blob: 7e910bab1097ee4f9915726c7f36810e15fd7851 [file] [log] [blame]
/*
* builtin-stat.c
*
* Builtin stat command: Give a precise performance counters summary
* overview about any workload, CPU or specific PID.
*
* Sample output:
$ perf stat ./hackbench 10
Time: 0.118
Performance counter stats for './hackbench 10':
1708.761321 task-clock # 11.037 CPUs utilized
41,190 context-switches # 0.024 M/sec
6,735 CPU-migrations # 0.004 M/sec
17,318 page-faults # 0.010 M/sec
5,205,202,243 cycles # 3.046 GHz
3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle
1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle
2,603,501,247 instructions # 0.50 insns per cycle
# 1.48 stalled cycles per insn
484,357,498 branches # 283.455 M/sec
6,388,934 branch-misses # 1.32% of all branches
0.154822978 seconds time elapsed
*
* Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
*
* Improvements and fixes by:
*
* Arjan van de Ven <arjan@linux.intel.com>
* Yanmin Zhang <yanmin.zhang@intel.com>
* Wu Fengguang <fengguang.wu@intel.com>
* Mike Galbraith <efault@gmx.de>
* Paul Mackerras <paulus@samba.org>
* Jaswinder Singh Rajput <jaswinder@kernel.org>
*
* Released under the GPL v2. (and only v2, not any later version)
*/
#include "perf.h"
#include "builtin.h"
#include "util/util.h"
#include "util/parse-options.h"
#include "util/parse-events.h"
#include "util/event.h"
#include "util/evlist.h"
#include "util/evsel.h"
#include "util/debug.h"
#include "util/color.h"
#include "util/stat.h"
#include "util/header.h"
#include "util/cpumap.h"
#include "util/thread.h"
#include "util/thread_map.h"
#include <stdlib.h>
#include <sys/prctl.h>
#include <locale.h>
#define DEFAULT_SEPARATOR " "
#define CNTR_NOT_SUPPORTED "<not supported>"
#define CNTR_NOT_COUNTED "<not counted>"
static void print_stat(int argc, const char **argv);
static void print_counter_aggr(struct perf_evsel *counter, char *prefix);
static void print_counter(struct perf_evsel *counter, char *prefix);
static void print_aggr(char *prefix);
static struct perf_evlist *evsel_list;
static struct perf_target target = {
.uid = UINT_MAX,
};
enum aggr_mode {
AGGR_NONE,
AGGR_GLOBAL,
AGGR_SOCKET,
AGGR_CORE,
};
static int run_count = 1;
static bool no_inherit = false;
static bool scale = true;
static enum aggr_mode aggr_mode = AGGR_GLOBAL;
static pid_t child_pid = -1;
static bool null_run = false;
static int detailed_run = 0;
static bool big_num = true;
static int big_num_opt = -1;
static const char *csv_sep = NULL;
static bool csv_output = false;
static bool group = false;
static FILE *output = NULL;
static const char *pre_cmd = NULL;
static const char *post_cmd = NULL;
static bool sync_run = false;
static unsigned int interval = 0;
static bool forever = false;
static struct timespec ref_time;
static struct cpu_map *aggr_map;
static int (*aggr_get_id)(struct cpu_map *m, int cpu);
static volatile int done = 0;
struct perf_stat {
struct stats res_stats[3];
};
static inline void diff_timespec(struct timespec *r, struct timespec *a,
struct timespec *b)
{
r->tv_sec = a->tv_sec - b->tv_sec;
if (a->tv_nsec < b->tv_nsec) {
r->tv_nsec = a->tv_nsec + 1000000000L - b->tv_nsec;
r->tv_sec--;
} else {
r->tv_nsec = a->tv_nsec - b->tv_nsec ;
}
}
static inline struct cpu_map *perf_evsel__cpus(struct perf_evsel *evsel)
{
return (evsel->cpus && !target.cpu_list) ? evsel->cpus : evsel_list->cpus;
}
static inline int perf_evsel__nr_cpus(struct perf_evsel *evsel)
{
return perf_evsel__cpus(evsel)->nr;
}
static void perf_evsel__reset_stat_priv(struct perf_evsel *evsel)
{
memset(evsel->priv, 0, sizeof(struct perf_stat));
}
static int perf_evsel__alloc_stat_priv(struct perf_evsel *evsel)
{
evsel->priv = zalloc(sizeof(struct perf_stat));
return evsel->priv == NULL ? -ENOMEM : 0;
}
static void perf_evsel__free_stat_priv(struct perf_evsel *evsel)
{
free(evsel->priv);
evsel->priv = NULL;
}
static int perf_evsel__alloc_prev_raw_counts(struct perf_evsel *evsel)
{
void *addr;
size_t sz;
sz = sizeof(*evsel->counts) +
(perf_evsel__nr_cpus(evsel) * sizeof(struct perf_counts_values));
addr = zalloc(sz);
if (!addr)
return -ENOMEM;
evsel->prev_raw_counts = addr;
return 0;
}
static void perf_evsel__free_prev_raw_counts(struct perf_evsel *evsel)
{
free(evsel->prev_raw_counts);
evsel->prev_raw_counts = NULL;
}
static void perf_evlist__free_stats(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
list_for_each_entry(evsel, &evlist->entries, node) {
perf_evsel__free_stat_priv(evsel);
perf_evsel__free_counts(evsel);
perf_evsel__free_prev_raw_counts(evsel);
}
}
static int perf_evlist__alloc_stats(struct perf_evlist *evlist, bool alloc_raw)
{
struct perf_evsel *evsel;
list_for_each_entry(evsel, &evlist->entries, node) {
if (perf_evsel__alloc_stat_priv(evsel) < 0 ||
perf_evsel__alloc_counts(evsel, perf_evsel__nr_cpus(evsel)) < 0 ||
(alloc_raw && perf_evsel__alloc_prev_raw_counts(evsel) < 0))
goto out_free;
}
return 0;
out_free:
perf_evlist__free_stats(evlist);
return -1;
}
static struct stats runtime_nsecs_stats[MAX_NR_CPUS];
static struct stats runtime_cycles_stats[MAX_NR_CPUS];
static struct stats runtime_stalled_cycles_front_stats[MAX_NR_CPUS];
static struct stats runtime_stalled_cycles_back_stats[MAX_NR_CPUS];
static struct stats runtime_branches_stats[MAX_NR_CPUS];
static struct stats runtime_cacherefs_stats[MAX_NR_CPUS];
static struct stats runtime_l1_dcache_stats[MAX_NR_CPUS];
static struct stats runtime_l1_icache_stats[MAX_NR_CPUS];
static struct stats runtime_ll_cache_stats[MAX_NR_CPUS];
static struct stats runtime_itlb_cache_stats[MAX_NR_CPUS];
static struct stats runtime_dtlb_cache_stats[MAX_NR_CPUS];
static struct stats walltime_nsecs_stats;
static void perf_stat__reset_stats(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
list_for_each_entry(evsel, &evlist->entries, node) {
perf_evsel__reset_stat_priv(evsel);
perf_evsel__reset_counts(evsel, perf_evsel__nr_cpus(evsel));
}
memset(runtime_nsecs_stats, 0, sizeof(runtime_nsecs_stats));
memset(runtime_cycles_stats, 0, sizeof(runtime_cycles_stats));
memset(runtime_stalled_cycles_front_stats, 0, sizeof(runtime_stalled_cycles_front_stats));
memset(runtime_stalled_cycles_back_stats, 0, sizeof(runtime_stalled_cycles_back_stats));
memset(runtime_branches_stats, 0, sizeof(runtime_branches_stats));
memset(runtime_cacherefs_stats, 0, sizeof(runtime_cacherefs_stats));
memset(runtime_l1_dcache_stats, 0, sizeof(runtime_l1_dcache_stats));
memset(runtime_l1_icache_stats, 0, sizeof(runtime_l1_icache_stats));
memset(runtime_ll_cache_stats, 0, sizeof(runtime_ll_cache_stats));
memset(runtime_itlb_cache_stats, 0, sizeof(runtime_itlb_cache_stats));
memset(runtime_dtlb_cache_stats, 0, sizeof(runtime_dtlb_cache_stats));
memset(&walltime_nsecs_stats, 0, sizeof(walltime_nsecs_stats));
}
static int create_perf_stat_counter(struct perf_evsel *evsel)
{
struct perf_event_attr *attr = &evsel->attr;
if (scale)
attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
PERF_FORMAT_TOTAL_TIME_RUNNING;
attr->inherit = !no_inherit;
if (perf_target__has_cpu(&target))
return perf_evsel__open_per_cpu(evsel, perf_evsel__cpus(evsel));
if (!perf_target__has_task(&target) &&
perf_evsel__is_group_leader(evsel)) {
attr->disabled = 1;
attr->enable_on_exec = 1;
}
return perf_evsel__open_per_thread(evsel, evsel_list->threads);
}
/*
* Does the counter have nsecs as a unit?
*/
static inline int nsec_counter(struct perf_evsel *evsel)
{
if (perf_evsel__match(evsel, SOFTWARE, SW_CPU_CLOCK) ||
perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK))
return 1;
return 0;
}
/*
* Update various tracking values we maintain to print
* more semantic information such as miss/hit ratios,
* instruction rates, etc:
*/
static void update_shadow_stats(struct perf_evsel *counter, u64 *count)
{
if (perf_evsel__match(counter, SOFTWARE, SW_TASK_CLOCK))
update_stats(&runtime_nsecs_stats[0], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_CPU_CYCLES))
update_stats(&runtime_cycles_stats[0], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_FRONTEND))
update_stats(&runtime_stalled_cycles_front_stats[0], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_BACKEND))
update_stats(&runtime_stalled_cycles_back_stats[0], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_BRANCH_INSTRUCTIONS))
update_stats(&runtime_branches_stats[0], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_CACHE_REFERENCES))
update_stats(&runtime_cacherefs_stats[0], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1D))
update_stats(&runtime_l1_dcache_stats[0], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1I))
update_stats(&runtime_l1_icache_stats[0], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_LL))
update_stats(&runtime_ll_cache_stats[0], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_DTLB))
update_stats(&runtime_dtlb_cache_stats[0], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_ITLB))
update_stats(&runtime_itlb_cache_stats[0], count[0]);
}
/*
* Read out the results of a single counter:
* aggregate counts across CPUs in system-wide mode
*/
static int read_counter_aggr(struct perf_evsel *counter)
{
struct perf_stat *ps = counter->priv;
u64 *count = counter->counts->aggr.values;
int i;
if (__perf_evsel__read(counter, perf_evsel__nr_cpus(counter),
thread_map__nr(evsel_list->threads), scale) < 0)
return -1;
for (i = 0; i < 3; i++)
update_stats(&ps->res_stats[i], count[i]);
if (verbose) {
fprintf(output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
perf_evsel__name(counter), count[0], count[1], count[2]);
}
/*
* Save the full runtime - to allow normalization during printout:
*/
update_shadow_stats(counter, count);
return 0;
}
/*
* Read out the results of a single counter:
* do not aggregate counts across CPUs in system-wide mode
*/
static int read_counter(struct perf_evsel *counter)
{
u64 *count;
int cpu;
for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
if (__perf_evsel__read_on_cpu(counter, cpu, 0, scale) < 0)
return -1;
count = counter->counts->cpu[cpu].values;
update_shadow_stats(counter, count);
}
return 0;
}
static void print_interval(void)
{
static int num_print_interval;
struct perf_evsel *counter;
struct perf_stat *ps;
struct timespec ts, rs;
char prefix[64];
if (aggr_mode == AGGR_GLOBAL) {
list_for_each_entry(counter, &evsel_list->entries, node) {
ps = counter->priv;
memset(ps->res_stats, 0, sizeof(ps->res_stats));
read_counter_aggr(counter);
}
} else {
list_for_each_entry(counter, &evsel_list->entries, node) {
ps = counter->priv;
memset(ps->res_stats, 0, sizeof(ps->res_stats));
read_counter(counter);
}
}
clock_gettime(CLOCK_MONOTONIC, &ts);
diff_timespec(&rs, &ts, &ref_time);
sprintf(prefix, "%6lu.%09lu%s", rs.tv_sec, rs.tv_nsec, csv_sep);
if (num_print_interval == 0 && !csv_output) {
switch (aggr_mode) {
case AGGR_SOCKET:
fprintf(output, "# time socket cpus counts events\n");
break;
case AGGR_CORE:
fprintf(output, "# time core cpus counts events\n");
break;
case AGGR_NONE:
fprintf(output, "# time CPU counts events\n");
break;
case AGGR_GLOBAL:
default:
fprintf(output, "# time counts events\n");
}
}
if (++num_print_interval == 25)
num_print_interval = 0;
switch (aggr_mode) {
case AGGR_CORE:
case AGGR_SOCKET:
print_aggr(prefix);
break;
case AGGR_NONE:
list_for_each_entry(counter, &evsel_list->entries, node)
print_counter(counter, prefix);
break;
case AGGR_GLOBAL:
default:
list_for_each_entry(counter, &evsel_list->entries, node)
print_counter_aggr(counter, prefix);
}
}
static int __run_perf_stat(int argc, const char **argv)
{
char msg[512];
unsigned long long t0, t1;
struct perf_evsel *counter;
struct timespec ts;
int status = 0;
const bool forks = (argc > 0);
if (interval) {
ts.tv_sec = interval / 1000;
ts.tv_nsec = (interval % 1000) * 1000000;
} else {
ts.tv_sec = 1;
ts.tv_nsec = 0;
}
if (forks) {
if (perf_evlist__prepare_workload(evsel_list, &target, argv,
false, false) < 0) {
perror("failed to prepare workload");
return -1;
}
}
if (group)
perf_evlist__set_leader(evsel_list);
list_for_each_entry(counter, &evsel_list->entries, node) {
if (create_perf_stat_counter(counter) < 0) {
/*
* PPC returns ENXIO for HW counters until 2.6.37
* (behavior changed with commit b0a873e).
*/
if (errno == EINVAL || errno == ENOSYS ||
errno == ENOENT || errno == EOPNOTSUPP ||
errno == ENXIO) {
if (verbose)
ui__warning("%s event is not supported by the kernel.\n",
perf_evsel__name(counter));
counter->supported = false;
continue;
}
perf_evsel__open_strerror(counter, &target,
errno, msg, sizeof(msg));
ui__error("%s\n", msg);
if (child_pid != -1)
kill(child_pid, SIGTERM);
return -1;
}
counter->supported = true;
}
if (perf_evlist__apply_filters(evsel_list)) {
error("failed to set filter with %d (%s)\n", errno,
strerror(errno));
return -1;
}
/*
* Enable counters and exec the command:
*/
t0 = rdclock();
clock_gettime(CLOCK_MONOTONIC, &ref_time);
if (forks) {
perf_evlist__start_workload(evsel_list);
if (interval) {
while (!waitpid(child_pid, &status, WNOHANG)) {
nanosleep(&ts, NULL);
print_interval();
}
}
wait(&status);
if (WIFSIGNALED(status))
psignal(WTERMSIG(status), argv[0]);
} else {
while (!done) {
nanosleep(&ts, NULL);
if (interval)
print_interval();
}
}
t1 = rdclock();
update_stats(&walltime_nsecs_stats, t1 - t0);
if (aggr_mode == AGGR_GLOBAL) {
list_for_each_entry(counter, &evsel_list->entries, node) {
read_counter_aggr(counter);
perf_evsel__close_fd(counter, perf_evsel__nr_cpus(counter),
thread_map__nr(evsel_list->threads));
}
} else {
list_for_each_entry(counter, &evsel_list->entries, node) {
read_counter(counter);
perf_evsel__close_fd(counter, perf_evsel__nr_cpus(counter), 1);
}
}
return WEXITSTATUS(status);
}
static int run_perf_stat(int argc __maybe_unused, const char **argv)
{
int ret;
if (pre_cmd) {
ret = system(pre_cmd);
if (ret)
return ret;
}
if (sync_run)
sync();
ret = __run_perf_stat(argc, argv);
if (ret)
return ret;
if (post_cmd) {
ret = system(post_cmd);
if (ret)
return ret;
}
return ret;
}
static void print_noise_pct(double total, double avg)
{
double pct = rel_stddev_stats(total, avg);
if (csv_output)
fprintf(output, "%s%.2f%%", csv_sep, pct);
else if (pct)
fprintf(output, " ( +-%6.2f%% )", pct);
}
static void print_noise(struct perf_evsel *evsel, double avg)
{
struct perf_stat *ps;
if (run_count == 1)
return;
ps = evsel->priv;
print_noise_pct(stddev_stats(&ps->res_stats[0]), avg);
}
static void aggr_printout(struct perf_evsel *evsel, int id, int nr)
{
switch (aggr_mode) {
case AGGR_CORE:
fprintf(output, "S%d-C%*d%s%*d%s",
cpu_map__id_to_socket(id),
csv_output ? 0 : -8,
cpu_map__id_to_cpu(id),
csv_sep,
csv_output ? 0 : 4,
nr,
csv_sep);
break;
case AGGR_SOCKET:
fprintf(output, "S%*d%s%*d%s",
csv_output ? 0 : -5,
id,
csv_sep,
csv_output ? 0 : 4,
nr,
csv_sep);
break;
case AGGR_NONE:
fprintf(output, "CPU%*d%s",
csv_output ? 0 : -4,
perf_evsel__cpus(evsel)->map[id], csv_sep);
break;
case AGGR_GLOBAL:
default:
break;
}
}
static void nsec_printout(int cpu, int nr, struct perf_evsel *evsel, double avg)
{
double msecs = avg / 1e6;
const char *fmt = csv_output ? "%.6f%s%s" : "%18.6f%s%-25s";
aggr_printout(evsel, cpu, nr);
fprintf(output, fmt, msecs, csv_sep, perf_evsel__name(evsel));
if (evsel->cgrp)
fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
if (csv_output || interval)
return;
if (perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK))
fprintf(output, " # %8.3f CPUs utilized ",
avg / avg_stats(&walltime_nsecs_stats));
else
fprintf(output, " ");
}
/* used for get_ratio_color() */
enum grc_type {
GRC_STALLED_CYCLES_FE,
GRC_STALLED_CYCLES_BE,
GRC_CACHE_MISSES,
GRC_MAX_NR
};
static const char *get_ratio_color(enum grc_type type, double ratio)
{
static const double grc_table[GRC_MAX_NR][3] = {
[GRC_STALLED_CYCLES_FE] = { 50.0, 30.0, 10.0 },
[GRC_STALLED_CYCLES_BE] = { 75.0, 50.0, 20.0 },
[GRC_CACHE_MISSES] = { 20.0, 10.0, 5.0 },
};
const char *color = PERF_COLOR_NORMAL;
if (ratio > grc_table[type][0])
color = PERF_COLOR_RED;
else if (ratio > grc_table[type][1])
color = PERF_COLOR_MAGENTA;
else if (ratio > grc_table[type][2])
color = PERF_COLOR_YELLOW;
return color;
}
static void print_stalled_cycles_frontend(int cpu,
struct perf_evsel *evsel
__maybe_unused, double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_cycles_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_STALLED_CYCLES_FE, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " frontend cycles idle ");
}
static void print_stalled_cycles_backend(int cpu,
struct perf_evsel *evsel
__maybe_unused, double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_cycles_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_STALLED_CYCLES_BE, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " backend cycles idle ");
}
static void print_branch_misses(int cpu,
struct perf_evsel *evsel __maybe_unused,
double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_branches_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " of all branches ");
}
static void print_l1_dcache_misses(int cpu,
struct perf_evsel *evsel __maybe_unused,
double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_l1_dcache_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " of all L1-dcache hits ");
}
static void print_l1_icache_misses(int cpu,
struct perf_evsel *evsel __maybe_unused,
double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_l1_icache_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " of all L1-icache hits ");
}
static void print_dtlb_cache_misses(int cpu,
struct perf_evsel *evsel __maybe_unused,
double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_dtlb_cache_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " of all dTLB cache hits ");
}
static void print_itlb_cache_misses(int cpu,
struct perf_evsel *evsel __maybe_unused,
double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_itlb_cache_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " of all iTLB cache hits ");
}
static void print_ll_cache_misses(int cpu,
struct perf_evsel *evsel __maybe_unused,
double avg)
{
double total, ratio = 0.0;
const char *color;
total = avg_stats(&runtime_ll_cache_stats[cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
fprintf(output, " # ");
color_fprintf(output, color, "%6.2f%%", ratio);
fprintf(output, " of all LL-cache hits ");
}
static void abs_printout(int cpu, int nr, struct perf_evsel *evsel, double avg)
{
double total, ratio = 0.0;
const char *fmt;
if (csv_output)
fmt = "%.0f%s%s";
else if (big_num)
fmt = "%'18.0f%s%-25s";
else
fmt = "%18.0f%s%-25s";
aggr_printout(evsel, cpu, nr);
if (aggr_mode == AGGR_GLOBAL)
cpu = 0;
fprintf(output, fmt, avg, csv_sep, perf_evsel__name(evsel));
if (evsel->cgrp)
fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
if (csv_output || interval)
return;
if (perf_evsel__match(evsel, HARDWARE, HW_INSTRUCTIONS)) {
total = avg_stats(&runtime_cycles_stats[cpu]);
if (total)
ratio = avg / total;
fprintf(output, " # %5.2f insns per cycle ", ratio);
total = avg_stats(&runtime_stalled_cycles_front_stats[cpu]);
total = max(total, avg_stats(&runtime_stalled_cycles_back_stats[cpu]));
if (total && avg) {
ratio = total / avg;
fprintf(output, "\n # %5.2f stalled cycles per insn", ratio);
}
} else if (perf_evsel__match(evsel, HARDWARE, HW_BRANCH_MISSES) &&
runtime_branches_stats[cpu].n != 0) {
print_branch_misses(cpu, evsel, avg);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_L1D |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
runtime_l1_dcache_stats[cpu].n != 0) {
print_l1_dcache_misses(cpu, evsel, avg);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_L1I |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
runtime_l1_icache_stats[cpu].n != 0) {
print_l1_icache_misses(cpu, evsel, avg);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_DTLB |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
runtime_dtlb_cache_stats[cpu].n != 0) {
print_dtlb_cache_misses(cpu, evsel, avg);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_ITLB |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
runtime_itlb_cache_stats[cpu].n != 0) {
print_itlb_cache_misses(cpu, evsel, avg);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_LL |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
runtime_ll_cache_stats[cpu].n != 0) {
print_ll_cache_misses(cpu, evsel, avg);
} else if (perf_evsel__match(evsel, HARDWARE, HW_CACHE_MISSES) &&
runtime_cacherefs_stats[cpu].n != 0) {
total = avg_stats(&runtime_cacherefs_stats[cpu]);
if (total)
ratio = avg * 100 / total;
fprintf(output, " # %8.3f %% of all cache refs ", ratio);
} else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) {
print_stalled_cycles_frontend(cpu, evsel, avg);
} else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_BACKEND)) {
print_stalled_cycles_backend(cpu, evsel, avg);
} else if (perf_evsel__match(evsel, HARDWARE, HW_CPU_CYCLES)) {
total = avg_stats(&runtime_nsecs_stats[cpu]);
if (total)
ratio = 1.0 * avg / total;
fprintf(output, " # %8.3f GHz ", ratio);
} else if (runtime_nsecs_stats[cpu].n != 0) {
char unit = 'M';
total = avg_stats(&runtime_nsecs_stats[cpu]);
if (total)
ratio = 1000.0 * avg / total;
if (ratio < 0.001) {
ratio *= 1000;
unit = 'K';
}
fprintf(output, " # %8.3f %c/sec ", ratio, unit);
} else {
fprintf(output, " ");
}
}
static void print_aggr(char *prefix)
{
struct perf_evsel *counter;
int cpu, s, s2, id, nr;
u64 ena, run, val;
if (!(aggr_map || aggr_get_id))
return;
for (s = 0; s < aggr_map->nr; s++) {
id = aggr_map->map[s];
list_for_each_entry(counter, &evsel_list->entries, node) {
val = ena = run = 0;
nr = 0;
for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
s2 = aggr_get_id(evsel_list->cpus, cpu);
if (s2 != id)
continue;
val += counter->counts->cpu[cpu].val;
ena += counter->counts->cpu[cpu].ena;
run += counter->counts->cpu[cpu].run;
nr++;
}
if (prefix)
fprintf(output, "%s", prefix);
if (run == 0 || ena == 0) {
aggr_printout(counter, cpu, nr);
fprintf(output, "%*s%s%*s",
csv_output ? 0 : 18,
counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED,
csv_sep,
csv_output ? 0 : -24,
perf_evsel__name(counter));
if (counter->cgrp)
fprintf(output, "%s%s",
csv_sep, counter->cgrp->name);
fputc('\n', output);
continue;
}
if (nsec_counter(counter))
nsec_printout(id, nr, counter, val);
else
abs_printout(id, nr, counter, val);
if (!csv_output) {
print_noise(counter, 1.0);
if (run != ena)
fprintf(output, " (%.2f%%)",
100.0 * run / ena);
}
fputc('\n', output);
}
}
}
/*
* Print out the results of a single counter:
* aggregated counts in system-wide mode
*/
static void print_counter_aggr(struct perf_evsel *counter, char *prefix)
{
struct perf_stat *ps = counter->priv;
double avg = avg_stats(&ps->res_stats[0]);
int scaled = counter->counts->scaled;
if (prefix)
fprintf(output, "%s", prefix);
if (scaled == -1) {
fprintf(output, "%*s%s%*s",
csv_output ? 0 : 18,
counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED,
csv_sep,
csv_output ? 0 : -24,
perf_evsel__name(counter));
if (counter->cgrp)
fprintf(output, "%s%s", csv_sep, counter->cgrp->name);
fputc('\n', output);
return;
}
if (nsec_counter(counter))
nsec_printout(-1, 0, counter, avg);
else
abs_printout(-1, 0, counter, avg);
print_noise(counter, avg);
if (csv_output) {
fputc('\n', output);
return;
}
if (scaled) {
double avg_enabled, avg_running;
avg_enabled = avg_stats(&ps->res_stats[1]);
avg_running = avg_stats(&ps->res_stats[2]);
fprintf(output, " [%5.2f%%]", 100 * avg_running / avg_enabled);
}
fprintf(output, "\n");
}
/*
* Print out the results of a single counter:
* does not use aggregated count in system-wide
*/
static void print_counter(struct perf_evsel *counter, char *prefix)
{
u64 ena, run, val;
int cpu;
for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
val = counter->counts->cpu[cpu].val;
ena = counter->counts->cpu[cpu].ena;
run = counter->counts->cpu[cpu].run;
if (prefix)
fprintf(output, "%s", prefix);
if (run == 0 || ena == 0) {
fprintf(output, "CPU%*d%s%*s%s%*s",
csv_output ? 0 : -4,
perf_evsel__cpus(counter)->map[cpu], csv_sep,
csv_output ? 0 : 18,
counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED,
csv_sep,
csv_output ? 0 : -24,
perf_evsel__name(counter));
if (counter->cgrp)
fprintf(output, "%s%s",
csv_sep, counter->cgrp->name);
fputc('\n', output);
continue;
}
if (nsec_counter(counter))
nsec_printout(cpu, 0, counter, val);
else
abs_printout(cpu, 0, counter, val);
if (!csv_output) {
print_noise(counter, 1.0);
if (run != ena)
fprintf(output, " (%.2f%%)",
100.0 * run / ena);
}
fputc('\n', output);
}
}
static void print_stat(int argc, const char **argv)
{
struct perf_evsel *counter;
int i;
fflush(stdout);
if (!csv_output) {
fprintf(output, "\n");
fprintf(output, " Performance counter stats for ");
if (!perf_target__has_task(&target)) {
fprintf(output, "\'%s", argv[0]);
for (i = 1; i < argc; i++)
fprintf(output, " %s", argv[i]);
} else if (target.pid)
fprintf(output, "process id \'%s", target.pid);
else
fprintf(output, "thread id \'%s", target.tid);
fprintf(output, "\'");
if (run_count > 1)
fprintf(output, " (%d runs)", run_count);
fprintf(output, ":\n\n");
}
switch (aggr_mode) {
case AGGR_CORE:
case AGGR_SOCKET:
print_aggr(NULL);
break;
case AGGR_GLOBAL:
list_for_each_entry(counter, &evsel_list->entries, node)
print_counter_aggr(counter, NULL);
break;
case AGGR_NONE:
list_for_each_entry(counter, &evsel_list->entries, node)
print_counter(counter, NULL);
break;
default:
break;
}
if (!csv_output) {
if (!null_run)
fprintf(output, "\n");
fprintf(output, " %17.9f seconds time elapsed",
avg_stats(&walltime_nsecs_stats)/1e9);
if (run_count > 1) {
fprintf(output, " ");
print_noise_pct(stddev_stats(&walltime_nsecs_stats),
avg_stats(&walltime_nsecs_stats));
}
fprintf(output, "\n\n");
}
}
static volatile int signr = -1;
static void skip_signal(int signo)
{
if ((child_pid == -1) || interval)
done = 1;
signr = signo;
}
static void sig_atexit(void)
{
if (child_pid != -1)
kill(child_pid, SIGTERM);
if (signr == -1)
return;
signal(signr, SIG_DFL);
kill(getpid(), signr);
}
static int stat__set_big_num(const struct option *opt __maybe_unused,
const char *s __maybe_unused, int unset)
{
big_num_opt = unset ? 0 : 1;
return 0;
}
static int perf_stat_init_aggr_mode(void)
{
switch (aggr_mode) {
case AGGR_SOCKET:
if (cpu_map__build_socket_map(evsel_list->cpus, &aggr_map)) {
perror("cannot build socket map");
return -1;
}
aggr_get_id = cpu_map__get_socket;
break;
case AGGR_CORE:
if (cpu_map__build_core_map(evsel_list->cpus, &aggr_map)) {
perror("cannot build core map");
return -1;
}
aggr_get_id = cpu_map__get_core;
break;
case AGGR_NONE:
case AGGR_GLOBAL:
default:
break;
}
return 0;
}
/*
* Add default attributes, if there were no attributes specified or
* if -d/--detailed, -d -d or -d -d -d is used:
*/
static int add_default_attributes(void)
{
struct perf_event_attr default_attrs[] = {
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES },
};
/*
* Detailed stats (-d), covering the L1 and last level data caches:
*/
struct perf_event_attr detailed_attrs[] = {
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_LL << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_LL << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
};
/*
* Very detailed stats (-d -d), covering the instruction cache and the TLB caches:
*/
struct perf_event_attr very_detailed_attrs[] = {
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1I << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1I << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_DTLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_DTLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_ITLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_ITLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
};
/*
* Very, very detailed stats (-d -d -d), adding prefetch events:
*/
struct perf_event_attr very_very_detailed_attrs[] = {
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
};
/* Set attrs if no event is selected and !null_run: */
if (null_run)
return 0;
if (!evsel_list->nr_entries) {
if (perf_evlist__add_default_attrs(evsel_list, default_attrs) < 0)
return -1;
}
/* Detailed events get appended to the event list: */
if (detailed_run < 1)
return 0;
/* Append detailed run extra attributes: */
if (perf_evlist__add_default_attrs(evsel_list, detailed_attrs) < 0)
return -1;
if (detailed_run < 2)
return 0;
/* Append very detailed run extra attributes: */
if (perf_evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0)
return -1;
if (detailed_run < 3)
return 0;
/* Append very, very detailed run extra attributes: */
return perf_evlist__add_default_attrs(evsel_list, very_very_detailed_attrs);
}
int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused)
{
bool append_file = false;
int output_fd = 0;
const char *output_name = NULL;
const struct option options[] = {
OPT_CALLBACK('e', "event", &evsel_list, "event",
"event selector. use 'perf list' to list available events",
parse_events_option),
OPT_CALLBACK(0, "filter", &evsel_list, "filter",
"event filter", parse_filter),
OPT_BOOLEAN('i', "no-inherit", &no_inherit,
"child tasks do not inherit counters"),
OPT_STRING('p', "pid", &target.pid, "pid",
"stat events on existing process id"),
OPT_STRING('t', "tid", &target.tid, "tid",
"stat events on existing thread id"),
OPT_BOOLEAN('a', "all-cpus", &target.system_wide,
"system-wide collection from all CPUs"),
OPT_BOOLEAN('g', "group", &group,
"put the counters into a counter group"),
OPT_BOOLEAN('c', "scale", &scale, "scale/normalize counters"),
OPT_INCR('v', "verbose", &verbose,
"be more verbose (show counter open errors, etc)"),
OPT_INTEGER('r', "repeat", &run_count,
"repeat command and print average + stddev (max: 100, forever: 0)"),
OPT_BOOLEAN('n', "null", &null_run,
"null run - dont start any counters"),
OPT_INCR('d', "detailed", &detailed_run,
"detailed run - start a lot of events"),
OPT_BOOLEAN('S', "sync", &sync_run,
"call sync() before starting a run"),
OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL,
"print large numbers with thousands\' separators",
stat__set_big_num),
OPT_STRING('C', "cpu", &target.cpu_list, "cpu",
"list of cpus to monitor in system-wide"),
OPT_SET_UINT('A', "no-aggr", &aggr_mode,
"disable CPU count aggregation", AGGR_NONE),
OPT_STRING('x', "field-separator", &csv_sep, "separator",
"print counts with custom separator"),
OPT_CALLBACK('G', "cgroup", &evsel_list, "name",
"monitor event in cgroup name only", parse_cgroups),
OPT_STRING('o', "output", &output_name, "file", "output file name"),
OPT_BOOLEAN(0, "append", &append_file, "append to the output file"),
OPT_INTEGER(0, "log-fd", &output_fd,
"log output to fd, instead of stderr"),
OPT_STRING(0, "pre", &pre_cmd, "command",
"command to run prior to the measured command"),
OPT_STRING(0, "post", &post_cmd, "command",
"command to run after to the measured command"),
OPT_UINTEGER('I', "interval-print", &interval,
"print counts at regular interval in ms (>= 100)"),
OPT_SET_UINT(0, "per-socket", &aggr_mode,
"aggregate counts per processor socket", AGGR_SOCKET),
OPT_SET_UINT(0, "per-core", &aggr_mode,
"aggregate counts per physical processor core", AGGR_CORE),
OPT_END()
};
const char * const stat_usage[] = {
"perf stat [<options>] [<command>]",
NULL
};
int status = -ENOMEM, run_idx;
const char *mode;
setlocale(LC_ALL, "");
evsel_list = perf_evlist__new();
if (evsel_list == NULL)
return -ENOMEM;
argc = parse_options(argc, argv, options, stat_usage,
PARSE_OPT_STOP_AT_NON_OPTION);
output = stderr;
if (output_name && strcmp(output_name, "-"))
output = NULL;
if (output_name && output_fd) {
fprintf(stderr, "cannot use both --output and --log-fd\n");
usage_with_options(stat_usage, options);
}
if (output_fd < 0) {
fprintf(stderr, "argument to --log-fd must be a > 0\n");
usage_with_options(stat_usage, options);
}
if (!output) {
struct timespec tm;
mode = append_file ? "a" : "w";
output = fopen(output_name, mode);
if (!output) {
perror("failed to create output file");
return -1;
}
clock_gettime(CLOCK_REALTIME, &tm);
fprintf(output, "# started on %s\n", ctime(&tm.tv_sec));
} else if (output_fd > 0) {
mode = append_file ? "a" : "w";
output = fdopen(output_fd, mode);
if (!output) {
perror("Failed opening logfd");
return -errno;
}
}
if (csv_sep) {
csv_output = true;
if (!strcmp(csv_sep, "\\t"))
csv_sep = "\t";
} else
csv_sep = DEFAULT_SEPARATOR;
/*
* let the spreadsheet do the pretty-printing
*/
if (csv_output) {
/* User explicitly passed -B? */
if (big_num_opt == 1) {
fprintf(stderr, "-B option not supported with -x\n");
usage_with_options(stat_usage, options);
} else /* Nope, so disable big number formatting */
big_num = false;
} else if (big_num_opt == 0) /* User passed --no-big-num */
big_num = false;
if (!argc && !perf_target__has_task(&target))
usage_with_options(stat_usage, options);
if (run_count < 0) {
usage_with_options(stat_usage, options);
} else if (run_count == 0) {
forever = true;
run_count = 1;
}
/* no_aggr, cgroup are for system-wide only */
if ((aggr_mode != AGGR_GLOBAL || nr_cgroups)
&& !perf_target__has_cpu(&target)) {
fprintf(stderr, "both cgroup and no-aggregation "
"modes only available in system-wide mode\n");
usage_with_options(stat_usage, options);
return -1;
}
if (add_default_attributes())
goto out;
perf_target__validate(&target);
if (perf_evlist__create_maps(evsel_list, &target) < 0) {
if (perf_target__has_task(&target))
pr_err("Problems finding threads of monitor\n");
if (perf_target__has_cpu(&target))
perror("failed to parse CPUs map");
usage_with_options(stat_usage, options);
return -1;
}
if (interval && interval < 100) {
pr_err("print interval must be >= 100ms\n");
usage_with_options(stat_usage, options);
return -1;
}
if (perf_evlist__alloc_stats(evsel_list, interval))
goto out_free_maps;
if (perf_stat_init_aggr_mode())
goto out;
/*
* We dont want to block the signals - that would cause
* child tasks to inherit that and Ctrl-C would not work.
* What we want is for Ctrl-C to work in the exec()-ed
* task, but being ignored by perf stat itself:
*/
atexit(sig_atexit);
if (!forever)
signal(SIGINT, skip_signal);
signal(SIGCHLD, skip_signal);
signal(SIGALRM, skip_signal);
signal(SIGABRT, skip_signal);
status = 0;
for (run_idx = 0; forever || run_idx < run_count; run_idx++) {
if (run_count != 1 && verbose)
fprintf(output, "[ perf stat: executing run #%d ... ]\n",
run_idx + 1);
status = run_perf_stat(argc, argv);
if (forever && status != -1) {
print_stat(argc, argv);
perf_stat__reset_stats(evsel_list);
}
}
if (!forever && status != -1 && !interval)
print_stat(argc, argv);
perf_evlist__free_stats(evsel_list);
out_free_maps:
perf_evlist__delete_maps(evsel_list);
out:
perf_evlist__delete(evsel_list);
return status;
}