| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 1995 Linus Torvalds |
| * Copyright (C) 1995 Waldorf Electronics |
| * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle |
| * Copyright (C) 1996 Stoned Elipot |
| * Copyright (C) 1999 Silicon Graphics, Inc. |
| * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki |
| */ |
| #include <linux/init.h> |
| #include <linux/ioport.h> |
| #include <linux/module.h> |
| #include <linux/screen_info.h> |
| #include <linux/bootmem.h> |
| #include <linux/initrd.h> |
| #include <linux/root_dev.h> |
| #include <linux/highmem.h> |
| #include <linux/console.h> |
| #include <linux/pfn.h> |
| #include <linux/debugfs.h> |
| |
| #include <asm/addrspace.h> |
| #include <asm/bootinfo.h> |
| #include <asm/bugs.h> |
| #include <asm/cache.h> |
| #include <asm/cpu.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <asm/system.h> |
| |
| struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; |
| |
| EXPORT_SYMBOL(cpu_data); |
| |
| #ifdef CONFIG_VT |
| struct screen_info screen_info; |
| #endif |
| |
| /* |
| * Despite it's name this variable is even if we don't have PCI |
| */ |
| unsigned int PCI_DMA_BUS_IS_PHYS; |
| |
| EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); |
| |
| /* |
| * Setup information |
| * |
| * These are initialized so they are in the .data section |
| */ |
| unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; |
| |
| EXPORT_SYMBOL(mips_machtype); |
| |
| struct boot_mem_map boot_mem_map; |
| |
| static char command_line[CL_SIZE]; |
| char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE; |
| |
| /* |
| * mips_io_port_base is the begin of the address space to which x86 style |
| * I/O ports are mapped. |
| */ |
| const unsigned long mips_io_port_base __read_mostly = -1; |
| EXPORT_SYMBOL(mips_io_port_base); |
| |
| /* |
| * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped |
| * for the processor. |
| */ |
| unsigned long isa_slot_offset; |
| EXPORT_SYMBOL(isa_slot_offset); |
| |
| static struct resource code_resource = { .name = "Kernel code", }; |
| static struct resource data_resource = { .name = "Kernel data", }; |
| |
| void __init add_memory_region(phys_t start, phys_t size, long type) |
| { |
| int x = boot_mem_map.nr_map; |
| struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1; |
| |
| /* Sanity check */ |
| if (start + size < start) { |
| printk("Trying to add an invalid memory region, skipped\n"); |
| return; |
| } |
| |
| /* |
| * Try to merge with previous entry if any. This is far less than |
| * perfect but is sufficient for most real world cases. |
| */ |
| if (x && prev->addr + prev->size == start && prev->type == type) { |
| prev->size += size; |
| return; |
| } |
| |
| if (x == BOOT_MEM_MAP_MAX) { |
| printk("Ooops! Too many entries in the memory map!\n"); |
| return; |
| } |
| |
| boot_mem_map.map[x].addr = start; |
| boot_mem_map.map[x].size = size; |
| boot_mem_map.map[x].type = type; |
| boot_mem_map.nr_map++; |
| } |
| |
| static void __init print_memory_map(void) |
| { |
| int i; |
| const int field = 2 * sizeof(unsigned long); |
| |
| for (i = 0; i < boot_mem_map.nr_map; i++) { |
| printk(" memory: %0*Lx @ %0*Lx ", |
| field, (unsigned long long) boot_mem_map.map[i].size, |
| field, (unsigned long long) boot_mem_map.map[i].addr); |
| |
| switch (boot_mem_map.map[i].type) { |
| case BOOT_MEM_RAM: |
| printk("(usable)\n"); |
| break; |
| case BOOT_MEM_ROM_DATA: |
| printk("(ROM data)\n"); |
| break; |
| case BOOT_MEM_RESERVED: |
| printk("(reserved)\n"); |
| break; |
| default: |
| printk("type %lu\n", boot_mem_map.map[i].type); |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Manage initrd |
| */ |
| #ifdef CONFIG_BLK_DEV_INITRD |
| |
| static int __init rd_start_early(char *p) |
| { |
| unsigned long start = memparse(p, &p); |
| |
| #ifdef CONFIG_64BIT |
| /* Guess if the sign extension was forgotten by bootloader */ |
| if (start < XKPHYS) |
| start = (int)start; |
| #endif |
| initrd_start = start; |
| initrd_end += start; |
| return 0; |
| } |
| early_param("rd_start", rd_start_early); |
| |
| static int __init rd_size_early(char *p) |
| { |
| initrd_end += memparse(p, &p); |
| return 0; |
| } |
| early_param("rd_size", rd_size_early); |
| |
| /* it returns the next free pfn after initrd */ |
| static unsigned long __init init_initrd(void) |
| { |
| unsigned long end; |
| u32 *initrd_header; |
| |
| /* |
| * Board specific code or command line parser should have |
| * already set up initrd_start and initrd_end. In these cases |
| * perfom sanity checks and use them if all looks good. |
| */ |
| if (initrd_start && initrd_end > initrd_start) |
| goto sanitize; |
| |
| /* |
| * See if initrd has been added to the kernel image by |
| * arch/mips/boot/addinitrd.c. In that case a header is |
| * prepended to initrd and is made up by 8 bytes. The fisrt |
| * word is a magic number and the second one is the size of |
| * initrd. Initrd start must be page aligned in any cases. |
| */ |
| initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8; |
| if (initrd_header[0] != 0x494E5244) |
| goto disable; |
| initrd_start = (unsigned long)(initrd_header + 2); |
| initrd_end = initrd_start + initrd_header[1]; |
| |
| sanitize: |
| if (initrd_start & ~PAGE_MASK) { |
| printk(KERN_ERR "initrd start must be page aligned\n"); |
| goto disable; |
| } |
| if (initrd_start < PAGE_OFFSET) { |
| printk(KERN_ERR "initrd start < PAGE_OFFSET\n"); |
| goto disable; |
| } |
| |
| /* |
| * Sanitize initrd addresses. For example firmware |
| * can't guess if they need to pass them through |
| * 64-bits values if the kernel has been built in pure |
| * 32-bit. We need also to switch from KSEG0 to XKPHYS |
| * addresses now, so the code can now safely use __pa(). |
| */ |
| end = __pa(initrd_end); |
| initrd_end = (unsigned long)__va(end); |
| initrd_start = (unsigned long)__va(__pa(initrd_start)); |
| |
| ROOT_DEV = Root_RAM0; |
| return PFN_UP(end); |
| disable: |
| initrd_start = 0; |
| initrd_end = 0; |
| return 0; |
| } |
| |
| static void __init finalize_initrd(void) |
| { |
| unsigned long size = initrd_end - initrd_start; |
| |
| if (size == 0) { |
| printk(KERN_INFO "Initrd not found or empty"); |
| goto disable; |
| } |
| if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { |
| printk("Initrd extends beyond end of memory"); |
| goto disable; |
| } |
| |
| reserve_bootmem(__pa(initrd_start), size); |
| initrd_below_start_ok = 1; |
| |
| printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n", |
| initrd_start, size); |
| return; |
| disable: |
| printk(" - disabling initrd\n"); |
| initrd_start = 0; |
| initrd_end = 0; |
| } |
| |
| #else /* !CONFIG_BLK_DEV_INITRD */ |
| |
| static unsigned long __init init_initrd(void) |
| { |
| return 0; |
| } |
| |
| #define finalize_initrd() do {} while (0) |
| |
| #endif |
| |
| /* |
| * Initialize the bootmem allocator. It also setup initrd related data |
| * if needed. |
| */ |
| #ifdef CONFIG_SGI_IP27 |
| |
| static void __init bootmem_init(void) |
| { |
| init_initrd(); |
| finalize_initrd(); |
| } |
| |
| #else /* !CONFIG_SGI_IP27 */ |
| |
| static void __init bootmem_init(void) |
| { |
| unsigned long reserved_end; |
| unsigned long mapstart = ~0UL; |
| unsigned long bootmap_size; |
| int i; |
| |
| /* |
| * Init any data related to initrd. It's a nop if INITRD is |
| * not selected. Once that done we can determine the low bound |
| * of usable memory. |
| */ |
| reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end))); |
| |
| /* |
| * max_low_pfn is not a number of pages. The number of pages |
| * of the system is given by 'max_low_pfn - min_low_pfn'. |
| */ |
| min_low_pfn = ~0UL; |
| max_low_pfn = 0; |
| |
| /* |
| * Find the highest page frame number we have available. |
| */ |
| for (i = 0; i < boot_mem_map.nr_map; i++) { |
| unsigned long start, end; |
| |
| if (boot_mem_map.map[i].type != BOOT_MEM_RAM) |
| continue; |
| |
| start = PFN_UP(boot_mem_map.map[i].addr); |
| end = PFN_DOWN(boot_mem_map.map[i].addr |
| + boot_mem_map.map[i].size); |
| |
| if (end > max_low_pfn) |
| max_low_pfn = end; |
| if (start < min_low_pfn) |
| min_low_pfn = start; |
| if (end <= reserved_end) |
| continue; |
| if (start >= mapstart) |
| continue; |
| mapstart = max(reserved_end, start); |
| } |
| |
| if (min_low_pfn >= max_low_pfn) |
| panic("Incorrect memory mapping !!!"); |
| if (min_low_pfn > ARCH_PFN_OFFSET) { |
| printk(KERN_INFO |
| "Wasting %lu bytes for tracking %lu unused pages\n", |
| (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), |
| min_low_pfn - ARCH_PFN_OFFSET); |
| } else if (min_low_pfn < ARCH_PFN_OFFSET) { |
| printk(KERN_INFO |
| "%lu free pages won't be used\n", |
| ARCH_PFN_OFFSET - min_low_pfn); |
| } |
| min_low_pfn = ARCH_PFN_OFFSET; |
| |
| /* |
| * Determine low and high memory ranges |
| */ |
| if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { |
| #ifdef CONFIG_HIGHMEM |
| highstart_pfn = PFN_DOWN(HIGHMEM_START); |
| highend_pfn = max_low_pfn; |
| #endif |
| max_low_pfn = PFN_DOWN(HIGHMEM_START); |
| } |
| |
| /* |
| * Initialize the boot-time allocator with low memory only. |
| */ |
| bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, |
| min_low_pfn, max_low_pfn); |
| |
| |
| for (i = 0; i < boot_mem_map.nr_map; i++) { |
| unsigned long start, end; |
| |
| start = PFN_UP(boot_mem_map.map[i].addr); |
| end = PFN_DOWN(boot_mem_map.map[i].addr |
| + boot_mem_map.map[i].size); |
| |
| if (start <= min_low_pfn) |
| start = min_low_pfn; |
| if (start >= end) |
| continue; |
| |
| #ifndef CONFIG_HIGHMEM |
| if (end > max_low_pfn) |
| end = max_low_pfn; |
| |
| /* |
| * ... finally, is the area going away? |
| */ |
| if (end <= start) |
| continue; |
| #endif |
| |
| add_active_range(0, start, end); |
| } |
| |
| /* |
| * Register fully available low RAM pages with the bootmem allocator. |
| */ |
| for (i = 0; i < boot_mem_map.nr_map; i++) { |
| unsigned long start, end, size; |
| |
| /* |
| * Reserve usable memory. |
| */ |
| if (boot_mem_map.map[i].type != BOOT_MEM_RAM) |
| continue; |
| |
| start = PFN_UP(boot_mem_map.map[i].addr); |
| end = PFN_DOWN(boot_mem_map.map[i].addr |
| + boot_mem_map.map[i].size); |
| /* |
| * We are rounding up the start address of usable memory |
| * and at the end of the usable range downwards. |
| */ |
| if (start >= max_low_pfn) |
| continue; |
| if (start < reserved_end) |
| start = reserved_end; |
| if (end > max_low_pfn) |
| end = max_low_pfn; |
| |
| /* |
| * ... finally, is the area going away? |
| */ |
| if (end <= start) |
| continue; |
| size = end - start; |
| |
| /* Register lowmem ranges */ |
| free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); |
| memory_present(0, start, end); |
| } |
| |
| /* |
| * Reserve the bootmap memory. |
| */ |
| reserve_bootmem(PFN_PHYS(mapstart), bootmap_size); |
| |
| /* |
| * Reserve initrd memory if needed. |
| */ |
| finalize_initrd(); |
| } |
| |
| #endif /* CONFIG_SGI_IP27 */ |
| |
| /* |
| * arch_mem_init - initialize memory managment subsystem |
| * |
| * o plat_mem_setup() detects the memory configuration and will record detected |
| * memory areas using add_memory_region. |
| * |
| * At this stage the memory configuration of the system is known to the |
| * kernel but generic memory managment system is still entirely uninitialized. |
| * |
| * o bootmem_init() |
| * o sparse_init() |
| * o paging_init() |
| * |
| * At this stage the bootmem allocator is ready to use. |
| * |
| * NOTE: historically plat_mem_setup did the entire platform initialization. |
| * This was rather impractical because it meant plat_mem_setup had to |
| * get away without any kind of memory allocator. To keep old code from |
| * breaking plat_setup was just renamed to plat_setup and a second platform |
| * initialization hook for anything else was introduced. |
| */ |
| |
| static int usermem __initdata = 0; |
| |
| static int __init early_parse_mem(char *p) |
| { |
| unsigned long start, size; |
| |
| /* |
| * If a user specifies memory size, we |
| * blow away any automatically generated |
| * size. |
| */ |
| if (usermem == 0) { |
| boot_mem_map.nr_map = 0; |
| usermem = 1; |
| } |
| start = 0; |
| size = memparse(p, &p); |
| if (*p == '@') |
| start = memparse(p + 1, &p); |
| |
| add_memory_region(start, size, BOOT_MEM_RAM); |
| return 0; |
| } |
| early_param("mem", early_parse_mem); |
| |
| static void __init arch_mem_init(char **cmdline_p) |
| { |
| extern void plat_mem_setup(void); |
| |
| /* call board setup routine */ |
| plat_mem_setup(); |
| |
| printk("Determined physical RAM map:\n"); |
| print_memory_map(); |
| |
| strlcpy(command_line, arcs_cmdline, sizeof(command_line)); |
| strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); |
| |
| *cmdline_p = command_line; |
| |
| parse_early_param(); |
| |
| if (usermem) { |
| printk("User-defined physical RAM map:\n"); |
| print_memory_map(); |
| } |
| |
| bootmem_init(); |
| sparse_init(); |
| paging_init(); |
| } |
| |
| static void __init resource_init(void) |
| { |
| int i; |
| |
| if (UNCAC_BASE != IO_BASE) |
| return; |
| |
| code_resource.start = __pa_symbol(&_text); |
| code_resource.end = __pa_symbol(&_etext) - 1; |
| data_resource.start = __pa_symbol(&_etext); |
| data_resource.end = __pa_symbol(&_edata) - 1; |
| |
| /* |
| * Request address space for all standard RAM. |
| */ |
| for (i = 0; i < boot_mem_map.nr_map; i++) { |
| struct resource *res; |
| unsigned long start, end; |
| |
| start = boot_mem_map.map[i].addr; |
| end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; |
| if (start >= HIGHMEM_START) |
| continue; |
| if (end >= HIGHMEM_START) |
| end = HIGHMEM_START - 1; |
| |
| res = alloc_bootmem(sizeof(struct resource)); |
| switch (boot_mem_map.map[i].type) { |
| case BOOT_MEM_RAM: |
| case BOOT_MEM_ROM_DATA: |
| res->name = "System RAM"; |
| break; |
| case BOOT_MEM_RESERVED: |
| default: |
| res->name = "reserved"; |
| } |
| |
| res->start = start; |
| res->end = end; |
| |
| res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| request_resource(&iomem_resource, res); |
| |
| /* |
| * We don't know which RAM region contains kernel data, |
| * so we try it repeatedly and let the resource manager |
| * test it. |
| */ |
| request_resource(res, &code_resource); |
| request_resource(res, &data_resource); |
| } |
| } |
| |
| void __init setup_arch(char **cmdline_p) |
| { |
| cpu_probe(); |
| prom_init(); |
| |
| #ifdef CONFIG_EARLY_PRINTK |
| { |
| extern void setup_early_printk(void); |
| |
| setup_early_printk(); |
| } |
| #endif |
| cpu_report(); |
| check_bugs_early(); |
| |
| #if defined(CONFIG_VT) |
| #if defined(CONFIG_VGA_CONSOLE) |
| conswitchp = &vga_con; |
| #elif defined(CONFIG_DUMMY_CONSOLE) |
| conswitchp = &dummy_con; |
| #endif |
| #endif |
| |
| arch_mem_init(cmdline_p); |
| |
| resource_init(); |
| #ifdef CONFIG_SMP |
| plat_smp_setup(); |
| #endif |
| } |
| |
| static int __init fpu_disable(char *s) |
| { |
| int i; |
| |
| for (i = 0; i < NR_CPUS; i++) |
| cpu_data[i].options &= ~MIPS_CPU_FPU; |
| |
| return 1; |
| } |
| |
| __setup("nofpu", fpu_disable); |
| |
| static int __init dsp_disable(char *s) |
| { |
| cpu_data[0].ases &= ~MIPS_ASE_DSP; |
| |
| return 1; |
| } |
| |
| __setup("nodsp", dsp_disable); |
| |
| unsigned long kernelsp[NR_CPUS]; |
| unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; |
| |
| #ifdef CONFIG_DEBUG_FS |
| struct dentry *mips_debugfs_dir; |
| static int __init debugfs_mips(void) |
| { |
| struct dentry *d; |
| |
| d = debugfs_create_dir("mips", NULL); |
| if (IS_ERR(d)) |
| return PTR_ERR(d); |
| mips_debugfs_dir = d; |
| return 0; |
| } |
| arch_initcall(debugfs_mips); |
| #endif |