| /* |
| * Copyright (c) 2007, Intel Corporation. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Authors: Thomas Hellstrom <thomas-at-tungstengraphics.com> |
| * Alan Cox <alan@linux.intel.com> |
| */ |
| |
| #include <drm/drmP.h> |
| #include <linux/shmem_fs.h> |
| #include "psb_drv.h" |
| |
| |
| /* |
| * GTT resource allocator - manage page mappings in GTT space |
| */ |
| |
| /** |
| * psb_gtt_mask_pte - generate GTT pte entry |
| * @pfn: page number to encode |
| * @type: type of memory in the GTT |
| * |
| * Set the GTT entry for the appropriate memory type. |
| */ |
| static inline uint32_t psb_gtt_mask_pte(uint32_t pfn, int type) |
| { |
| uint32_t mask = PSB_PTE_VALID; |
| |
| /* Ensure we explode rather than put an invalid low mapping of |
| a high mapping page into the gtt */ |
| BUG_ON(pfn & ~(0xFFFFFFFF >> PAGE_SHIFT)); |
| |
| if (type & PSB_MMU_CACHED_MEMORY) |
| mask |= PSB_PTE_CACHED; |
| if (type & PSB_MMU_RO_MEMORY) |
| mask |= PSB_PTE_RO; |
| if (type & PSB_MMU_WO_MEMORY) |
| mask |= PSB_PTE_WO; |
| |
| return (pfn << PAGE_SHIFT) | mask; |
| } |
| |
| /** |
| * psb_gtt_entry - find the GTT entries for a gtt_range |
| * @dev: our DRM device |
| * @r: our GTT range |
| * |
| * Given a gtt_range object return the GTT offset of the page table |
| * entries for this gtt_range |
| */ |
| static u32 __iomem *psb_gtt_entry(struct drm_device *dev, struct gtt_range *r) |
| { |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| unsigned long offset; |
| |
| offset = r->resource.start - dev_priv->gtt_mem->start; |
| |
| return dev_priv->gtt_map + (offset >> PAGE_SHIFT); |
| } |
| |
| /** |
| * psb_gtt_insert - put an object into the GTT |
| * @dev: our DRM device |
| * @r: our GTT range |
| * |
| * Take our preallocated GTT range and insert the GEM object into |
| * the GTT. This is protected via the gtt mutex which the caller |
| * must hold. |
| */ |
| static int psb_gtt_insert(struct drm_device *dev, struct gtt_range *r) |
| { |
| u32 __iomem *gtt_slot; |
| u32 pte; |
| struct page **pages; |
| int i; |
| |
| if (r->pages == NULL) { |
| WARN_ON(1); |
| return -EINVAL; |
| } |
| |
| WARN_ON(r->stolen); /* refcount these maybe ? */ |
| |
| gtt_slot = psb_gtt_entry(dev, r); |
| pages = r->pages; |
| |
| /* Make sure changes are visible to the GPU */ |
| set_pages_array_wc(pages, r->npage); |
| |
| /* Write our page entries into the GTT itself */ |
| for (i = r->roll; i < r->npage; i++) { |
| pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); |
| iowrite32(pte, gtt_slot++); |
| } |
| for (i = 0; i < r->roll; i++) { |
| pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); |
| iowrite32(pte, gtt_slot++); |
| } |
| /* Make sure all the entries are set before we return */ |
| ioread32(gtt_slot - 1); |
| |
| return 0; |
| } |
| |
| /** |
| * psb_gtt_remove - remove an object from the GTT |
| * @dev: our DRM device |
| * @r: our GTT range |
| * |
| * Remove a preallocated GTT range from the GTT. Overwrite all the |
| * page table entries with the dummy page. This is protected via the gtt |
| * mutex which the caller must hold. |
| */ |
| static void psb_gtt_remove(struct drm_device *dev, struct gtt_range *r) |
| { |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| u32 __iomem *gtt_slot; |
| u32 pte; |
| int i; |
| |
| WARN_ON(r->stolen); |
| |
| gtt_slot = psb_gtt_entry(dev, r); |
| pte = psb_gtt_mask_pte(page_to_pfn(dev_priv->scratch_page), 0); |
| |
| for (i = 0; i < r->npage; i++) |
| iowrite32(pte, gtt_slot++); |
| ioread32(gtt_slot - 1); |
| set_pages_array_wb(r->pages, r->npage); |
| } |
| |
| /** |
| * psb_gtt_roll - set scrolling position |
| * @dev: our DRM device |
| * @r: the gtt mapping we are using |
| * @roll: roll offset |
| * |
| * Roll an existing pinned mapping by moving the pages through the GTT. |
| * This allows us to implement hardware scrolling on the consoles without |
| * a 2D engine |
| */ |
| void psb_gtt_roll(struct drm_device *dev, struct gtt_range *r, int roll) |
| { |
| u32 __iomem *gtt_slot; |
| u32 pte; |
| int i; |
| |
| if (roll >= r->npage) { |
| WARN_ON(1); |
| return; |
| } |
| |
| r->roll = roll; |
| |
| /* Not currently in the GTT - no worry we will write the mapping at |
| the right position when it gets pinned */ |
| if (!r->stolen && !r->in_gart) |
| return; |
| |
| gtt_slot = psb_gtt_entry(dev, r); |
| |
| for (i = r->roll; i < r->npage; i++) { |
| pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); |
| iowrite32(pte, gtt_slot++); |
| } |
| for (i = 0; i < r->roll; i++) { |
| pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); |
| iowrite32(pte, gtt_slot++); |
| } |
| ioread32(gtt_slot - 1); |
| } |
| |
| /** |
| * psb_gtt_attach_pages - attach and pin GEM pages |
| * @gt: the gtt range |
| * |
| * Pin and build an in kernel list of the pages that back our GEM object. |
| * While we hold this the pages cannot be swapped out. This is protected |
| * via the gtt mutex which the caller must hold. |
| */ |
| static int psb_gtt_attach_pages(struct gtt_range *gt) |
| { |
| struct inode *inode; |
| struct address_space *mapping; |
| int i; |
| struct page *p; |
| int pages = gt->gem.size / PAGE_SIZE; |
| |
| WARN_ON(gt->pages); |
| |
| /* This is the shared memory object that backs the GEM resource */ |
| inode = gt->gem.filp->f_path.dentry->d_inode; |
| mapping = inode->i_mapping; |
| |
| gt->pages = kmalloc(pages * sizeof(struct page *), GFP_KERNEL); |
| if (gt->pages == NULL) |
| return -ENOMEM; |
| gt->npage = pages; |
| |
| for (i = 0; i < pages; i++) { |
| p = shmem_read_mapping_page(mapping, i); |
| if (IS_ERR(p)) |
| goto err; |
| gt->pages[i] = p; |
| } |
| return 0; |
| |
| err: |
| while (i--) |
| page_cache_release(gt->pages[i]); |
| kfree(gt->pages); |
| gt->pages = NULL; |
| return PTR_ERR(p); |
| } |
| |
| /** |
| * psb_gtt_detach_pages - attach and pin GEM pages |
| * @gt: the gtt range |
| * |
| * Undo the effect of psb_gtt_attach_pages. At this point the pages |
| * must have been removed from the GTT as they could now be paged out |
| * and move bus address. This is protected via the gtt mutex which the |
| * caller must hold. |
| */ |
| static void psb_gtt_detach_pages(struct gtt_range *gt) |
| { |
| int i; |
| for (i = 0; i < gt->npage; i++) { |
| /* FIXME: do we need to force dirty */ |
| set_page_dirty(gt->pages[i]); |
| page_cache_release(gt->pages[i]); |
| } |
| kfree(gt->pages); |
| gt->pages = NULL; |
| } |
| |
| /** |
| * psb_gtt_pin - pin pages into the GTT |
| * @gt: range to pin |
| * |
| * Pin a set of pages into the GTT. The pins are refcounted so that |
| * multiple pins need multiple unpins to undo. |
| * |
| * Non GEM backed objects treat this as a no-op as they are always GTT |
| * backed objects. |
| */ |
| int psb_gtt_pin(struct gtt_range *gt) |
| { |
| int ret = 0; |
| struct drm_device *dev = gt->gem.dev; |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| |
| mutex_lock(&dev_priv->gtt_mutex); |
| |
| if (gt->in_gart == 0 && gt->stolen == 0) { |
| ret = psb_gtt_attach_pages(gt); |
| if (ret < 0) |
| goto out; |
| ret = psb_gtt_insert(dev, gt); |
| if (ret < 0) { |
| psb_gtt_detach_pages(gt); |
| goto out; |
| } |
| } |
| gt->in_gart++; |
| out: |
| mutex_unlock(&dev_priv->gtt_mutex); |
| return ret; |
| } |
| |
| /** |
| * psb_gtt_unpin - Drop a GTT pin requirement |
| * @gt: range to pin |
| * |
| * Undoes the effect of psb_gtt_pin. On the last drop the GEM object |
| * will be removed from the GTT which will also drop the page references |
| * and allow the VM to clean up or page stuff. |
| * |
| * Non GEM backed objects treat this as a no-op as they are always GTT |
| * backed objects. |
| */ |
| void psb_gtt_unpin(struct gtt_range *gt) |
| { |
| struct drm_device *dev = gt->gem.dev; |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| |
| mutex_lock(&dev_priv->gtt_mutex); |
| |
| WARN_ON(!gt->in_gart); |
| |
| gt->in_gart--; |
| if (gt->in_gart == 0 && gt->stolen == 0) { |
| psb_gtt_remove(dev, gt); |
| psb_gtt_detach_pages(gt); |
| } |
| mutex_unlock(&dev_priv->gtt_mutex); |
| } |
| |
| /* |
| * GTT resource allocator - allocate and manage GTT address space |
| */ |
| |
| /** |
| * psb_gtt_alloc_range - allocate GTT address space |
| * @dev: Our DRM device |
| * @len: length (bytes) of address space required |
| * @name: resource name |
| * @backed: resource should be backed by stolen pages |
| * |
| * Ask the kernel core to find us a suitable range of addresses |
| * to use for a GTT mapping. |
| * |
| * Returns a gtt_range structure describing the object, or NULL on |
| * error. On successful return the resource is both allocated and marked |
| * as in use. |
| */ |
| struct gtt_range *psb_gtt_alloc_range(struct drm_device *dev, int len, |
| const char *name, int backed) |
| { |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| struct gtt_range *gt; |
| struct resource *r = dev_priv->gtt_mem; |
| int ret; |
| unsigned long start, end; |
| |
| if (backed) { |
| /* The start of the GTT is the stolen pages */ |
| start = r->start; |
| end = r->start + dev_priv->gtt.stolen_size - 1; |
| } else { |
| /* The rest we will use for GEM backed objects */ |
| start = r->start + dev_priv->gtt.stolen_size; |
| end = r->end; |
| } |
| |
| gt = kzalloc(sizeof(struct gtt_range), GFP_KERNEL); |
| if (gt == NULL) |
| return NULL; |
| gt->resource.name = name; |
| gt->stolen = backed; |
| gt->in_gart = backed; |
| gt->roll = 0; |
| /* Ensure this is set for non GEM objects */ |
| gt->gem.dev = dev; |
| ret = allocate_resource(dev_priv->gtt_mem, >->resource, |
| len, start, end, PAGE_SIZE, NULL, NULL); |
| if (ret == 0) { |
| gt->offset = gt->resource.start - r->start; |
| return gt; |
| } |
| kfree(gt); |
| return NULL; |
| } |
| |
| /** |
| * psb_gtt_free_range - release GTT address space |
| * @dev: our DRM device |
| * @gt: a mapping created with psb_gtt_alloc_range |
| * |
| * Release a resource that was allocated with psb_gtt_alloc_range. If the |
| * object has been pinned by mmap users we clean this up here currently. |
| */ |
| void psb_gtt_free_range(struct drm_device *dev, struct gtt_range *gt) |
| { |
| /* Undo the mmap pin if we are destroying the object */ |
| if (gt->mmapping) { |
| psb_gtt_unpin(gt); |
| gt->mmapping = 0; |
| } |
| WARN_ON(gt->in_gart && !gt->stolen); |
| release_resource(>->resource); |
| kfree(gt); |
| } |
| |
| static void psb_gtt_alloc(struct drm_device *dev) |
| { |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| init_rwsem(&dev_priv->gtt.sem); |
| } |
| |
| void psb_gtt_takedown(struct drm_device *dev) |
| { |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| |
| if (dev_priv->gtt_map) { |
| iounmap(dev_priv->gtt_map); |
| dev_priv->gtt_map = NULL; |
| } |
| if (dev_priv->gtt_initialized) { |
| pci_write_config_word(dev->pdev, PSB_GMCH_CTRL, |
| dev_priv->gmch_ctrl); |
| PSB_WVDC32(dev_priv->pge_ctl, PSB_PGETBL_CTL); |
| (void) PSB_RVDC32(PSB_PGETBL_CTL); |
| } |
| if (dev_priv->vram_addr) |
| iounmap(dev_priv->gtt_map); |
| } |
| |
| int psb_gtt_init(struct drm_device *dev, int resume) |
| { |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| unsigned gtt_pages; |
| unsigned long stolen_size, vram_stolen_size; |
| unsigned i, num_pages; |
| unsigned pfn_base; |
| struct psb_gtt *pg; |
| |
| int ret = 0; |
| uint32_t pte; |
| |
| mutex_init(&dev_priv->gtt_mutex); |
| |
| psb_gtt_alloc(dev); |
| pg = &dev_priv->gtt; |
| |
| /* Enable the GTT */ |
| pci_read_config_word(dev->pdev, PSB_GMCH_CTRL, &dev_priv->gmch_ctrl); |
| pci_write_config_word(dev->pdev, PSB_GMCH_CTRL, |
| dev_priv->gmch_ctrl | _PSB_GMCH_ENABLED); |
| |
| dev_priv->pge_ctl = PSB_RVDC32(PSB_PGETBL_CTL); |
| PSB_WVDC32(dev_priv->pge_ctl | _PSB_PGETBL_ENABLED, PSB_PGETBL_CTL); |
| (void) PSB_RVDC32(PSB_PGETBL_CTL); |
| |
| /* The root resource we allocate address space from */ |
| dev_priv->gtt_initialized = 1; |
| |
| pg->gtt_phys_start = dev_priv->pge_ctl & PAGE_MASK; |
| |
| /* |
| * The video mmu has a hw bug when accessing 0x0D0000000. |
| * Make gatt start at 0x0e000,0000. This doesn't actually |
| * matter for us but may do if the video acceleration ever |
| * gets opened up. |
| */ |
| pg->mmu_gatt_start = 0xE0000000; |
| |
| pg->gtt_start = pci_resource_start(dev->pdev, PSB_GTT_RESOURCE); |
| gtt_pages = pci_resource_len(dev->pdev, PSB_GTT_RESOURCE) |
| >> PAGE_SHIFT; |
| /* CDV doesn't report this. In which case the system has 64 gtt pages */ |
| if (pg->gtt_start == 0 || gtt_pages == 0) { |
| dev_dbg(dev->dev, "GTT PCI BAR not initialized.\n"); |
| gtt_pages = 64; |
| pg->gtt_start = dev_priv->pge_ctl; |
| } |
| |
| pg->gatt_start = pci_resource_start(dev->pdev, PSB_GATT_RESOURCE); |
| pg->gatt_pages = pci_resource_len(dev->pdev, PSB_GATT_RESOURCE) |
| >> PAGE_SHIFT; |
| dev_priv->gtt_mem = &dev->pdev->resource[PSB_GATT_RESOURCE]; |
| |
| if (pg->gatt_pages == 0 || pg->gatt_start == 0) { |
| static struct resource fudge; /* Preferably peppermint */ |
| /* This can occur on CDV systems. Fudge it in this case. |
| We really don't care what imaginary space is being allocated |
| at this point */ |
| dev_dbg(dev->dev, "GATT PCI BAR not initialized.\n"); |
| pg->gatt_start = 0x40000000; |
| pg->gatt_pages = (128 * 1024 * 1024) >> PAGE_SHIFT; |
| /* This is a little confusing but in fact the GTT is providing |
| a view from the GPU into memory and not vice versa. As such |
| this is really allocating space that is not the same as the |
| CPU address space on CDV */ |
| fudge.start = 0x40000000; |
| fudge.end = 0x40000000 + 128 * 1024 * 1024 - 1; |
| fudge.name = "fudge"; |
| fudge.flags = IORESOURCE_MEM; |
| dev_priv->gtt_mem = &fudge; |
| } |
| |
| pci_read_config_dword(dev->pdev, PSB_BSM, &dev_priv->stolen_base); |
| vram_stolen_size = pg->gtt_phys_start - dev_priv->stolen_base |
| - PAGE_SIZE; |
| |
| stolen_size = vram_stolen_size; |
| |
| dev_dbg(dev->dev, "Stolen memory base 0x%x, size %luK\n", |
| dev_priv->stolen_base, vram_stolen_size / 1024); |
| |
| if (resume && (gtt_pages != pg->gtt_pages) && |
| (stolen_size != pg->stolen_size)) { |
| dev_err(dev->dev, "GTT resume error.\n"); |
| ret = -EINVAL; |
| goto out_err; |
| } |
| |
| pg->gtt_pages = gtt_pages; |
| pg->stolen_size = stolen_size; |
| dev_priv->vram_stolen_size = vram_stolen_size; |
| |
| /* |
| * Map the GTT and the stolen memory area |
| */ |
| dev_priv->gtt_map = ioremap_nocache(pg->gtt_phys_start, |
| gtt_pages << PAGE_SHIFT); |
| if (!dev_priv->gtt_map) { |
| dev_err(dev->dev, "Failure to map gtt.\n"); |
| ret = -ENOMEM; |
| goto out_err; |
| } |
| |
| dev_priv->vram_addr = ioremap_wc(dev_priv->stolen_base, stolen_size); |
| if (!dev_priv->vram_addr) { |
| dev_err(dev->dev, "Failure to map stolen base.\n"); |
| ret = -ENOMEM; |
| goto out_err; |
| } |
| |
| /* |
| * Insert vram stolen pages into the GTT |
| */ |
| |
| pfn_base = dev_priv->stolen_base >> PAGE_SHIFT; |
| num_pages = vram_stolen_size >> PAGE_SHIFT; |
| dev_dbg(dev->dev, "Set up %d stolen pages starting at 0x%08x, GTT offset %dK\n", |
| num_pages, pfn_base << PAGE_SHIFT, 0); |
| for (i = 0; i < num_pages; ++i) { |
| pte = psb_gtt_mask_pte(pfn_base + i, 0); |
| iowrite32(pte, dev_priv->gtt_map + i); |
| } |
| |
| /* |
| * Init rest of GTT to the scratch page to avoid accidents or scribbles |
| */ |
| |
| pfn_base = page_to_pfn(dev_priv->scratch_page); |
| pte = psb_gtt_mask_pte(pfn_base, 0); |
| for (; i < gtt_pages; ++i) |
| iowrite32(pte, dev_priv->gtt_map + i); |
| |
| (void) ioread32(dev_priv->gtt_map + i - 1); |
| return 0; |
| |
| out_err: |
| psb_gtt_takedown(dev); |
| return ret; |
| } |