| /* |
| * arch/arm/kernel/kprobes-common.c |
| * |
| * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>. |
| * |
| * Some contents moved here from arch/arm/include/asm/kprobes-arm.c which is |
| * Copyright (C) 2006, 2007 Motorola Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/kprobes.h> |
| #include <asm/system_info.h> |
| |
| #include "kprobes.h" |
| |
| |
| #ifndef find_str_pc_offset |
| |
| /* |
| * For STR and STM instructions, an ARM core may choose to use either |
| * a +8 or a +12 displacement from the current instruction's address. |
| * Whichever value is chosen for a given core, it must be the same for |
| * both instructions and may not change. This function measures it. |
| */ |
| |
| int str_pc_offset; |
| |
| void __init find_str_pc_offset(void) |
| { |
| int addr, scratch, ret; |
| |
| __asm__ ( |
| "sub %[ret], pc, #4 \n\t" |
| "str pc, %[addr] \n\t" |
| "ldr %[scr], %[addr] \n\t" |
| "sub %[ret], %[scr], %[ret] \n\t" |
| : [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr)); |
| |
| str_pc_offset = ret; |
| } |
| |
| #endif /* !find_str_pc_offset */ |
| |
| |
| #ifndef test_load_write_pc_interworking |
| |
| bool load_write_pc_interworks; |
| |
| void __init test_load_write_pc_interworking(void) |
| { |
| int arch = cpu_architecture(); |
| BUG_ON(arch == CPU_ARCH_UNKNOWN); |
| load_write_pc_interworks = arch >= CPU_ARCH_ARMv5T; |
| } |
| |
| #endif /* !test_load_write_pc_interworking */ |
| |
| |
| #ifndef test_alu_write_pc_interworking |
| |
| bool alu_write_pc_interworks; |
| |
| void __init test_alu_write_pc_interworking(void) |
| { |
| int arch = cpu_architecture(); |
| BUG_ON(arch == CPU_ARCH_UNKNOWN); |
| alu_write_pc_interworks = arch >= CPU_ARCH_ARMv7; |
| } |
| |
| #endif /* !test_alu_write_pc_interworking */ |
| |
| |
| void __init arm_kprobe_decode_init(void) |
| { |
| find_str_pc_offset(); |
| test_load_write_pc_interworking(); |
| test_alu_write_pc_interworking(); |
| } |
| |
| |
| static unsigned long __kprobes __check_eq(unsigned long cpsr) |
| { |
| return cpsr & PSR_Z_BIT; |
| } |
| |
| static unsigned long __kprobes __check_ne(unsigned long cpsr) |
| { |
| return (~cpsr) & PSR_Z_BIT; |
| } |
| |
| static unsigned long __kprobes __check_cs(unsigned long cpsr) |
| { |
| return cpsr & PSR_C_BIT; |
| } |
| |
| static unsigned long __kprobes __check_cc(unsigned long cpsr) |
| { |
| return (~cpsr) & PSR_C_BIT; |
| } |
| |
| static unsigned long __kprobes __check_mi(unsigned long cpsr) |
| { |
| return cpsr & PSR_N_BIT; |
| } |
| |
| static unsigned long __kprobes __check_pl(unsigned long cpsr) |
| { |
| return (~cpsr) & PSR_N_BIT; |
| } |
| |
| static unsigned long __kprobes __check_vs(unsigned long cpsr) |
| { |
| return cpsr & PSR_V_BIT; |
| } |
| |
| static unsigned long __kprobes __check_vc(unsigned long cpsr) |
| { |
| return (~cpsr) & PSR_V_BIT; |
| } |
| |
| static unsigned long __kprobes __check_hi(unsigned long cpsr) |
| { |
| cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ |
| return cpsr & PSR_C_BIT; |
| } |
| |
| static unsigned long __kprobes __check_ls(unsigned long cpsr) |
| { |
| cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ |
| return (~cpsr) & PSR_C_BIT; |
| } |
| |
| static unsigned long __kprobes __check_ge(unsigned long cpsr) |
| { |
| cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ |
| return (~cpsr) & PSR_N_BIT; |
| } |
| |
| static unsigned long __kprobes __check_lt(unsigned long cpsr) |
| { |
| cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ |
| return cpsr & PSR_N_BIT; |
| } |
| |
| static unsigned long __kprobes __check_gt(unsigned long cpsr) |
| { |
| unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ |
| temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */ |
| return (~temp) & PSR_N_BIT; |
| } |
| |
| static unsigned long __kprobes __check_le(unsigned long cpsr) |
| { |
| unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ |
| temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */ |
| return temp & PSR_N_BIT; |
| } |
| |
| static unsigned long __kprobes __check_al(unsigned long cpsr) |
| { |
| return true; |
| } |
| |
| kprobe_check_cc * const kprobe_condition_checks[16] = { |
| &__check_eq, &__check_ne, &__check_cs, &__check_cc, |
| &__check_mi, &__check_pl, &__check_vs, &__check_vc, |
| &__check_hi, &__check_ls, &__check_ge, &__check_lt, |
| &__check_gt, &__check_le, &__check_al, &__check_al |
| }; |
| |
| |
| void __kprobes kprobe_simulate_nop(struct kprobe *p, struct pt_regs *regs) |
| { |
| } |
| |
| void __kprobes kprobe_emulate_none(struct kprobe *p, struct pt_regs *regs) |
| { |
| p->ainsn.insn_fn(); |
| } |
| |
| static void __kprobes simulate_ldm1stm1(struct kprobe *p, struct pt_regs *regs) |
| { |
| kprobe_opcode_t insn = p->opcode; |
| int rn = (insn >> 16) & 0xf; |
| int lbit = insn & (1 << 20); |
| int wbit = insn & (1 << 21); |
| int ubit = insn & (1 << 23); |
| int pbit = insn & (1 << 24); |
| long *addr = (long *)regs->uregs[rn]; |
| int reg_bit_vector; |
| int reg_count; |
| |
| reg_count = 0; |
| reg_bit_vector = insn & 0xffff; |
| while (reg_bit_vector) { |
| reg_bit_vector &= (reg_bit_vector - 1); |
| ++reg_count; |
| } |
| |
| if (!ubit) |
| addr -= reg_count; |
| addr += (!pbit == !ubit); |
| |
| reg_bit_vector = insn & 0xffff; |
| while (reg_bit_vector) { |
| int reg = __ffs(reg_bit_vector); |
| reg_bit_vector &= (reg_bit_vector - 1); |
| if (lbit) |
| regs->uregs[reg] = *addr++; |
| else |
| *addr++ = regs->uregs[reg]; |
| } |
| |
| if (wbit) { |
| if (!ubit) |
| addr -= reg_count; |
| addr -= (!pbit == !ubit); |
| regs->uregs[rn] = (long)addr; |
| } |
| } |
| |
| static void __kprobes simulate_stm1_pc(struct kprobe *p, struct pt_regs *regs) |
| { |
| regs->ARM_pc = (long)p->addr + str_pc_offset; |
| simulate_ldm1stm1(p, regs); |
| regs->ARM_pc = (long)p->addr + 4; |
| } |
| |
| static void __kprobes simulate_ldm1_pc(struct kprobe *p, struct pt_regs *regs) |
| { |
| simulate_ldm1stm1(p, regs); |
| load_write_pc(regs->ARM_pc, regs); |
| } |
| |
| static void __kprobes |
| emulate_generic_r0_12_noflags(struct kprobe *p, struct pt_regs *regs) |
| { |
| register void *rregs asm("r1") = regs; |
| register void *rfn asm("lr") = p->ainsn.insn_fn; |
| |
| __asm__ __volatile__ ( |
| "stmdb sp!, {%[regs], r11} \n\t" |
| "ldmia %[regs], {r0-r12} \n\t" |
| #if __LINUX_ARM_ARCH__ >= 6 |
| "blx %[fn] \n\t" |
| #else |
| "str %[fn], [sp, #-4]! \n\t" |
| "adr lr, 1f \n\t" |
| "ldr pc, [sp], #4 \n\t" |
| "1: \n\t" |
| #endif |
| "ldr lr, [sp], #4 \n\t" /* lr = regs */ |
| "stmia lr, {r0-r12} \n\t" |
| "ldr r11, [sp], #4 \n\t" |
| : [regs] "=r" (rregs), [fn] "=r" (rfn) |
| : "0" (rregs), "1" (rfn) |
| : "r0", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r12", "memory", "cc" |
| ); |
| } |
| |
| static void __kprobes |
| emulate_generic_r2_14_noflags(struct kprobe *p, struct pt_regs *regs) |
| { |
| emulate_generic_r0_12_noflags(p, (struct pt_regs *)(regs->uregs+2)); |
| } |
| |
| static void __kprobes |
| emulate_ldm_r3_15(struct kprobe *p, struct pt_regs *regs) |
| { |
| emulate_generic_r0_12_noflags(p, (struct pt_regs *)(regs->uregs+3)); |
| load_write_pc(regs->ARM_pc, regs); |
| } |
| |
| enum kprobe_insn __kprobes |
| kprobe_decode_ldmstm(kprobe_opcode_t insn, struct arch_specific_insn *asi) |
| { |
| kprobe_insn_handler_t *handler = 0; |
| unsigned reglist = insn & 0xffff; |
| int is_ldm = insn & 0x100000; |
| int rn = (insn >> 16) & 0xf; |
| |
| if (rn <= 12 && (reglist & 0xe000) == 0) { |
| /* Instruction only uses registers in the range R0..R12 */ |
| handler = emulate_generic_r0_12_noflags; |
| |
| } else if (rn >= 2 && (reglist & 0x8003) == 0) { |
| /* Instruction only uses registers in the range R2..R14 */ |
| rn -= 2; |
| reglist >>= 2; |
| handler = emulate_generic_r2_14_noflags; |
| |
| } else if (rn >= 3 && (reglist & 0x0007) == 0) { |
| /* Instruction only uses registers in the range R3..R15 */ |
| if (is_ldm && (reglist & 0x8000)) { |
| rn -= 3; |
| reglist >>= 3; |
| handler = emulate_ldm_r3_15; |
| } |
| } |
| |
| if (handler) { |
| /* We can emulate the instruction in (possibly) modified form */ |
| asi->insn[0] = (insn & 0xfff00000) | (rn << 16) | reglist; |
| asi->insn_handler = handler; |
| return INSN_GOOD; |
| } |
| |
| /* Fallback to slower simulation... */ |
| if (reglist & 0x8000) |
| handler = is_ldm ? simulate_ldm1_pc : simulate_stm1_pc; |
| else |
| handler = simulate_ldm1stm1; |
| asi->insn_handler = handler; |
| return INSN_GOOD_NO_SLOT; |
| } |
| |
| |
| /* |
| * Prepare an instruction slot to receive an instruction for emulating. |
| * This is done by placing a subroutine return after the location where the |
| * instruction will be placed. We also modify ARM instructions to be |
| * unconditional as the condition code will already be checked before any |
| * emulation handler is called. |
| */ |
| static kprobe_opcode_t __kprobes |
| prepare_emulated_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi, |
| bool thumb) |
| { |
| #ifdef CONFIG_THUMB2_KERNEL |
| if (thumb) { |
| u16 *thumb_insn = (u16 *)asi->insn; |
| thumb_insn[1] = 0x4770; /* Thumb bx lr */ |
| thumb_insn[2] = 0x4770; /* Thumb bx lr */ |
| return insn; |
| } |
| asi->insn[1] = 0xe12fff1e; /* ARM bx lr */ |
| #else |
| asi->insn[1] = 0xe1a0f00e; /* mov pc, lr */ |
| #endif |
| /* Make an ARM instruction unconditional */ |
| if (insn < 0xe0000000) |
| insn = (insn | 0xe0000000) & ~0x10000000; |
| return insn; |
| } |
| |
| /* |
| * Write a (probably modified) instruction into the slot previously prepared by |
| * prepare_emulated_insn |
| */ |
| static void __kprobes |
| set_emulated_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi, |
| bool thumb) |
| { |
| #ifdef CONFIG_THUMB2_KERNEL |
| if (thumb) { |
| u16 *ip = (u16 *)asi->insn; |
| if (is_wide_instruction(insn)) |
| *ip++ = insn >> 16; |
| *ip++ = insn; |
| return; |
| } |
| #endif |
| asi->insn[0] = insn; |
| } |
| |
| /* |
| * When we modify the register numbers encoded in an instruction to be emulated, |
| * the new values come from this define. For ARM and 32-bit Thumb instructions |
| * this gives... |
| * |
| * bit position 16 12 8 4 0 |
| * ---------------+---+---+---+---+---+ |
| * register r2 r0 r1 -- r3 |
| */ |
| #define INSN_NEW_BITS 0x00020103 |
| |
| /* Each nibble has same value as that at INSN_NEW_BITS bit 16 */ |
| #define INSN_SAMEAS16_BITS 0x22222222 |
| |
| /* |
| * Validate and modify each of the registers encoded in an instruction. |
| * |
| * Each nibble in regs contains a value from enum decode_reg_type. For each |
| * non-zero value, the corresponding nibble in pinsn is validated and modified |
| * according to the type. |
| */ |
| static bool __kprobes decode_regs(kprobe_opcode_t* pinsn, u32 regs) |
| { |
| kprobe_opcode_t insn = *pinsn; |
| kprobe_opcode_t mask = 0xf; /* Start at least significant nibble */ |
| |
| for (; regs != 0; regs >>= 4, mask <<= 4) { |
| |
| kprobe_opcode_t new_bits = INSN_NEW_BITS; |
| |
| switch (regs & 0xf) { |
| |
| case REG_TYPE_NONE: |
| /* Nibble not a register, skip to next */ |
| continue; |
| |
| case REG_TYPE_ANY: |
| /* Any register is allowed */ |
| break; |
| |
| case REG_TYPE_SAMEAS16: |
| /* Replace register with same as at bit position 16 */ |
| new_bits = INSN_SAMEAS16_BITS; |
| break; |
| |
| case REG_TYPE_SP: |
| /* Only allow SP (R13) */ |
| if ((insn ^ 0xdddddddd) & mask) |
| goto reject; |
| break; |
| |
| case REG_TYPE_PC: |
| /* Only allow PC (R15) */ |
| if ((insn ^ 0xffffffff) & mask) |
| goto reject; |
| break; |
| |
| case REG_TYPE_NOSP: |
| /* Reject SP (R13) */ |
| if (((insn ^ 0xdddddddd) & mask) == 0) |
| goto reject; |
| break; |
| |
| case REG_TYPE_NOSPPC: |
| case REG_TYPE_NOSPPCX: |
| /* Reject SP and PC (R13 and R15) */ |
| if (((insn ^ 0xdddddddd) & 0xdddddddd & mask) == 0) |
| goto reject; |
| break; |
| |
| case REG_TYPE_NOPCWB: |
| if (!is_writeback(insn)) |
| break; /* No writeback, so any register is OK */ |
| /* fall through... */ |
| case REG_TYPE_NOPC: |
| case REG_TYPE_NOPCX: |
| /* Reject PC (R15) */ |
| if (((insn ^ 0xffffffff) & mask) == 0) |
| goto reject; |
| break; |
| } |
| |
| /* Replace value of nibble with new register number... */ |
| insn &= ~mask; |
| insn |= new_bits & mask; |
| } |
| |
| *pinsn = insn; |
| return true; |
| |
| reject: |
| return false; |
| } |
| |
| static const int decode_struct_sizes[NUM_DECODE_TYPES] = { |
| [DECODE_TYPE_TABLE] = sizeof(struct decode_table), |
| [DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom), |
| [DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate), |
| [DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate), |
| [DECODE_TYPE_OR] = sizeof(struct decode_or), |
| [DECODE_TYPE_REJECT] = sizeof(struct decode_reject) |
| }; |
| |
| /* |
| * kprobe_decode_insn operates on data tables in order to decode an ARM |
| * architecture instruction onto which a kprobe has been placed. |
| * |
| * These instruction decoding tables are a concatenation of entries each |
| * of which consist of one of the following structs: |
| * |
| * decode_table |
| * decode_custom |
| * decode_simulate |
| * decode_emulate |
| * decode_or |
| * decode_reject |
| * |
| * Each of these starts with a struct decode_header which has the following |
| * fields: |
| * |
| * type_regs |
| * mask |
| * value |
| * |
| * The least significant DECODE_TYPE_BITS of type_regs contains a value |
| * from enum decode_type, this indicates which of the decode_* structs |
| * the entry contains. The value DECODE_TYPE_END indicates the end of the |
| * table. |
| * |
| * When the table is parsed, each entry is checked in turn to see if it |
| * matches the instruction to be decoded using the test: |
| * |
| * (insn & mask) == value |
| * |
| * If no match is found before the end of the table is reached then decoding |
| * fails with INSN_REJECTED. |
| * |
| * When a match is found, decode_regs() is called to validate and modify each |
| * of the registers encoded in the instruction; the data it uses to do this |
| * is (type_regs >> DECODE_TYPE_BITS). A validation failure will cause decoding |
| * to fail with INSN_REJECTED. |
| * |
| * Once the instruction has passed the above tests, further processing |
| * depends on the type of the table entry's decode struct. |
| * |
| */ |
| int __kprobes |
| kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi, |
| const union decode_item *table, bool thumb) |
| { |
| const struct decode_header *h = (struct decode_header *)table; |
| const struct decode_header *next; |
| bool matched = false; |
| |
| insn = prepare_emulated_insn(insn, asi, thumb); |
| |
| for (;; h = next) { |
| enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK; |
| u32 regs = h->type_regs.bits >> DECODE_TYPE_BITS; |
| |
| if (type == DECODE_TYPE_END) |
| return INSN_REJECTED; |
| |
| next = (struct decode_header *) |
| ((uintptr_t)h + decode_struct_sizes[type]); |
| |
| if (!matched && (insn & h->mask.bits) != h->value.bits) |
| continue; |
| |
| if (!decode_regs(&insn, regs)) |
| return INSN_REJECTED; |
| |
| switch (type) { |
| |
| case DECODE_TYPE_TABLE: { |
| struct decode_table *d = (struct decode_table *)h; |
| next = (struct decode_header *)d->table.table; |
| break; |
| } |
| |
| case DECODE_TYPE_CUSTOM: { |
| struct decode_custom *d = (struct decode_custom *)h; |
| return (*d->decoder.decoder)(insn, asi); |
| } |
| |
| case DECODE_TYPE_SIMULATE: { |
| struct decode_simulate *d = (struct decode_simulate *)h; |
| asi->insn_handler = d->handler.handler; |
| return INSN_GOOD_NO_SLOT; |
| } |
| |
| case DECODE_TYPE_EMULATE: { |
| struct decode_emulate *d = (struct decode_emulate *)h; |
| asi->insn_handler = d->handler.handler; |
| set_emulated_insn(insn, asi, thumb); |
| return INSN_GOOD; |
| } |
| |
| case DECODE_TYPE_OR: |
| matched = true; |
| break; |
| |
| case DECODE_TYPE_REJECT: |
| default: |
| return INSN_REJECTED; |
| } |
| } |
| } |