUTO,
VF_TX_FILTER_ON,
};
/**
* struct efx_vf - Back-end resource and protocol state for a PCI VF
* @efx: The Efx NIC owning this VF
* @pci_rid: The PCI requester ID for this VF
* @pci_name: The PCI name (formatted address) of this VF
* @index: Index of VF within its port and PF.
* @req: VFDI incoming request work item. Incoming USR_EV events are received
* by the NAPI handler, but must be handled by executing MCDI requests
* inside a work item.
* @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
* @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
* @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
* @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
* @status_lock
* @busy: VFDI request queued to be processed or being processed. Receiving
* a VFDI request when @busy is set is an error condition.
* @buf: Incoming VFDI requests are DMA from the VF into this buffer.
* @buftbl_base: Buffer table entries for this VF start at this index.
* @rx_filtering: Receive filtering has been requested by the VF driver.
* @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
* @rx_filter_qid: VF relative qid for RX filter requested by VF.
* @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
* @tx_filter_mode: Transmit MAC filtering mode.
* @tx_filter_id: Transmit MAC filter ID.
* @addr: The MAC address and outer vlan tag of the VF.
* @status_addr: VF DMA address of page for &struct vfdi_status updates.
* @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
* @peer_page_addrs and @peer_page_count from simultaneous
* updates by the VM and consumption by
* efx_sriov_update_vf_addr()
* @peer_page_addrs: Pointer to an array of guest pages for local addresses.
* @peer_page_count: Number of entries in @peer_page_count.
* @evq0_addrs: Array of guest pages backing evq0.
* @evq0_count: Number of entries in @evq0_addrs.
* @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
* to wait for flush completions.
* @txq_lock: Mutex for TX queue allocation.
* @txq_mask: Mask of initialized transmit queues.
* @txq_count: Number of initialized transmit queues.
* @rxq_mask: Mask of initialized receive queues.
* @rxq_count: Number of initialized receive queues.
* @rxq_retry_mask: Mask or receive queues that need to be flushed again
* due to flush failure.
* @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
* @reset_work: Work item to schedule a VF reset.
*/
struct efx_vf {
struct efx_nic *efx;
unsigned int pci_rid;
char pci_name[13]; /* dddd:bb:dd.f */
unsigned int index;
struct work_struct req;
u64 req_addr;
int req_type;
unsigned req_seqno;
unsigned msg_seqno;
bool busy;
struct efx_buffer buf;
unsigned buftbl_base;
bool rx_filtering;
enum efx_filter_flags rx_filter_flags;
unsigned rx_filter_qid;
int rx_filter_id;
enum efx_vf_tx_filter_mode tx_filter_mode;
int tx_filter_id;
struct vfdi_endpoint addr;
u64 status_addr;
struct mutex status_lock;
u64 *peer_page_addrs;
unsigned peer_page_count;
u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
EFX_BUF_SIZE];
unsigned evq0_count;
wait_queue_head_t flush_waitq;
struct mutex txq_lock;
unsigned long txq_mask[VI_MASK_LENGTH];
unsigned txq_count;
unsigned long rxq_mask[VI_MASK_LENGTH];
unsigned rxq_count;
unsigned long rxq_retry_mask[VI_MASK_LENGTH];
atomic_t rxq_retry_count;
struct work_struct reset_work;
};
struct efx_memcpy_req {
unsigned int from_rid;
void *from_buf;
u64 from_addr;
unsigned int to_rid;
u64 to_addr;
unsigned length;
};
/**
* struct efx_local_addr - A MAC address on the vswitch without a VF.
*
* Siena does not have a switch, so VFs can't transmit data to each
* other. Instead the VFs must be made aware of the local addresses
* on the vswitch, so that they can arrange for an alternative
* software datapath to be used.
*
* @link: List head for insertion into efx->local_addr_list.
* @addr: Ethernet address
*/
struct efx_local_addr {
struct list_head link;
u8 addr[ETH_ALEN];
};
/**
* struct efx_endpoint_page - Page of vfdi_endpoint structures
*
* @link: List head for insertion into efx->local_page_list.
* @ptr: Pointer to page.
* @addr: DMA address of page.
*/
struct efx_endpoint_page {
struct list_head link;
void *ptr;
dma_addr_t addr;
};
/* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
#define EFX_BUFTBL_TXQ_BASE(_vf, _qid) \
((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
#define EFX_BUFTBL_RXQ_BASE(_vf, _qid) \
(EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
(EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
#define EFX_BUFTBL_EVQ_BASE(_vf, _qid) \
(EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
(2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
#define EFX_FIELD_MASK(_field) \
((1 << _field ## _WIDTH) - 1)
/* VFs can only use this many transmit channels */
static unsigned int vf_max_tx_channels = 2;
module_param(vf_max_tx_channels, uint, 0444);
MODULE_PARM_DESC(vf_max_tx_channels,
"Limit the number of TX channels VFs can use");
static int max_vfs = -1;
module_param(max_vfs, int, 0444);
MODULE_PARM_DESC(max_vfs,
"Reduce the number of VFs initialized by the driver");
/* Workqueue used by VFDI communication. We can't use the global
* workqueue because it may be running the VF driver's probe()
* routine, which will be blocked there waiting for a VFDI response.
*/
static struct workqueue_struct *vfdi_workqueue;
static unsigned abs_index(struct efx_vf *vf, unsigned index)
{
return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
}
static int efx_sriov_cmd(struct efx_nic *efx, bool enable,
unsigned *vi_scale_out, unsigned *vf_total_out)
{
u8 inbuf[MC_CMD_SRIOV_IN_LEN];
u8 outbuf[MC_CMD_SRIOV_OUT_LEN];
unsigned vi_scale, vf_total;
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
rc = efx_mcdi_rpc(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_SRIOV_OUT_LEN)
return -EIO;
vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
if (vi_scale > EFX_VI_SCALE_MAX)
return -EOPNOTSUPP;
if (vi_scale_out)
*vi_scale_out = vi_scale;
if (vf_total_out)
*vf_total_out = vf_total;
return 0;
}
static void efx_sriov_usrev(struct efx_nic *efx, bool enabled)
{
efx_oword_t reg;
EFX_POPULATE_OWORD_2(reg,
FRF_CZ_USREV_DIS, enabled ? 0 : 1,
FRF_CZ_DFLT_EVQ, efx->vfdi_channel->channel);
efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
}
static int efx_sriov_memcpy(struct efx_nic *efx, struct efx_memcpy_req *req,
unsigned int count)
{
u8 *inbuf, *record;
unsigned int used;
u32 from_rid, from_hi, from_lo;
int rc;
mb(); /* Finish writing source/reading dest before DMA starts */
used = MC_CMD_MEMCPY_IN_LEN(count);
if (WARN_ON(used > MCDI_CTL_SDU_LEN_MAX))
return -ENOBUFS;
/* Allocate room for the largest request */
inbuf = kzalloc(MCDI_CTL_SDU_LEN_MAX, GFP_KERNEL);
if (inbuf == NULL)
return -ENOMEM;
record = inbuf;
MCDI_SET_DWORD(record, MEMCPY_IN_RECORD, count);
while (count-- > 0) {
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
req->to_rid);
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_LO,
(u32)req->to_addr);
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_HI,
(u32)(req->to_addr >> 32));
if (req->from_buf == NULL) {
from_rid = req->from_rid;
from_lo = (u32)req->from_addr;
from_hi = (u32)(req->from_addr >> 32);
} else {
if (WARN_ON(used + req->length > MCDI_CTL_SDU_LEN_MAX)) {
rc = -ENOBUFS;
goto out;
}
from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
from_lo = used;
from_hi = 0;
memcpy(inbuf + used, req->from_buf, req->length);
used += req->length;
}
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_LO,
from_lo);
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_HI,
from_hi);
MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
req->length);
++req;
record += MC_CMD_MEMCPY_IN_RECORD_LEN;
}
rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
out:
kfree(inbuf);
mb(); /* Don't write source/read dest before DMA is complete */
return rc;
}
/* The TX filter is entirely controlled by this driver, and is modified
* underneath the feet of the VF
*/
static void efx_sriov_reset_tx_filter(struct efx_vf *vf)
{
struct efx_nic *efx = vf->efx;
struct efx_filter_spec filter;
u16 vlan;
int rc;
if (vf->tx_filter_id != -1) {
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
vf->tx_filter_id);
netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
vf->pci_name, vf->tx_filter_id);
vf->tx_filter_id = -1;
}
if (is_zero_ether_addr(vf->addr.mac_addr))
return;
/* Turn on TX filtering automatically if not explicitly
* enabled or disabled.
*/
if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
vf->tx_filter_mode = VF_TX_FILTER_ON;
vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
efx_filter_init_tx(&filter, abs_index(vf, 0));
rc = efx_filter_set_eth_local(&filter,
vlan ? vlan : EFX_FILTER_VID_UNSPEC,
vf->addr.mac_addr);
BUG_ON(rc);
rc = efx_filter_insert_filter(efx, &filter, true);
if (rc < 0) {
netif_warn(efx, hw, efx->net_dev,
"Unable to migrate tx filter for vf %s\n",
vf->pci_name);
} else {
netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
vf->pci_name, rc);
vf->tx_filter_id = rc;
}
}
/* The RX filter is managed here on behalf of the VF driver */
static void efx_sriov_reset_rx_filter(struct efx_vf *vf)
{
struct efx_nic *efx = vf->efx;
struct efx_filter_spec filter;
u16 vlan;
int rc;
if (vf->rx_filter_id != -1) {
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
vf->rx_filter_id);
netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
vf->pci_name, vf->rx_filter_id);
vf->rx_filter_id = -1;
}
if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
return;
vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
vf->rx_filter_flags,
abs_index(vf, vf->rx_filter_qid));
rc = efx_filter_set_eth_local(&filter,
vlan ? vlan : EFX_FILTER_VID_UNSPEC,
vf->addr.mac_addr);
BUG_ON(rc);
rc = efx_filter_insert_filter(efx, &filter, true);
if (rc < 0) {
netif_warn(efx, hw, efx->net_dev,
"Unable to insert rx filter for vf %s\n",
vf->pci_name);
} else {
netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
vf->pci_name, rc);
vf->rx_filter_id = rc;
}
}
static void __efx_sriov_update_vf_addr(struct efx_vf *vf)
{
efx_sriov_reset_tx_filter(vf);
efx_sriov_reset_rx_filter(vf);
queue_work(vfdi_workqueue, &vf->efx->peer_work);
}
/* Push the peer list to this VF. The caller must hold status_lock to interlock
* with VFDI requests, and they must be serialised against manipulation of
* local_page_list, either by acquiring local_lock or by running from
* efx_sriov_peer_work()
*/
static void __efx_sriov_push_vf_status(struct efx_vf *vf)
{
struct efx_nic *efx = vf->efx;
struct vfdi_status *status = efx->vfdi_status.addr;
struct efx_memcpy_req copy[4];
struct efx_endpoint_page *epp;
unsigned int pos, count;
unsigned data_offset;
efx_qword_t event;
WARN_ON(!mutex_is_locked(&vf->status_lock));
WARN_ON(!vf->status_addr);
status->local = vf->addr;
status->generation_end = ++status->generation_start;
memset(copy, '\0', sizeof(copy));
/* Write generation_start */
copy[0].from_buf = &status->generation_start;
copy[0].to_rid = vf->pci_rid;
copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
generation_start);
copy[0].length = sizeof(status->generation_start);
/* DMA the rest of the structure (excluding the generations). This
* assumes that the non-generation portion of vfdi_status is in
* one chunk starting at the version member.
*/
data_offset = offsetof(struct vfdi_status, version);
copy[1].from_rid = efx->pci_dev->devfn;
copy[1].from_addr = efx->vfdi_status.dma_addr + data_offset;
copy[1].to_rid = vf->pci_rid;
copy[1].to_addr = vf->status_addr + data_offset;
copy[1].length = status->length - data_offset;
/* Copy the peer pages */
pos = 2;
count = 0;
list_for_each_entry(epp, &efx->local_page_list, link) {
if (count == vf->peer_page_count) {
/* The VF driver will know they need to provide more
* pages because peer_addr_count is too large.
*/
break;
}
copy[pos].from_buf = NULL;
copy[pos].from_rid = efx->pci_dev->devfn;
copy[pos].from_addr = epp->addr;
copy[pos].to_rid = vf->pci_rid;
copy[pos].to_addr = vf->peer_page_addrs[count];
copy[pos].length = EFX_PAGE_SIZE;
if (++pos == ARRAY_SIZE(copy)) {
efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
pos = 0;
}
++count;
}
/* Write generation_end */
copy[pos].from_buf = &status->generation_end;
copy[pos].to_rid = vf->pci_rid;
copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
generation_end);
copy[pos].length = sizeof(status->generation_end);
efx_sriov_memcpy(efx, copy, pos + 1);
/* Notify the guest */
EFX_POPULATE_QWORD_3(event,
FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
++vf->msg_seqno;
efx_generate_event(efx, EFX_VI_BASE + vf->index * efx_vf_size(efx),
&event);
}
static void efx_sriov_bufs(struct efx_nic *efx, unsigned offset,
u64 *addr, unsigned count)
{
efx_qword_t buf;
unsigned pos;
for (pos = 0; pos < count; ++pos) {
EFX_POPULATE_QWORD_3(buf,
FRF_AZ_BUF_ADR_REGION, 0,
FRF_AZ_BUF_ADR_FBUF,
addr ? addr[pos] >> 12 : 0,
FRF_AZ_BUF_OWNER_ID_FBUF, 0);
efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
&buf, offset + pos);
}
}
static bool bad_vf_index(struct efx_nic *efx, unsigned index)
{
return index >= efx_vf_size(efx);
}
static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
{
unsigned max_buf_count = max_entry_count *
sizeof(efx_qword_t) / EFX_BUF_SIZE;
return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
}
/* Check that VI specified by per-port index belongs to a VF.
* Optionally set VF index and VI index within the VF.
*/
static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
struct efx_vf **vf_out, unsigned *rel_index_out)
{
unsigned vf_i;
if (abs_index < EFX_VI_BASE)
return true;
vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
if (vf_i >= efx->vf_init_count)
return true;
if (vf_out)
*vf_out = efx->vf + vf_i;
if (rel_index_out)
*rel_index_out = abs_index % efx_vf_size(efx);
return false;
}
static int efx_vfdi_init_evq(struct efx_vf *vf)
{
struct efx_nic *efx = vf->efx;
struct vfdi_req *req = vf->buf.addr;
unsigned vf_evq = req->u.init_evq.index;
unsigned buf_count = req->u.init_evq.buf_count;
unsigned abs_evq = abs_index(vf, vf_evq);
unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
efx_oword_t reg;
if (bad_vf_index(efx, vf_evq) ||
bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
if (net_ratelimit())
netif_err(efx, hw, efx->net_dev,
"ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
vf->pci_name, vf_evq, buf_count);
return VFDI_RC_EINVAL;
}
efx_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
EFX_POPULATE_OWORD_3(reg,
FRF_CZ_TIMER_Q_EN, 1,
FRF_CZ_HOST_NOTIFY_MODE, 0,
FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
EFX_POPULATE_OWORD_3(reg,
FRF_AZ_EVQ_EN, 1,
FRF_AZ_EVQ_SIZE, __ffs(buf_count),
FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
if (vf_evq == 0) {
memcpy(vf->evq0_addrs, req->u.init_evq.addr,
buf_count * sizeof(u64));
vf->evq0_count = buf_count;
}
return VFDI_RC_SUCCESS;
}
static int efx_vfdi_init_rxq(struct efx_vf *vf)
{
struct efx_nic *efx = vf->efx;
struct vfdi_req *req = vf->buf.addr;
unsigned vf_rxq = req->u.init_rxq.index;
unsigned vf_evq = req->u.init_rxq.evq;
unsigned buf_count = req->u.init_rxq.buf_count;
unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
unsigned label;
efx_oword_t reg;
if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
vf_rxq >= VF_MAX_RX_QUEUES ||
bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
if (net_ratelimit())
netif_err(efx, hw, efx->net_dev,
"ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
"buf_count %d\n", vf->pci_name, vf_rxq,
vf_evq, buf_count);
return VFDI_RC_EINVAL;
}
if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
++vf->rxq_count;
efx_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
EFX_POPULATE_OWORD_6(reg,
FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
FRF_AZ_RX_DESCQ_LABEL, label,
FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
FRF_AZ_RX_DESCQ_JUMBO,
!!(req->u.init_rxq.flags &
VFDI_RXQ_FLAG_SCATTER_EN),
FRF_AZ_RX_DESCQ_EN, 1);
efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
abs_index(vf, vf_rxq));
return VFDI_RC_SUCCESS;
}
static int efx_vfdi_init_txq(struct efx_vf *vf)
{
struct efx_nic *efx = vf->efx;
struct vfdi_req *req = vf->buf.addr;
unsigned vf_txq = req->u.init_txq.index;
unsigned vf_evq = req->u.init_txq.evq;
unsigned buf_count = req->u.init_txq.buf_count;
unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
unsigned label, eth_filt_en;
efx_oword_t reg;
if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
vf_txq >= vf_max_tx_channels ||
bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
if (net_ratelimit())
netif_err(efx, hw, efx->net_dev,
"ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
"buf_count %d\n", vf->pci_name, vf_txq,
vf_evq, buf_count);
return VFDI_RC_EINVAL;
}
mutex_lock(&vf->txq_lock);
if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
++vf->txq_count;
mutex_unlock(&vf->txq_lock);
efx_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
EFX_POPULATE_OWORD_8(reg,
FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
FRF_AZ_TX_DESCQ_EN, 1,
FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
FRF_AZ_TX_DESCQ_LABEL, label,
FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
FRF_BZ_TX_NON_IP_DROP_DIS, 1);
efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
abs_index(vf, vf_txq));
return VFDI_RC_SUCCESS;
}
/* Returns true when efx_vfdi_fini_all_queues should wake */
static bool efx_vfdi_flush_wake(struct efx_vf *vf)
{
/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
smp_mb();
return (!vf->txq_count && !vf->rxq_count) ||
atomic_read(&vf->rxq_retry_count);
}
static void efx_vfdi_flush_clear(struct efx_vf *vf)
{
memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
vf->txq_count = 0;
memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
vf->rxq_count = 0;
memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
atomic_set(&vf->rxq_retry_count, 0);
}
static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
{
struct efx_nic *efx = vf->efx;
efx_oword_t reg;
unsigned count = efx_vf_size(efx);
unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
unsigned timeout = HZ;
unsigned index, rxqs_count;
__le32 *rxqs;
int rc;
BUILD_BUG_ON(VF_MAX_RX_QUEUES >
MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
rxqs = kmalloc(count * sizeof(*rxqs), GFP_KERNEL);
if (rxqs == NULL)
return VFDI_RC_ENOMEM;
rtnl_lock();
siena_prepare_flush(efx);
rtnl_unlock();
/* Flush all the initialized queues */
rxqs_count = 0;
for (index = 0; index < count; ++index) {
if (test_bit(index, vf->txq_mask)) {
EFX_POPULATE_OWORD_2(reg,
FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
FRF_AZ_TX_FLUSH_DESCQ,
vf_offset + index);
efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
}
if (test_bit(index, vf->rxq_mask))
rxqs[rxqs_count++] = cpu_to_le32(vf_offset + index);
}
atomic_set(&vf->rxq_retry_count, 0);
while (timeout && (vf->rxq_count || vf->txq_count)) {
rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, (u8 *)rxqs,
rxqs_count * sizeof(*rxqs), NULL, 0, NULL);
WARN_ON(rc < 0);
timeout = wait_event_timeout(vf->flush_waitq,
efx_vfdi_flush_wake(vf),
timeout);
rxqs_count = 0;
for (index = 0; index < count; ++index) {
if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
atomic_dec(&vf->rxq_retry_count);
rxqs[rxqs_count++] =
cpu_to_le32(vf_offset + index);
}
}
}
rtnl_lock();
siena_finish_flush(efx);
rtnl_unlock();
/* Irrespective of success/failure, fini the queues */
EFX_ZERO_OWORD(reg);
for (index = 0; index < count; ++index) {
efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
vf_offset + index);
efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
vf_offset + index);
efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
vf_offset + index);
efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
vf_offset + index);
}
efx_sriov_bufs(efx, vf->buftbl_base, NULL,
EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
kfree(rxqs);
efx_vfdi_flush_clear(vf);
vf->evq0_count = 0;
return timeout ? 0 : VFDI_RC_ETIMEDOUT;
}
static int efx_vfdi_insert_filter(struct efx_vf *vf)
{
struct efx_nic *efx = vf->efx;
struct vfdi_req *req = vf->buf.addr;
unsigned vf_rxq = req->u.mac_filter.rxq;
unsigned flags;
if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
if (net_ratelimit())
netif_err(efx, hw, efx->net_dev,
"ERROR: Invalid INSERT_FILTER from %s: rxq %d "
"flags 0x%x\n", vf->pci_name, vf_rxq,
req->u.mac_filter.flags);
return VFDI_RC_EINVAL;
}
flags = 0;
if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
flags |= EFX_FILTER_FLAG_RX_RSS;
if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
flags |= EFX_FILTER_FLAG_RX_SCATTER;
vf->rx_filter_flags = flags;
vf->rx_filter_qid = vf_rxq;
vf->rx_filtering = true;
efx_sriov_reset_rx_filter(vf);
queue_work(vfdi_workqueue, &efx->peer_work);
return VFDI_RC_SUCCESS;
}
static int efx_vfdi_remove_all_filters(struct efx_vf *vf)
{
vf->rx_filtering = false;
efx_sriov_reset_rx_filter(vf);
queue_work(vfdi_workqueue, &vf->efx->peer_work);
return VFDI_RC_SUCCESS;
}
static int efx_vfdi_set_status_page(struct efx_vf *vf)
{
struct efx_nic *efx = vf->efx;
struct vfdi_req *req = vf->buf.addr;
u64 page_count = req->u.set_status_page.peer_page_count;
u64 max_page_count =
(EFX_PAGE_SIZE -
offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
/ sizeof(req->u.set_status_page.peer_page_addr[0]);
if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
if (net_ratelimit())
netif_err(efx, hw, efx->net_dev,
"ERROR: Invalid SET_STATUS_PAGE from %s\n",
vf->pci_name);
return VFDI_RC_EINVAL;
}
mutex_lock(&efx->local_lock);
mutex_lock(&vf->status_lock);
vf->status_addr = req->u.set_status_page.dma_addr;
kfree(vf->peer_page_addrs);
vf->peer_page_addrs = NULL;
vf->peer_page_count = 0;
if (page_count) {
vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
GFP_KERNEL);
if (vf->peer_page_addrs) {
memcpy(vf->peer_page_addrs,
req->u.set_status_page.peer_page_addr,
page_count * sizeof(u64));
vf->peer_page_count = page_count;
}
}
__efx_sriov_push_vf_status(vf);
mutex_unlock(&vf->status_lock);
mutex_unlock(&efx->local_lock);
return VFDI_RC_SUCCESS;
}
static int efx_vfdi_clear_status_page(struct efx_vf *vf)
{
mutex_lock(&vf->status_lock);
vf->status_addr = 0;
mutex_unlock(&vf->status_lock);
return VFDI_RC_SUCCESS;
}
typedef int (*efx_vfdi_op_t)(struct efx_vf *vf);
static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
};
static void efx_sriov_vfdi(struct work_struct *work)
{
struct efx_vf *vf = container_of(work, struct efx_vf, req);
struct efx_nic *efx = vf->efx;
struct vfdi_req *req = vf->buf.addr;
struct efx_memcpy_req copy[2];
int rc;
/* Copy this page into the local address space */
memset(copy, '\0', sizeof(copy));
copy[0].from_rid = vf->pci_rid;
copy[0].from_addr = vf->req_addr;
copy[0].to_rid = efx->pci_dev->devfn;
copy[0].to_addr = vf->buf.dma_addr;
copy[0].length = EFX_PAGE_SIZE;
rc = efx_sriov_memcpy(efx, copy, 1);
if (rc) {
/* If we can't get the request, we can't reply to the caller */
if (net_ratelimit())
netif_err(efx, hw, efx->net_dev,
"ERROR: Unable to fetch VFDI request from %s rc %d\n",
vf->pci_name, -rc);
vf->busy = false;
return;
}
if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
rc = vfdi_ops[req->op](vf);
if (rc == 0) {
netif_dbg(efx, hw, efx->net_dev,
"vfdi request %d from %s ok\n",
req->op, vf->pci_name);
}
} else {
netif_dbg(efx, hw, efx->net_dev,
"ERROR: Unrecognised request %d from VF %s addr "
"%llx\n", req->op, vf->pci_name,
(unsigned long long)vf->req_addr);
rc = VFDI_RC_EOPNOTSUPP;
}
/* Allow subsequent VF requests */
vf->busy = false;
smp_wmb();
/* Respond to the request */
req->rc = rc;
req->op = VFDI_OP_RESPONSE;
memset(copy, '\0', sizeof(copy));
copy[0].from_buf = &req->rc;
copy[0].to_rid = vf->pci_rid;
copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
copy[0].length = sizeof(req->rc);
copy[1].from_buf = &req->op;
copy[1].to_rid = vf->pci_rid;
copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
copy[1].length = sizeof(req->op);
(void) efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
}
/* After a reset the event queues inside the guests no longer exist. Fill the
* event ring in guest memory with VFDI reset events, then (re-initialise) the
* event queue to raise an interrupt. The guest driver will then recover.
*/
static void efx_sriov_reset_vf(struct efx_vf *vf, struct efx_buffer *buffer)
{
struct efx_nic *efx = vf->efx;
struct efx_memcpy_req copy_req[4];
efx_qword_t event;
unsigned int pos, count, k, buftbl, abs_evq;
efx_oword_t reg;
efx_dword_t ptr;
int rc;
BUG_ON(buffer->len != EFX_PAGE_SIZE);
if (!vf->evq0_count)
return;
BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
mutex_lock(&vf->status_lock);
EFX_POPULATE_QWORD_3(event,
FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
VFDI_EV_SEQ, vf->msg_seqno,
VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
vf->msg_seqno++;
for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
memcpy(buffer->addr + pos, &event, sizeof(event));
for (pos = 0; pos < vf->evq0_count; pos += count) {
count = min_t(unsigned, vf->evq0_count - pos,
ARRAY_SIZE(copy_req));
for (k = 0; k < count; k++) {
copy_req[k].from_buf = NULL;
copy_req[k].from_rid = efx->pci_dev->devfn;
copy_req[k].from_addr = buffer->dma_addr;
copy_req[k].to_rid = vf->pci_rid;
copy_req[k].to_addr = vf->evq0_addrs[pos + k];
copy_req[k].length = EFX_PAGE_SIZE;
}
rc = efx_sriov_memcpy(efx, copy_req, count);
if (rc) {
if (net_ratelimit())
netif_err(efx, hw, efx->net_dev,
"ERROR: Unable to notify %s of reset"
": %d\n", vf->pci_name, -rc);
break;
}
}
/* Reinitialise, arm and trigger evq0 */
abs_evq = abs_index(vf, 0);
buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
efx_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
EFX_POPULATE_OWORD_3(reg,
FRF_CZ_TIMER_Q_EN, 1,
FRF_CZ_HOST_NOTIFY_MODE, 0,
FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
EFX_POPULATE_OWORD_3(reg,
FRF_AZ_EVQ_EN, 1,
FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
mutex_unlock(&vf->status_lock);
}
static void efx_sriov_reset_vf_work(struct work_struct *work)
{
struct efx_vf *vf = container_of(work, struct efx_vf, req);
struct efx_nic *efx = vf->efx;
struct efx_buffer buf;
if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE)) {
efx_sriov_reset_vf(vf, &buf);
efx_nic_free_buffer(efx, &buf);
}
}
static void efx_sriov_handle_no_channel(struct efx_nic *efx)
{
netif_err(efx, drv, efx->net_dev,
"ERROR: IOV requires MSI-X and 1 additional interrupt"
"vector. IOV disabled\n");
efx->vf_count = 0;
}
static int efx_sriov_probe_channel(struct efx_channel *channel)
{
channel->efx->vfdi_channel = channel;
return 0;
}
static void
efx_sriov_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
snprintf(buf, len, "%s-iov", channel->efx->name);
}
static const struct efx_channel_type efx_sriov_channel_type = {
.handle_no_channel = efx_sriov_handle_no_channel,
.pre_probe = efx_sriov_probe_channel,
.post_remove = efx_channel_dummy_op_void,
.get_name = efx_sriov_get_channel_name,
/* no copy operation; channel must not be reallocated */
.keep_eventq = true,
};
void efx_sriov_probe(struct efx_nic *efx)
{
unsigned count;
if (!max_vfs)
return;
if (efx_sriov_cmd(efx, false, &efx->vi_scale, &count))
return;
if (count > 0 && count > max_vfs)
count = max_vfs;
/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
efx->vf_count = count;
efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_sriov_channel_type;
}
/* Copy the list of individual addresses into the vfdi_status.peers
* array and auxillary pages, protected by %local_lock. Drop that lock
* and then broadcast the address list to every VF.
*/
static void efx_sriov_peer_work(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic, peer_work);
struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
struct efx_vf *vf;
struct efx_local_addr *local_addr;
struct vfdi_endpoint *peer;
struct efx_endpoint_page *epp;
struct list_head pages;
unsigned int peer_space;
unsigned int peer_count;
unsigned int pos;
mutex_lock(&efx->local_lock);
/* Move the existing peer pages off %local_page_list */
INIT_LIST_HEAD(&pages);
list_splice_tail_init(&efx->local_page_list, &pages);
/* Populate the VF addresses starting from entry 1 (entry 0 is
* the PF address)
*/
peer = vfdi_status->peers + 1;
peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
peer_count = 1;
for (pos = 0; pos < efx->vf_count; ++pos) {
vf = efx->vf + pos;
mutex_lock(&vf->status_lock);
if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
*peer++ = vf->addr;
++peer_count;
--peer_space;
BUG_ON(peer_space == 0);
}
mutex_unlock(&vf->status_lock);
}
/* Fill the remaining addresses */
list_for_each_entry(local_addr, &efx->local_addr_list, link) {
memcpy(peer->mac_addr, local_addr->addr, ETH_ALEN);
peer->tci = 0;
++peer;
++peer_count;
if (--peer_space == 0) {
if (list_empty(&pages)) {
epp = kmalloc(sizeof(*epp), GFP_KERNEL);
if (!epp)
break;
epp->ptr = dma_alloc_coherent(
&efx->pci_dev->dev, EFX_PAGE_SIZE,
&epp->addr, GFP_KERNEL);
if (!epp->ptr) {
kfree(epp);
break;
}
} else {
epp = list_first_entry(
&pages, struct efx_endpoint_page, link);
list_del(&epp->link);
}
list_add_tail(&epp->link, &efx->local_page_list);
peer = (struct vfdi_endpoint *)epp->ptr;
peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
}
}
vfdi_status->peer_count = peer_count;
mutex_unlock(&efx->local_lock);
/* Free any now unused endpoint pages */
while (!list_empty(&pages)) {
epp = list_first_entry(
&pages, struct efx_endpoint_page, link);
list_del(&epp->link);
dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
epp->ptr, epp->addr);
kfree(epp);
}
/* Finally, push the pages */
for (pos = 0; pos < efx->vf_count; ++pos) {
vf = efx->vf + pos;
mutex_lock(&vf->status_lock);
if (vf->status_addr)
__efx_sriov_push_vf_status(vf);
mutex_unlock(&vf->status_lock);
}
}
static void efx_sriov_free_local(struct efx_nic *efx)
{
struct efx_local_addr *local_addr;
struct efx_endpoint_page *epp;
while (!list_empty(&efx->local_addr_list)) {
local_addr = list_first_entry(&efx->local_addr_list,
struct efx_local_addr, link);
list_del(&local_addr->link);
kfree(local_addr);
}
while (!list_empty(&efx->local_page_list)) {
epp = list_first_entry(&efx->local_page_list,
struct efx_endpoint_page, link);
list_del(&epp->link);
dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
epp->ptr, epp->addr);
kfree(epp);
}
}
static int efx_sriov_vf_alloc(struct efx_nic *efx)
{
unsigned index;
struct efx_vf *vf;
efx->vf = kzalloc(sizeof(struct efx_vf) * efx->vf_count, GFP_KERNEL);
if (!efx->vf)
return -ENOMEM;
for (index = 0; index < efx->vf_count; ++index) {
vf = efx->vf + index;
vf->efx = efx;
vf->index = index;
vf->rx_filter_id = -1;
vf->tx_filter_mode = VF_TX_FILTER_AUTO;
vf->tx_filter_id = -1;
INIT_WORK(&vf->req, efx_sriov_vfdi);
INIT_WORK(&vf->reset_work, efx_sriov_reset_vf_work);
init_waitqueue_head(&vf->flush_waitq);
mutex_init(&vf->status_lock);
mutex_init(&vf->txq_lock);
}
return 0;
}
static void efx_sriov_vfs_fini(struct efx_nic *efx)
{
struct efx_vf *vf;
unsigned int pos;
for (pos = 0; pos < efx->vf_count; ++pos) {
vf = efx->vf + pos;
efx_nic_free_buffer(efx, &vf->buf);
kfree(vf->peer_page_addrs);
vf->peer_page_addrs = NULL;
vf->peer_page_count = 0;
vf->evq0_count = 0;
}
}
static int efx_sriov_vfs_init(struct efx_nic *efx)
{
struct pci_dev *pci_dev = efx->pci_dev;
unsigned index, devfn, sriov, buftbl_base;
u16 offset, stride;
struct efx_vf *vf;
int rc;
sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
if (!sriov)
return -ENOENT;
pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
buftbl_base = efx->vf_buftbl_base;
devfn = pci_dev->devfn + offset;
for (index = 0; index < efx->vf_count; ++index) {
vf = efx->vf + index;
/* Reserve buffer entries */
vf->buftbl_base = buftbl_base;
buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
vf->pci_rid = devfn;
snprintf(vf->pci_name, sizeof(vf->pci_name),
"%04x:%02x:%02x.%d",
pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
PCI_SLOT(devfn), PCI_FUNC(devfn));
rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE);
if (rc)
goto fail;
devfn += stride;
}
return 0;
fail:
efx_sriov_vfs_fini(efx);
return rc;
}
int efx_sriov_init(struct efx_nic *efx)
{
struct net_device *net_dev = efx->net_dev;
struct vfdi_status *vfdi_status;
int rc;
/* Ensure there's room for vf_channel */
BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
/* Ensure that VI_BASE is aligned on VI_SCALE */
BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
if (efx->vf_count == 0)
return 0;
rc = efx_sriov_cmd(efx, true, NULL, NULL);
if (rc)
goto fail_cmd;
rc = efx_nic_alloc_buffer(efx, &efx->vfdi_status, sizeof(*vfdi_status));
if (rc)
goto fail_status;
vfdi_status = efx->vfdi_status.addr;
memset(vfdi_status, 0, sizeof(*vfdi_status));
vfdi_status->version = 1;
vfdi_status->length = sizeof(*vfdi_status);
vfdi_status->max_tx_channels = vf_max_tx_channels;
vfdi_status->vi_scale = efx->vi_scale;
vfdi_status->rss_rxq_count = efx->rss_spread;
vfdi_status->peer_count = 1 + efx->vf_count;
vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
rc = efx_sriov_vf_alloc(efx);
if (rc)
goto fail_alloc;
mutex_init(&efx->local_lock);
INIT_WORK(&efx->peer_work, efx_sriov_peer_work);
INIT_LIST_HEAD(&efx->local_addr_list);
INIT_LIST_HEAD(&efx->local_page_list);
rc = efx_sriov_vfs_init(efx);
if (rc)
goto fail_vfs;
rtnl_lock();
memcpy(vfdi_status->peers[0].mac_addr,
net_dev->dev_addr, ETH_ALEN);
efx->vf_init_count = efx->vf_count;
rtnl_unlock();
efx_sriov_usrev(efx, true);
/* At this point we must be ready to accept VFDI requests */
rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
if (rc)
goto fail_pci;
netif_info(efx, probe, net_dev,
"enabled SR-IOV for %d VFs, %d VI per VF\n",
efx->vf_count, efx_vf_size(efx));
return 0;
fail_pci:
efx_sriov_usrev(efx, false);
rtnl_lock();
efx->vf_init_count = 0;
rtnl_unlock();
efx_sriov_vfs_fini(efx);
fail_vfs:
cancel_work_sync(&efx->peer_work);
efx_sriov_free_local(efx);
kfree(efx->vf);
fail_alloc:
efx_nic_free_buffer(efx, &efx->vfdi_status);
fail_status:
efx_sriov_cmd(efx, false, NULL, NULL);
fail_cmd:
return rc;
}
void efx_sriov_fini(struct efx_nic *efx)
{
struct efx_vf *vf;
unsigned int pos;
if (efx->vf_init_count == 0)
return;
/* Disable all interfaces to reconfiguration */
BUG_ON(efx->vfdi_channel->enabled);
efx_sriov_usrev(efx, false);
rtnl_lock();
efx->vf_init_count = 0;
rtnl_unlock();
/* Flush all reconfiguration work */
for (pos = 0; pos < efx->vf_count; ++pos) {
vf = efx->vf + pos;
cancel_work_sync(&vf->req);
cancel_work_sync(&vf->reset_work);
}
cancel_work_sync(&efx->peer_work);
pci_disable_sriov(efx->pci_dev);
/* Tear down back-end state */
efx_sriov_vfs_fini(efx);
efx_sriov_free_local(efx);
kfree(efx->vf);
efx_nic_free_buffer(efx, &efx->vfdi_status);
efx_sriov_cmd(efx, false, NULL, NULL);
}
void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
struct efx_vf *vf;
unsigned qid, seq, type, data;
qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
netif_vdbg(efx, hw, efx->net_dev,
"USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
qid, seq, type, data);
if (map_vi_index(efx, qid, &vf, NULL))
return;
if (vf->busy)
goto error;
if (type == VFDI_EV_TYPE_REQ_WORD0) {
/* Resynchronise */
vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
vf->req_seqno = seq + 1;
vf->req_addr = 0;
} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
goto error;
switch (vf->req_type) {
case VFDI_EV_TYPE_REQ_WORD0:
case VFDI_EV_TYPE_REQ_WORD1:
case VFDI_EV_TYPE_REQ_WORD2:
vf->req_addr |= (u64)data << (vf->req_type << 4);
++vf->req_type;
return;
case VFDI_EV_TYPE_REQ_WORD3:
vf->req_addr |= (u64)data << 48;
vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
vf->busy = true;
queue_work(vfdi_workqueue, &vf->req);
return;
}
error:
if (net_ratelimit())
netif_err(efx, hw, efx->net_dev,
"ERROR: Screaming VFDI request from %s\n",
vf->pci_name);
/* Reset the request and sequence number */
vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
vf->req_seqno = seq + 1;
}
void efx_sriov_flr(struct efx_nic *efx, unsigned vf_i)
{
struct efx_vf *vf;
if (vf_i > efx->vf_init_count)
return;
vf = efx->vf + vf_i;
netif_info(efx, hw, efx->net_dev,
"FLR on VF %s\n", vf->pci_name);
vf->status_addr = 0;
efx_vfdi_remove_all_filters(vf);
efx_vfdi_flush_clear(vf);
vf->evq0_count = 0;
}
void efx_sriov_mac_address_changed(struct efx_nic *efx)
{
struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
if (!efx->vf_init_count)
return;
memcpy(vfdi_status->peers[0].mac_addr,
efx->net_dev->dev_addr, ETH_ALEN);
queue_work(vfdi_workqueue, &efx->peer_work);
}
void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
struct efx_vf *vf;
unsigned queue, qid;
queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
if (map_vi_index(efx, queue, &vf, &qid))
return;
/* Ignore flush completions triggered by an FLR */
if (!test_bit(qid, vf->txq_mask))
return;
__clear_bit(qid, vf->txq_mask);
--vf->txq_count;
if (efx_vfdi_flush_wake(vf))
wake_up(&vf->flush_waitq);
}
void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
struct efx_vf *vf;
unsigned ev_failed, queue, qid;
queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
ev_failed = EFX_QWORD_FIELD(*event,
FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
if (map_vi_index(efx, queue, &vf, &qid))
return;
if (!test_bit(qid, vf->rxq_mask))
return;
if (ev_failed) {
set_bit(qid, vf->rxq_retry_mask);
atomic_inc(&vf->rxq_retry_count);
} else {
__clear_bit(qid, vf->rxq_mask);
--vf->rxq_count;
}
if (efx_vfdi_flush_wake(vf))
wake_up(&vf->flush_waitq);
}
/* Called from napi. Schedule the reset work item */
void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
{
struct efx_vf *vf;
unsigned int rel;
if (map_vi_index(efx, dmaq, &vf, &rel))
return;
if (net_ratelimit())
netif_err(efx, hw, efx->net_dev,
"VF %d DMA Q %d reports descriptor fetch error.\n",
vf->index, rel);
queue_work(vfdi_workqueue, &vf->reset_work);
}
/* Reset all VFs */
void efx_sriov_reset(struct efx_nic *efx)
{
unsigned int vf_i;
struct efx_buffer buf;
struct efx_vf *vf;
ASSERT_RTNL();
if (efx->vf_init_count == 0)
return;
efx_sriov_usrev(efx, true);
(void)efx_sriov_cmd(efx, true, NULL, NULL);
if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE))
return;
for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
vf = efx->vf + vf_i;
efx_sriov_reset_vf(vf, &buf);
}
efx_nic_free_buffer(efx, &buf);
}
int efx_init_sriov(void)
{
/* A single threaded workqueue is sufficient. efx_sriov_vfdi() and
* efx_sriov_peer_work() spend almost all their time sleeping for
* MCDI to complete anyway
*/
vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
if (!vfdi_workqueue)
return -ENOMEM;
return 0;
}
void efx_fini_sriov(void)
{
destroy_workqueue(vfdi_workqueue);
}
int efx_sriov_set_vf_mac(struct net_device *net_dev, int vf_i, u8 *mac)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_vf *vf;
if (vf_i >= efx->vf_init_count)
return -EINVAL;
vf = efx->vf + vf_i;
mutex_lock(&vf->status_lock);
memcpy(vf->addr.mac_addr, mac, ETH_ALEN);
__efx_sriov_update_vf_addr(vf);
mutex_unlock(&vf->status_lock);
return 0;
}
int efx_sriov_set_vf_vlan(struct net_device *net_dev, int vf_i,
u16 vlan, u8 qos)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_vf *vf;
u16 tci;
if (vf_i >= efx->vf_init_count)
return -EINVAL;
vf = efx->vf + vf_i;
mutex_lock(&vf->status_lock);
tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
vf->addr.tci = htons(tci);
__efx_sriov_update_vf_addr(vf);
mutex_unlock(&vf->status_lock);
return 0;
}
int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf_i,
bool spoofchk)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_vf *vf;
int rc;
if (vf_i >= efx->vf_init_count)
return -EINVAL;
vf = efx->vf + vf_i;
mutex_lock(&vf->txq_lock);
if (vf->txq_count == 0) {
vf->tx_filter_mode =
spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
rc = 0;
} else {
/* This cannot be changed while TX queues are running */
rc = -EBUSY;
}
mutex_unlock(&vf->txq_lock);
return rc;
}
int efx_sriov_get_vf_config(struct net_device *net_dev, int vf_i,
struct ifla_vf_info *ivi)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_vf *vf;
u16 tci;
if (vf_i >= efx->vf_init_count)
return -EINVAL;
vf = efx->vf + vf_i;
ivi->vf = vf_i;
memcpy(ivi->mac, vf->addr.mac_addr, ETH_ALEN);
ivi->tx_rate = 0;
tci = ntohs(vf->addr.tci);
ivi->vlan = tci & VLAN_VID_MASK;
ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
return 0;
}