| /* |
| * arch/arm/kernel/kprobes.h |
| * |
| * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>. |
| * |
| * Some contents moved here from arch/arm/include/asm/kprobes.h which is |
| * Copyright (C) 2006, 2007 Motorola Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| */ |
| |
| #ifndef _ARM_KERNEL_KPROBES_H |
| #define _ARM_KERNEL_KPROBES_H |
| |
| /* |
| * These undefined instructions must be unique and |
| * reserved solely for kprobes' use. |
| */ |
| #define KPROBE_ARM_BREAKPOINT_INSTRUCTION 0x07f001f8 |
| #define KPROBE_THUMB16_BREAKPOINT_INSTRUCTION 0xde18 |
| #define KPROBE_THUMB32_BREAKPOINT_INSTRUCTION 0xf7f0a018 |
| |
| |
| enum kprobe_insn { |
| INSN_REJECTED, |
| INSN_GOOD, |
| INSN_GOOD_NO_SLOT |
| }; |
| |
| typedef enum kprobe_insn (kprobe_decode_insn_t)(kprobe_opcode_t, |
| struct arch_specific_insn *); |
| |
| #ifdef CONFIG_THUMB2_KERNEL |
| |
| enum kprobe_insn thumb16_kprobe_decode_insn(kprobe_opcode_t, |
| struct arch_specific_insn *); |
| enum kprobe_insn thumb32_kprobe_decode_insn(kprobe_opcode_t, |
| struct arch_specific_insn *); |
| |
| #else /* !CONFIG_THUMB2_KERNEL */ |
| |
| enum kprobe_insn arm_kprobe_decode_insn(kprobe_opcode_t, |
| struct arch_specific_insn *); |
| #endif |
| |
| void __init arm_kprobe_decode_init(void); |
| |
| extern kprobe_check_cc * const kprobe_condition_checks[16]; |
| |
| |
| #if __LINUX_ARM_ARCH__ >= 7 |
| |
| /* str_pc_offset is architecturally defined from ARMv7 onwards */ |
| #define str_pc_offset 8 |
| #define find_str_pc_offset() |
| |
| #else /* __LINUX_ARM_ARCH__ < 7 */ |
| |
| /* We need a run-time check to determine str_pc_offset */ |
| extern int str_pc_offset; |
| void __init find_str_pc_offset(void); |
| |
| #endif |
| |
| |
| /* |
| * Update ITSTATE after normal execution of an IT block instruction. |
| * |
| * The 8 IT state bits are split into two parts in CPSR: |
| * ITSTATE<1:0> are in CPSR<26:25> |
| * ITSTATE<7:2> are in CPSR<15:10> |
| */ |
| static inline unsigned long it_advance(unsigned long cpsr) |
| { |
| if ((cpsr & 0x06000400) == 0) { |
| /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */ |
| cpsr &= ~PSR_IT_MASK; |
| } else { |
| /* We need to shift left ITSTATE<4:0> */ |
| const unsigned long mask = 0x06001c00; /* Mask ITSTATE<4:0> */ |
| unsigned long it = cpsr & mask; |
| it <<= 1; |
| it |= it >> (27 - 10); /* Carry ITSTATE<2> to correct place */ |
| it &= mask; |
| cpsr &= ~mask; |
| cpsr |= it; |
| } |
| return cpsr; |
| } |
| |
| static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs) |
| { |
| long cpsr = regs->ARM_cpsr; |
| if (pcv & 0x1) { |
| cpsr |= PSR_T_BIT; |
| pcv &= ~0x1; |
| } else { |
| cpsr &= ~PSR_T_BIT; |
| pcv &= ~0x2; /* Avoid UNPREDICTABLE address allignment */ |
| } |
| regs->ARM_cpsr = cpsr; |
| regs->ARM_pc = pcv; |
| } |
| |
| |
| #if __LINUX_ARM_ARCH__ >= 6 |
| |
| /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */ |
| #define load_write_pc_interworks true |
| #define test_load_write_pc_interworking() |
| |
| #else /* __LINUX_ARM_ARCH__ < 6 */ |
| |
| /* We need run-time testing to determine if load_write_pc() should interwork. */ |
| extern bool load_write_pc_interworks; |
| void __init test_load_write_pc_interworking(void); |
| |
| #endif |
| |
| static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs) |
| { |
| if (load_write_pc_interworks) |
| bx_write_pc(pcv, regs); |
| else |
| regs->ARM_pc = pcv; |
| } |
| |
| |
| #if __LINUX_ARM_ARCH__ >= 7 |
| |
| #define alu_write_pc_interworks true |
| #define test_alu_write_pc_interworking() |
| |
| #elif __LINUX_ARM_ARCH__ <= 5 |
| |
| /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */ |
| #define alu_write_pc_interworks false |
| #define test_alu_write_pc_interworking() |
| |
| #else /* __LINUX_ARM_ARCH__ == 6 */ |
| |
| /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */ |
| extern bool alu_write_pc_interworks; |
| void __init test_alu_write_pc_interworking(void); |
| |
| #endif /* __LINUX_ARM_ARCH__ == 6 */ |
| |
| static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs) |
| { |
| if (alu_write_pc_interworks) |
| bx_write_pc(pcv, regs); |
| else |
| regs->ARM_pc = pcv; |
| } |
| |
| |
| void __kprobes kprobe_simulate_nop(struct kprobe *p, struct pt_regs *regs); |
| void __kprobes kprobe_emulate_none(struct kprobe *p, struct pt_regs *regs); |
| |
| enum kprobe_insn __kprobes |
| kprobe_decode_ldmstm(kprobe_opcode_t insn, struct arch_specific_insn *asi); |
| |
| /* |
| * Test if load/store instructions writeback the address register. |
| * if P (bit 24) == 0 or W (bit 21) == 1 |
| */ |
| #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000) |
| |
| /* |
| * The following definitions and macros are used to build instruction |
| * decoding tables for use by kprobe_decode_insn. |
| * |
| * These tables are a concatenation of entries each of which consist of one of |
| * the decode_* structs. All of the fields in every type of decode structure |
| * are of the union type decode_item, therefore the entire decode table can be |
| * viewed as an array of these and declared like: |
| * |
| * static const union decode_item table_name[] = {}; |
| * |
| * In order to construct each entry in the table, macros are used to |
| * initialise a number of sequential decode_item values in a layout which |
| * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct |
| * decode_simulate by initialising four decode_item objects like this... |
| * |
| * {.bits = _type}, |
| * {.bits = _mask}, |
| * {.bits = _value}, |
| * {.handler = _handler}, |
| * |
| * Initialising a specified member of the union means that the compiler |
| * will produce a warning if the argument is of an incorrect type. |
| * |
| * Below is a list of each of the macros used to initialise entries and a |
| * description of the action performed when that entry is matched to an |
| * instruction. A match is found when (instruction & mask) == value. |
| * |
| * DECODE_TABLE(mask, value, table) |
| * Instruction decoding jumps to parsing the new sub-table 'table'. |
| * |
| * DECODE_CUSTOM(mask, value, decoder) |
| * The custom function 'decoder' is called to the complete decoding |
| * of an instruction. |
| * |
| * DECODE_SIMULATE(mask, value, handler) |
| * Set the probes instruction handler to 'handler', this will be used |
| * to simulate the instruction when the probe is hit. Decoding returns |
| * with INSN_GOOD_NO_SLOT. |
| * |
| * DECODE_EMULATE(mask, value, handler) |
| * Set the probes instruction handler to 'handler', this will be used |
| * to emulate the instruction when the probe is hit. The modified |
| * instruction (see below) is placed in the probes instruction slot so it |
| * may be called by the emulation code. Decoding returns with INSN_GOOD. |
| * |
| * DECODE_REJECT(mask, value) |
| * Instruction decoding fails with INSN_REJECTED |
| * |
| * DECODE_OR(mask, value) |
| * This allows the mask/value test of multiple table entries to be |
| * logically ORed. Once an 'or' entry is matched the decoding action to |
| * be performed is that of the next entry which isn't an 'or'. E.g. |
| * |
| * DECODE_OR (mask1, value1) |
| * DECODE_OR (mask2, value2) |
| * DECODE_SIMULATE (mask3, value3, simulation_handler) |
| * |
| * This means that if any of the three mask/value pairs match the |
| * instruction being decoded, then 'simulation_handler' will be used |
| * for it. |
| * |
| * Both the SIMULATE and EMULATE macros have a second form which take an |
| * additional 'regs' argument. |
| * |
| * DECODE_SIMULATEX(mask, value, handler, regs) |
| * DECODE_EMULATEX (mask, value, handler, regs) |
| * |
| * These are used to specify what kind of CPU register is encoded in each of the |
| * least significant 5 nibbles of the instruction being decoded. The regs value |
| * is specified using the REGS macro, this takes any of the REG_TYPE_* values |
| * from enum decode_reg_type as arguments; only the '*' part of the name is |
| * given. E.g. |
| * |
| * REGS(0, ANY, NOPC, 0, ANY) |
| * |
| * This indicates an instruction is encoded like: |
| * |
| * bits 19..16 ignore |
| * bits 15..12 any register allowed here |
| * bits 11.. 8 any register except PC allowed here |
| * bits 7.. 4 ignore |
| * bits 3.. 0 any register allowed here |
| * |
| * This register specification is checked after a decode table entry is found to |
| * match an instruction (through the mask/value test). Any invalid register then |
| * found in the instruction will cause decoding to fail with INSN_REJECTED. In |
| * the above example this would happen if bits 11..8 of the instruction were |
| * 1111, indicating R15 or PC. |
| * |
| * As well as checking for legal combinations of registers, this data is also |
| * used to modify the registers encoded in the instructions so that an |
| * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.) |
| * |
| * Here is a real example which matches ARM instructions of the form |
| * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>" |
| * |
| * DECODE_EMULATEX (0x0e000090, 0x00000010, emulate_rd12rn16rm0rs8_rwflags, |
| * REGS(ANY, ANY, NOPC, 0, ANY)), |
| * ^ ^ ^ ^ |
| * Rn Rd Rs Rm |
| * |
| * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because |
| * Rs == R15 |
| * |
| * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the |
| * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into |
| * the kprobes instruction slot. This can then be called later by the handler |
| * function emulate_rd12rn16rm0rs8_rwflags in order to simulate the instruction. |
| */ |
| |
| enum decode_type { |
| DECODE_TYPE_END, |
| DECODE_TYPE_TABLE, |
| DECODE_TYPE_CUSTOM, |
| DECODE_TYPE_SIMULATE, |
| DECODE_TYPE_EMULATE, |
| DECODE_TYPE_OR, |
| DECODE_TYPE_REJECT, |
| NUM_DECODE_TYPES /* Must be last enum */ |
| }; |
| |
| #define DECODE_TYPE_BITS 4 |
| #define DECODE_TYPE_MASK ((1 << DECODE_TYPE_BITS) - 1) |
| |
| enum decode_reg_type { |
| REG_TYPE_NONE = 0, /* Not a register, ignore */ |
| REG_TYPE_ANY, /* Any register allowed */ |
| REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */ |
| REG_TYPE_SP, /* Register must be SP */ |
| REG_TYPE_PC, /* Register must be PC */ |
| REG_TYPE_NOSP, /* Register must not be SP */ |
| REG_TYPE_NOSPPC, /* Register must not be SP or PC */ |
| REG_TYPE_NOPC, /* Register must not be PC */ |
| REG_TYPE_NOPCWB, /* No PC if load/store write-back flag also set */ |
| |
| /* The following types are used when the encoding for PC indicates |
| * another instruction form. This distiction only matters for test |
| * case coverage checks. |
| */ |
| REG_TYPE_NOPCX, /* Register must not be PC */ |
| REG_TYPE_NOSPPCX, /* Register must not be SP or PC */ |
| |
| /* Alias to allow '0' arg to be used in REGS macro. */ |
| REG_TYPE_0 = REG_TYPE_NONE |
| }; |
| |
| #define REGS(r16, r12, r8, r4, r0) \ |
| ((REG_TYPE_##r16) << 16) + \ |
| ((REG_TYPE_##r12) << 12) + \ |
| ((REG_TYPE_##r8) << 8) + \ |
| ((REG_TYPE_##r4) << 4) + \ |
| (REG_TYPE_##r0) |
| |
| union decode_item { |
| u32 bits; |
| const union decode_item *table; |
| kprobe_insn_handler_t *handler; |
| kprobe_decode_insn_t *decoder; |
| }; |
| |
| |
| #define DECODE_END \ |
| {.bits = DECODE_TYPE_END} |
| |
| |
| struct decode_header { |
| union decode_item type_regs; |
| union decode_item mask; |
| union decode_item value; |
| }; |
| |
| #define DECODE_HEADER(_type, _mask, _value, _regs) \ |
| {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)}, \ |
| {.bits = (_mask)}, \ |
| {.bits = (_value)} |
| |
| |
| struct decode_table { |
| struct decode_header header; |
| union decode_item table; |
| }; |
| |
| #define DECODE_TABLE(_mask, _value, _table) \ |
| DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0), \ |
| {.table = (_table)} |
| |
| |
| struct decode_custom { |
| struct decode_header header; |
| union decode_item decoder; |
| }; |
| |
| #define DECODE_CUSTOM(_mask, _value, _decoder) \ |
| DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0), \ |
| {.decoder = (_decoder)} |
| |
| |
| struct decode_simulate { |
| struct decode_header header; |
| union decode_item handler; |
| }; |
| |
| #define DECODE_SIMULATEX(_mask, _value, _handler, _regs) \ |
| DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs), \ |
| {.handler = (_handler)} |
| |
| #define DECODE_SIMULATE(_mask, _value, _handler) \ |
| DECODE_SIMULATEX(_mask, _value, _handler, 0) |
| |
| |
| struct decode_emulate { |
| struct decode_header header; |
| union decode_item handler; |
| }; |
| |
| #define DECODE_EMULATEX(_mask, _value, _handler, _regs) \ |
| DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs), \ |
| {.handler = (_handler)} |
| |
| #define DECODE_EMULATE(_mask, _value, _handler) \ |
| DECODE_EMULATEX(_mask, _value, _handler, 0) |
| |
| |
| struct decode_or { |
| struct decode_header header; |
| }; |
| |
| #define DECODE_OR(_mask, _value) \ |
| DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0) |
| |
| |
| struct decode_reject { |
| struct decode_header header; |
| }; |
| |
| #define DECODE_REJECT(_mask, _value) \ |
| DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0) |
| |
| |
| #ifdef CONFIG_THUMB2_KERNEL |
| extern const union decode_item kprobe_decode_thumb16_table[]; |
| extern const union decode_item kprobe_decode_thumb32_table[]; |
| #else |
| extern const union decode_item kprobe_decode_arm_table[]; |
| #endif |
| |
| |
| int kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi, |
| const union decode_item *table, bool thumb16); |
| |
| |
| #endif /* _ARM_KERNEL_KPROBES_H */ |