| /* |
| * linux/drivers/char/vt_ioctl.c |
| * |
| * Copyright (C) 1992 obz under the linux copyright |
| * |
| * Dynamic diacritical handling - aeb@cwi.nl - Dec 1993 |
| * Dynamic keymap and string allocation - aeb@cwi.nl - May 1994 |
| * Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995 |
| * Some code moved for less code duplication - Andi Kleen - Mar 1997 |
| * Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001 |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/tty.h> |
| #include <linux/timer.h> |
| #include <linux/kernel.h> |
| #include <linux/kd.h> |
| #include <linux/vt.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/major.h> |
| #include <linux/fs.h> |
| #include <linux/console.h> |
| #include <linux/signal.h> |
| #include <linux/timex.h> |
| |
| #include <asm/io.h> |
| #include <asm/uaccess.h> |
| |
| #include <linux/kbd_kern.h> |
| #include <linux/vt_kern.h> |
| #include <linux/kbd_diacr.h> |
| #include <linux/selection.h> |
| |
| char vt_dont_switch; |
| extern struct tty_driver *console_driver; |
| |
| #define VT_IS_IN_USE(i) (console_driver->ttys[i] && console_driver->ttys[i]->count) |
| #define VT_BUSY(i) (VT_IS_IN_USE(i) || i == fg_console || vc_cons[i].d == sel_cons) |
| |
| /* |
| * Console (vt and kd) routines, as defined by USL SVR4 manual, and by |
| * experimentation and study of X386 SYSV handling. |
| * |
| * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and |
| * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console, |
| * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will |
| * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to |
| * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using |
| * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing |
| * to the current console is done by the main ioctl code. |
| */ |
| |
| #ifdef CONFIG_X86 |
| #include <linux/syscalls.h> |
| #endif |
| |
| static void complete_change_console(struct vc_data *vc); |
| |
| /* |
| * these are the valid i/o ports we're allowed to change. they map all the |
| * video ports |
| */ |
| #define GPFIRST 0x3b4 |
| #define GPLAST 0x3df |
| #define GPNUM (GPLAST - GPFIRST + 1) |
| |
| #define i (tmp.kb_index) |
| #define s (tmp.kb_table) |
| #define v (tmp.kb_value) |
| static inline int |
| do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, struct kbd_struct *kbd) |
| { |
| struct kbentry tmp; |
| ushort *key_map, val, ov; |
| |
| if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry))) |
| return -EFAULT; |
| |
| if (!capable(CAP_SYS_TTY_CONFIG)) |
| perm = 0; |
| |
| switch (cmd) { |
| case KDGKBENT: |
| key_map = key_maps[s]; |
| if (key_map) { |
| val = U(key_map[i]); |
| if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) |
| val = K_HOLE; |
| } else |
| val = (i ? K_HOLE : K_NOSUCHMAP); |
| return put_user(val, &user_kbe->kb_value); |
| case KDSKBENT: |
| if (!perm) |
| return -EPERM; |
| if (!i && v == K_NOSUCHMAP) { |
| /* deallocate map */ |
| key_map = key_maps[s]; |
| if (s && key_map) { |
| key_maps[s] = NULL; |
| if (key_map[0] == U(K_ALLOCATED)) { |
| kfree(key_map); |
| keymap_count--; |
| } |
| } |
| break; |
| } |
| |
| if (KTYP(v) < NR_TYPES) { |
| if (KVAL(v) > max_vals[KTYP(v)]) |
| return -EINVAL; |
| } else |
| if (kbd->kbdmode != VC_UNICODE) |
| return -EINVAL; |
| |
| /* ++Geert: non-PC keyboards may generate keycode zero */ |
| #if !defined(__mc68000__) && !defined(__powerpc__) |
| /* assignment to entry 0 only tests validity of args */ |
| if (!i) |
| break; |
| #endif |
| |
| if (!(key_map = key_maps[s])) { |
| int j; |
| |
| if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && |
| !capable(CAP_SYS_RESOURCE)) |
| return -EPERM; |
| |
| key_map = kmalloc(sizeof(plain_map), |
| GFP_KERNEL); |
| if (!key_map) |
| return -ENOMEM; |
| key_maps[s] = key_map; |
| key_map[0] = U(K_ALLOCATED); |
| for (j = 1; j < NR_KEYS; j++) |
| key_map[j] = U(K_HOLE); |
| keymap_count++; |
| } |
| ov = U(key_map[i]); |
| if (v == ov) |
| break; /* nothing to do */ |
| /* |
| * Attention Key. |
| */ |
| if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| key_map[i] = U(v); |
| if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) |
| compute_shiftstate(); |
| break; |
| } |
| return 0; |
| } |
| #undef i |
| #undef s |
| #undef v |
| |
| static inline int |
| do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, int perm) |
| { |
| struct kbkeycode tmp; |
| int kc = 0; |
| |
| if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) |
| return -EFAULT; |
| switch (cmd) { |
| case KDGETKEYCODE: |
| kc = getkeycode(tmp.scancode); |
| if (kc >= 0) |
| kc = put_user(kc, &user_kbkc->keycode); |
| break; |
| case KDSETKEYCODE: |
| if (!perm) |
| return -EPERM; |
| kc = setkeycode(tmp.scancode, tmp.keycode); |
| break; |
| } |
| return kc; |
| } |
| |
| static inline int |
| do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm) |
| { |
| struct kbsentry *kbs; |
| char *p; |
| u_char *q; |
| u_char __user *up; |
| int sz; |
| int delta; |
| char *first_free, *fj, *fnw; |
| int i, j, k; |
| int ret; |
| |
| if (!capable(CAP_SYS_TTY_CONFIG)) |
| perm = 0; |
| |
| kbs = kmalloc(sizeof(*kbs), GFP_KERNEL); |
| if (!kbs) { |
| ret = -ENOMEM; |
| goto reterr; |
| } |
| |
| /* we mostly copy too much here (512bytes), but who cares ;) */ |
| if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) { |
| ret = -EFAULT; |
| goto reterr; |
| } |
| kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0'; |
| i = kbs->kb_func; |
| |
| switch (cmd) { |
| case KDGKBSENT: |
| sz = sizeof(kbs->kb_string) - 1; /* sz should have been |
| a struct member */ |
| up = user_kdgkb->kb_string; |
| p = func_table[i]; |
| if(p) |
| for ( ; *p && sz; p++, sz--) |
| if (put_user(*p, up++)) { |
| ret = -EFAULT; |
| goto reterr; |
| } |
| if (put_user('\0', up)) { |
| ret = -EFAULT; |
| goto reterr; |
| } |
| kfree(kbs); |
| return ((p && *p) ? -EOVERFLOW : 0); |
| case KDSKBSENT: |
| if (!perm) { |
| ret = -EPERM; |
| goto reterr; |
| } |
| |
| q = func_table[i]; |
| first_free = funcbufptr + (funcbufsize - funcbufleft); |
| for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) |
| ; |
| if (j < MAX_NR_FUNC) |
| fj = func_table[j]; |
| else |
| fj = first_free; |
| |
| delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string); |
| if (delta <= funcbufleft) { /* it fits in current buf */ |
| if (j < MAX_NR_FUNC) { |
| memmove(fj + delta, fj, first_free - fj); |
| for (k = j; k < MAX_NR_FUNC; k++) |
| if (func_table[k]) |
| func_table[k] += delta; |
| } |
| if (!q) |
| func_table[i] = fj; |
| funcbufleft -= delta; |
| } else { /* allocate a larger buffer */ |
| sz = 256; |
| while (sz < funcbufsize - funcbufleft + delta) |
| sz <<= 1; |
| fnw = kmalloc(sz, GFP_KERNEL); |
| if(!fnw) { |
| ret = -ENOMEM; |
| goto reterr; |
| } |
| |
| if (!q) |
| func_table[i] = fj; |
| if (fj > funcbufptr) |
| memmove(fnw, funcbufptr, fj - funcbufptr); |
| for (k = 0; k < j; k++) |
| if (func_table[k]) |
| func_table[k] = fnw + (func_table[k] - funcbufptr); |
| |
| if (first_free > fj) { |
| memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); |
| for (k = j; k < MAX_NR_FUNC; k++) |
| if (func_table[k]) |
| func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; |
| } |
| if (funcbufptr != func_buf) |
| kfree(funcbufptr); |
| funcbufptr = fnw; |
| funcbufleft = funcbufleft - delta + sz - funcbufsize; |
| funcbufsize = sz; |
| } |
| strcpy(func_table[i], kbs->kb_string); |
| break; |
| } |
| ret = 0; |
| reterr: |
| kfree(kbs); |
| return ret; |
| } |
| |
| static inline int |
| do_fontx_ioctl(int cmd, struct consolefontdesc __user *user_cfd, int perm, struct console_font_op *op) |
| { |
| struct consolefontdesc cfdarg; |
| int i; |
| |
| if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc))) |
| return -EFAULT; |
| |
| switch (cmd) { |
| case PIO_FONTX: |
| if (!perm) |
| return -EPERM; |
| op->op = KD_FONT_OP_SET; |
| op->flags = KD_FONT_FLAG_OLD; |
| op->width = 8; |
| op->height = cfdarg.charheight; |
| op->charcount = cfdarg.charcount; |
| op->data = cfdarg.chardata; |
| return con_font_op(vc_cons[fg_console].d, op); |
| case GIO_FONTX: { |
| op->op = KD_FONT_OP_GET; |
| op->flags = KD_FONT_FLAG_OLD; |
| op->width = 8; |
| op->height = cfdarg.charheight; |
| op->charcount = cfdarg.charcount; |
| op->data = cfdarg.chardata; |
| i = con_font_op(vc_cons[fg_console].d, op); |
| if (i) |
| return i; |
| cfdarg.charheight = op->height; |
| cfdarg.charcount = op->charcount; |
| if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc))) |
| return -EFAULT; |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static inline int |
| do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, int perm, struct vc_data *vc) |
| { |
| struct unimapdesc tmp; |
| |
| if (copy_from_user(&tmp, user_ud, sizeof tmp)) |
| return -EFAULT; |
| if (tmp.entries) |
| if (!access_ok(VERIFY_WRITE, tmp.entries, |
| tmp.entry_ct*sizeof(struct unipair))) |
| return -EFAULT; |
| switch (cmd) { |
| case PIO_UNIMAP: |
| if (!perm) |
| return -EPERM; |
| return con_set_unimap(vc, tmp.entry_ct, tmp.entries); |
| case GIO_UNIMAP: |
| if (!perm && fg_console != vc->vc_num) |
| return -EPERM; |
| return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries); |
| } |
| return 0; |
| } |
| |
| /* |
| * We handle the console-specific ioctl's here. We allow the |
| * capability to modify any console, not just the fg_console. |
| */ |
| int vt_ioctl(struct tty_struct *tty, struct file * file, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct vc_data *vc = (struct vc_data *)tty->driver_data; |
| struct console_font_op op; /* used in multiple places here */ |
| struct kbd_struct * kbd; |
| unsigned int console; |
| unsigned char ucval; |
| void __user *up = (void __user *)arg; |
| int i, perm; |
| |
| console = vc->vc_num; |
| |
| if (!vc_cons_allocated(console)) /* impossible? */ |
| return -ENOIOCTLCMD; |
| |
| /* |
| * To have permissions to do most of the vt ioctls, we either have |
| * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG. |
| */ |
| perm = 0; |
| if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG)) |
| perm = 1; |
| |
| kbd = kbd_table + console; |
| switch (cmd) { |
| case KIOCSOUND: |
| if (!perm) |
| return -EPERM; |
| if (arg) |
| arg = CLOCK_TICK_RATE / arg; |
| kd_mksound(arg, 0); |
| return 0; |
| |
| case KDMKTONE: |
| if (!perm) |
| return -EPERM; |
| { |
| unsigned int ticks, count; |
| |
| /* |
| * Generate the tone for the appropriate number of ticks. |
| * If the time is zero, turn off sound ourselves. |
| */ |
| ticks = HZ * ((arg >> 16) & 0xffff) / 1000; |
| count = ticks ? (arg & 0xffff) : 0; |
| if (count) |
| count = CLOCK_TICK_RATE / count; |
| kd_mksound(count, ticks); |
| return 0; |
| } |
| |
| case KDGKBTYPE: |
| /* |
| * this is naive. |
| */ |
| ucval = KB_101; |
| goto setchar; |
| |
| /* |
| * These cannot be implemented on any machine that implements |
| * ioperm() in user level (such as Alpha PCs) or not at all. |
| * |
| * XXX: you should never use these, just call ioperm directly.. |
| */ |
| #ifdef CONFIG_X86 |
| case KDADDIO: |
| case KDDELIO: |
| /* |
| * KDADDIO and KDDELIO may be able to add ports beyond what |
| * we reject here, but to be safe... |
| */ |
| if (arg < GPFIRST || arg > GPLAST) |
| return -EINVAL; |
| return sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0; |
| |
| case KDENABIO: |
| case KDDISABIO: |
| return sys_ioperm(GPFIRST, GPNUM, |
| (cmd == KDENABIO)) ? -ENXIO : 0; |
| #endif |
| |
| /* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */ |
| |
| case KDKBDREP: |
| { |
| struct kbd_repeat kbrep; |
| int err; |
| |
| if (!capable(CAP_SYS_TTY_CONFIG)) |
| return -EPERM; |
| |
| if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat))) |
| return -EFAULT; |
| err = kbd_rate(&kbrep); |
| if (err) |
| return err; |
| if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| case KDSETMODE: |
| /* |
| * currently, setting the mode from KD_TEXT to KD_GRAPHICS |
| * doesn't do a whole lot. i'm not sure if it should do any |
| * restoration of modes or what... |
| * |
| * XXX It should at least call into the driver, fbdev's definitely |
| * need to restore their engine state. --BenH |
| */ |
| if (!perm) |
| return -EPERM; |
| switch (arg) { |
| case KD_GRAPHICS: |
| break; |
| case KD_TEXT0: |
| case KD_TEXT1: |
| arg = KD_TEXT; |
| case KD_TEXT: |
| break; |
| default: |
| return -EINVAL; |
| } |
| if (vc->vc_mode == (unsigned char) arg) |
| return 0; |
| vc->vc_mode = (unsigned char) arg; |
| if (console != fg_console) |
| return 0; |
| /* |
| * explicitly blank/unblank the screen if switching modes |
| */ |
| acquire_console_sem(); |
| if (arg == KD_TEXT) |
| do_unblank_screen(1); |
| else |
| do_blank_screen(1); |
| release_console_sem(); |
| return 0; |
| |
| case KDGETMODE: |
| ucval = vc->vc_mode; |
| goto setint; |
| |
| case KDMAPDISP: |
| case KDUNMAPDISP: |
| /* |
| * these work like a combination of mmap and KDENABIO. |
| * this could be easily finished. |
| */ |
| return -EINVAL; |
| |
| case KDSKBMODE: |
| if (!perm) |
| return -EPERM; |
| switch(arg) { |
| case K_RAW: |
| kbd->kbdmode = VC_RAW; |
| break; |
| case K_MEDIUMRAW: |
| kbd->kbdmode = VC_MEDIUMRAW; |
| break; |
| case K_XLATE: |
| kbd->kbdmode = VC_XLATE; |
| compute_shiftstate(); |
| break; |
| case K_UNICODE: |
| kbd->kbdmode = VC_UNICODE; |
| compute_shiftstate(); |
| break; |
| default: |
| return -EINVAL; |
| } |
| tty_ldisc_flush(tty); |
| return 0; |
| |
| case KDGKBMODE: |
| ucval = ((kbd->kbdmode == VC_RAW) ? K_RAW : |
| (kbd->kbdmode == VC_MEDIUMRAW) ? K_MEDIUMRAW : |
| (kbd->kbdmode == VC_UNICODE) ? K_UNICODE : |
| K_XLATE); |
| goto setint; |
| |
| /* this could be folded into KDSKBMODE, but for compatibility |
| reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */ |
| case KDSKBMETA: |
| switch(arg) { |
| case K_METABIT: |
| clr_vc_kbd_mode(kbd, VC_META); |
| break; |
| case K_ESCPREFIX: |
| set_vc_kbd_mode(kbd, VC_META); |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| |
| case KDGKBMETA: |
| ucval = (vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT); |
| setint: |
| return put_user(ucval, (int __user *)arg); |
| |
| case KDGETKEYCODE: |
| case KDSETKEYCODE: |
| if(!capable(CAP_SYS_TTY_CONFIG)) |
| perm=0; |
| return do_kbkeycode_ioctl(cmd, up, perm); |
| |
| case KDGKBENT: |
| case KDSKBENT: |
| return do_kdsk_ioctl(cmd, up, perm, kbd); |
| |
| case KDGKBSENT: |
| case KDSKBSENT: |
| return do_kdgkb_ioctl(cmd, up, perm); |
| |
| case KDGKBDIACR: |
| { |
| struct kbdiacrs __user *a = up; |
| |
| if (put_user(accent_table_size, &a->kb_cnt)) |
| return -EFAULT; |
| if (copy_to_user(a->kbdiacr, accent_table, accent_table_size*sizeof(struct kbdiacr))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| case KDSKBDIACR: |
| { |
| struct kbdiacrs __user *a = up; |
| unsigned int ct; |
| |
| if (!perm) |
| return -EPERM; |
| if (get_user(ct,&a->kb_cnt)) |
| return -EFAULT; |
| if (ct >= MAX_DIACR) |
| return -EINVAL; |
| accent_table_size = ct; |
| if (copy_from_user(accent_table, a->kbdiacr, ct*sizeof(struct kbdiacr))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /* the ioctls below read/set the flags usually shown in the leds */ |
| /* don't use them - they will go away without warning */ |
| case KDGKBLED: |
| ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4); |
| goto setchar; |
| |
| case KDSKBLED: |
| if (!perm) |
| return -EPERM; |
| if (arg & ~0x77) |
| return -EINVAL; |
| kbd->ledflagstate = (arg & 7); |
| kbd->default_ledflagstate = ((arg >> 4) & 7); |
| set_leds(); |
| return 0; |
| |
| /* the ioctls below only set the lights, not the functions */ |
| /* for those, see KDGKBLED and KDSKBLED above */ |
| case KDGETLED: |
| ucval = getledstate(); |
| setchar: |
| return put_user(ucval, (char __user *)arg); |
| |
| case KDSETLED: |
| if (!perm) |
| return -EPERM; |
| setledstate(kbd, arg); |
| return 0; |
| |
| /* |
| * A process can indicate its willingness to accept signals |
| * generated by pressing an appropriate key combination. |
| * Thus, one can have a daemon that e.g. spawns a new console |
| * upon a keypress and then changes to it. |
| * See also the kbrequest field of inittab(5). |
| */ |
| case KDSIGACCEPT: |
| { |
| if (!perm || !capable(CAP_KILL)) |
| return -EPERM; |
| if (!valid_signal(arg) || arg < 1 || arg == SIGKILL) |
| return -EINVAL; |
| |
| spin_lock_irq(&vt_spawn_con.lock); |
| put_pid(vt_spawn_con.pid); |
| vt_spawn_con.pid = get_pid(task_pid(current)); |
| vt_spawn_con.sig = arg; |
| spin_unlock_irq(&vt_spawn_con.lock); |
| return 0; |
| } |
| |
| case VT_SETMODE: |
| { |
| struct vt_mode tmp; |
| |
| if (!perm) |
| return -EPERM; |
| if (copy_from_user(&tmp, up, sizeof(struct vt_mode))) |
| return -EFAULT; |
| if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS) |
| return -EINVAL; |
| acquire_console_sem(); |
| vc->vt_mode = tmp; |
| /* the frsig is ignored, so we set it to 0 */ |
| vc->vt_mode.frsig = 0; |
| put_pid(vc->vt_pid); |
| vc->vt_pid = get_pid(task_pid(current)); |
| /* no switch is required -- saw@shade.msu.ru */ |
| vc->vt_newvt = -1; |
| release_console_sem(); |
| return 0; |
| } |
| |
| case VT_GETMODE: |
| { |
| struct vt_mode tmp; |
| int rc; |
| |
| acquire_console_sem(); |
| memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode)); |
| release_console_sem(); |
| |
| rc = copy_to_user(up, &tmp, sizeof(struct vt_mode)); |
| return rc ? -EFAULT : 0; |
| } |
| |
| /* |
| * Returns global vt state. Note that VT 0 is always open, since |
| * it's an alias for the current VT, and people can't use it here. |
| * We cannot return state for more than 16 VTs, since v_state is short. |
| */ |
| case VT_GETSTATE: |
| { |
| struct vt_stat __user *vtstat = up; |
| unsigned short state, mask; |
| |
| if (put_user(fg_console + 1, &vtstat->v_active)) |
| return -EFAULT; |
| state = 1; /* /dev/tty0 is always open */ |
| for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask; ++i, mask <<= 1) |
| if (VT_IS_IN_USE(i)) |
| state |= mask; |
| return put_user(state, &vtstat->v_state); |
| } |
| |
| /* |
| * Returns the first available (non-opened) console. |
| */ |
| case VT_OPENQRY: |
| for (i = 0; i < MAX_NR_CONSOLES; ++i) |
| if (! VT_IS_IN_USE(i)) |
| break; |
| ucval = i < MAX_NR_CONSOLES ? (i+1) : -1; |
| goto setint; |
| |
| /* |
| * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num, |
| * with num >= 1 (switches to vt 0, our console, are not allowed, just |
| * to preserve sanity). |
| */ |
| case VT_ACTIVATE: |
| if (!perm) |
| return -EPERM; |
| if (arg == 0 || arg > MAX_NR_CONSOLES) |
| return -ENXIO; |
| arg--; |
| acquire_console_sem(); |
| i = vc_allocate(arg); |
| release_console_sem(); |
| if (i) |
| return i; |
| set_console(arg); |
| return 0; |
| |
| /* |
| * wait until the specified VT has been activated |
| */ |
| case VT_WAITACTIVE: |
| if (!perm) |
| return -EPERM; |
| if (arg == 0 || arg > MAX_NR_CONSOLES) |
| return -ENXIO; |
| return vt_waitactive(arg-1); |
| |
| /* |
| * If a vt is under process control, the kernel will not switch to it |
| * immediately, but postpone the operation until the process calls this |
| * ioctl, allowing the switch to complete. |
| * |
| * According to the X sources this is the behavior: |
| * 0: pending switch-from not OK |
| * 1: pending switch-from OK |
| * 2: completed switch-to OK |
| */ |
| case VT_RELDISP: |
| if (!perm) |
| return -EPERM; |
| if (vc->vt_mode.mode != VT_PROCESS) |
| return -EINVAL; |
| |
| /* |
| * Switching-from response |
| */ |
| if (vc->vt_newvt >= 0) { |
| if (arg == 0) |
| /* |
| * Switch disallowed, so forget we were trying |
| * to do it. |
| */ |
| vc->vt_newvt = -1; |
| |
| else { |
| /* |
| * The current vt has been released, so |
| * complete the switch. |
| */ |
| int newvt; |
| acquire_console_sem(); |
| newvt = vc->vt_newvt; |
| vc->vt_newvt = -1; |
| i = vc_allocate(newvt); |
| if (i) { |
| release_console_sem(); |
| return i; |
| } |
| /* |
| * When we actually do the console switch, |
| * make sure we are atomic with respect to |
| * other console switches.. |
| */ |
| complete_change_console(vc_cons[newvt].d); |
| release_console_sem(); |
| } |
| } |
| |
| /* |
| * Switched-to response |
| */ |
| else |
| { |
| /* |
| * If it's just an ACK, ignore it |
| */ |
| if (arg != VT_ACKACQ) |
| return -EINVAL; |
| } |
| |
| return 0; |
| |
| /* |
| * Disallocate memory associated to VT (but leave VT1) |
| */ |
| case VT_DISALLOCATE: |
| if (arg > MAX_NR_CONSOLES) |
| return -ENXIO; |
| if (arg == 0) { |
| /* deallocate all unused consoles, but leave 0 */ |
| acquire_console_sem(); |
| for (i=1; i<MAX_NR_CONSOLES; i++) |
| if (! VT_BUSY(i)) |
| vc_deallocate(i); |
| release_console_sem(); |
| } else { |
| /* deallocate a single console, if possible */ |
| arg--; |
| if (VT_BUSY(arg)) |
| return -EBUSY; |
| if (arg) { /* leave 0 */ |
| acquire_console_sem(); |
| vc_deallocate(arg); |
| release_console_sem(); |
| } |
| } |
| return 0; |
| |
| case VT_RESIZE: |
| { |
| struct vt_sizes __user *vtsizes = up; |
| ushort ll,cc; |
| if (!perm) |
| return -EPERM; |
| if (get_user(ll, &vtsizes->v_rows) || |
| get_user(cc, &vtsizes->v_cols)) |
| return -EFAULT; |
| for (i = 0; i < MAX_NR_CONSOLES; i++) |
| vc_lock_resize(vc_cons[i].d, cc, ll); |
| return 0; |
| } |
| |
| case VT_RESIZEX: |
| { |
| struct vt_consize __user *vtconsize = up; |
| ushort ll,cc,vlin,clin,vcol,ccol; |
| if (!perm) |
| return -EPERM; |
| if (!access_ok(VERIFY_READ, vtconsize, |
| sizeof(struct vt_consize))) |
| return -EFAULT; |
| __get_user(ll, &vtconsize->v_rows); |
| __get_user(cc, &vtconsize->v_cols); |
| __get_user(vlin, &vtconsize->v_vlin); |
| __get_user(clin, &vtconsize->v_clin); |
| __get_user(vcol, &vtconsize->v_vcol); |
| __get_user(ccol, &vtconsize->v_ccol); |
| vlin = vlin ? vlin : vc->vc_scan_lines; |
| if (clin) { |
| if (ll) { |
| if (ll != vlin/clin) |
| return -EINVAL; /* Parameters don't add up */ |
| } else |
| ll = vlin/clin; |
| } |
| if (vcol && ccol) { |
| if (cc) { |
| if (cc != vcol/ccol) |
| return -EINVAL; |
| } else |
| cc = vcol/ccol; |
| } |
| |
| if (clin > 32) |
| return -EINVAL; |
| |
| for (i = 0; i < MAX_NR_CONSOLES; i++) { |
| if (!vc_cons[i].d) |
| continue; |
| acquire_console_sem(); |
| if (vlin) |
| vc_cons[i].d->vc_scan_lines = vlin; |
| if (clin) |
| vc_cons[i].d->vc_font.height = clin; |
| vc_resize(vc_cons[i].d, cc, ll); |
| release_console_sem(); |
| } |
| return 0; |
| } |
| |
| case PIO_FONT: { |
| if (!perm) |
| return -EPERM; |
| op.op = KD_FONT_OP_SET; |
| op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC; /* Compatibility */ |
| op.width = 8; |
| op.height = 0; |
| op.charcount = 256; |
| op.data = up; |
| return con_font_op(vc_cons[fg_console].d, &op); |
| } |
| |
| case GIO_FONT: { |
| op.op = KD_FONT_OP_GET; |
| op.flags = KD_FONT_FLAG_OLD; |
| op.width = 8; |
| op.height = 32; |
| op.charcount = 256; |
| op.data = up; |
| return con_font_op(vc_cons[fg_console].d, &op); |
| } |
| |
| case PIO_CMAP: |
| if (!perm) |
| return -EPERM; |
| return con_set_cmap(up); |
| |
| case GIO_CMAP: |
| return con_get_cmap(up); |
| |
| case PIO_FONTX: |
| case GIO_FONTX: |
| return do_fontx_ioctl(cmd, up, perm, &op); |
| |
| case PIO_FONTRESET: |
| { |
| if (!perm) |
| return -EPERM; |
| |
| #ifdef BROKEN_GRAPHICS_PROGRAMS |
| /* With BROKEN_GRAPHICS_PROGRAMS defined, the default |
| font is not saved. */ |
| return -ENOSYS; |
| #else |
| { |
| op.op = KD_FONT_OP_SET_DEFAULT; |
| op.data = NULL; |
| i = con_font_op(vc_cons[fg_console].d, &op); |
| if (i) |
| return i; |
| con_set_default_unimap(vc_cons[fg_console].d); |
| return 0; |
| } |
| #endif |
| } |
| |
| case KDFONTOP: { |
| if (copy_from_user(&op, up, sizeof(op))) |
| return -EFAULT; |
| if (!perm && op.op != KD_FONT_OP_GET) |
| return -EPERM; |
| i = con_font_op(vc, &op); |
| if (i) return i; |
| if (copy_to_user(up, &op, sizeof(op))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| case PIO_SCRNMAP: |
| if (!perm) |
| return -EPERM; |
| return con_set_trans_old(up); |
| |
| case GIO_SCRNMAP: |
| return con_get_trans_old(up); |
| |
| case PIO_UNISCRNMAP: |
| if (!perm) |
| return -EPERM; |
| return con_set_trans_new(up); |
| |
| case GIO_UNISCRNMAP: |
| return con_get_trans_new(up); |
| |
| case PIO_UNIMAPCLR: |
| { struct unimapinit ui; |
| if (!perm) |
| return -EPERM; |
| i = copy_from_user(&ui, up, sizeof(struct unimapinit)); |
| if (i) return -EFAULT; |
| con_clear_unimap(vc, &ui); |
| return 0; |
| } |
| |
| case PIO_UNIMAP: |
| case GIO_UNIMAP: |
| return do_unimap_ioctl(cmd, up, perm, vc); |
| |
| case VT_LOCKSWITCH: |
| if (!capable(CAP_SYS_TTY_CONFIG)) |
| return -EPERM; |
| vt_dont_switch = 1; |
| return 0; |
| case VT_UNLOCKSWITCH: |
| if (!capable(CAP_SYS_TTY_CONFIG)) |
| return -EPERM; |
| vt_dont_switch = 0; |
| return 0; |
| case VT_GETHIFONTMASK: |
| return put_user(vc->vc_hi_font_mask, (unsigned short __user *)arg); |
| default: |
| return -ENOIOCTLCMD; |
| } |
| } |
| |
| /* |
| * Sometimes we want to wait until a particular VT has been activated. We |
| * do it in a very simple manner. Everybody waits on a single queue and |
| * get woken up at once. Those that are satisfied go on with their business, |
| * while those not ready go back to sleep. Seems overkill to add a wait |
| * to each vt just for this - usually this does nothing! |
| */ |
| static DECLARE_WAIT_QUEUE_HEAD(vt_activate_queue); |
| |
| /* |
| * Sleeps until a vt is activated, or the task is interrupted. Returns |
| * 0 if activation, -EINTR if interrupted. |
| */ |
| int vt_waitactive(int vt) |
| { |
| int retval; |
| DECLARE_WAITQUEUE(wait, current); |
| |
| add_wait_queue(&vt_activate_queue, &wait); |
| for (;;) { |
| retval = 0; |
| |
| /* |
| * Synchronize with redraw_screen(). By acquiring the console |
| * semaphore we make sure that the console switch is completed |
| * before we return. If we didn't wait for the semaphore, we |
| * could return at a point where fg_console has already been |
| * updated, but the console switch hasn't been completed. |
| */ |
| acquire_console_sem(); |
| set_current_state(TASK_INTERRUPTIBLE); |
| if (vt == fg_console) { |
| release_console_sem(); |
| break; |
| } |
| release_console_sem(); |
| retval = -EINTR; |
| if (signal_pending(current)) |
| break; |
| schedule(); |
| } |
| remove_wait_queue(&vt_activate_queue, &wait); |
| __set_current_state(TASK_RUNNING); |
| return retval; |
| } |
| |
| #define vt_wake_waitactive() wake_up(&vt_activate_queue) |
| |
| void reset_vc(struct vc_data *vc) |
| { |
| vc->vc_mode = KD_TEXT; |
| kbd_table[vc->vc_num].kbdmode = VC_XLATE; |
| vc->vt_mode.mode = VT_AUTO; |
| vc->vt_mode.waitv = 0; |
| vc->vt_mode.relsig = 0; |
| vc->vt_mode.acqsig = 0; |
| vc->vt_mode.frsig = 0; |
| put_pid(vc->vt_pid); |
| vc->vt_pid = NULL; |
| vc->vt_newvt = -1; |
| if (!in_interrupt()) /* Via keyboard.c:SAK() - akpm */ |
| reset_palette(vc); |
| } |
| |
| void vc_SAK(struct work_struct *work) |
| { |
| struct vc *vc_con = |
| container_of(work, struct vc, SAK_work); |
| struct vc_data *vc; |
| struct tty_struct *tty; |
| |
| acquire_console_sem(); |
| vc = vc_con->d; |
| if (vc) { |
| tty = vc->vc_tty; |
| /* |
| * SAK should also work in all raw modes and reset |
| * them properly. |
| */ |
| if (tty) |
| __do_SAK(tty); |
| reset_vc(vc); |
| } |
| release_console_sem(); |
| } |
| |
| /* |
| * Performs the back end of a vt switch |
| */ |
| static void complete_change_console(struct vc_data *vc) |
| { |
| unsigned char old_vc_mode; |
| |
| last_console = fg_console; |
| |
| /* |
| * If we're switching, we could be going from KD_GRAPHICS to |
| * KD_TEXT mode or vice versa, which means we need to blank or |
| * unblank the screen later. |
| */ |
| old_vc_mode = vc_cons[fg_console].d->vc_mode; |
| switch_screen(vc); |
| |
| /* |
| * This can't appear below a successful kill_pid(). If it did, |
| * then the *blank_screen operation could occur while X, having |
| * received acqsig, is waking up on another processor. This |
| * condition can lead to overlapping accesses to the VGA range |
| * and the framebuffer (causing system lockups). |
| * |
| * To account for this we duplicate this code below only if the |
| * controlling process is gone and we've called reset_vc. |
| */ |
| if (old_vc_mode != vc->vc_mode) { |
| if (vc->vc_mode == KD_TEXT) |
| do_unblank_screen(1); |
| else |
| do_blank_screen(1); |
| } |
| |
| /* |
| * If this new console is under process control, send it a signal |
| * telling it that it has acquired. Also check if it has died and |
| * clean up (similar to logic employed in change_console()) |
| */ |
| if (vc->vt_mode.mode == VT_PROCESS) { |
| /* |
| * Send the signal as privileged - kill_pid() will |
| * tell us if the process has gone or something else |
| * is awry |
| */ |
| if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) { |
| /* |
| * The controlling process has died, so we revert back to |
| * normal operation. In this case, we'll also change back |
| * to KD_TEXT mode. I'm not sure if this is strictly correct |
| * but it saves the agony when the X server dies and the screen |
| * remains blanked due to KD_GRAPHICS! It would be nice to do |
| * this outside of VT_PROCESS but there is no single process |
| * to account for and tracking tty count may be undesirable. |
| */ |
| reset_vc(vc); |
| |
| if (old_vc_mode != vc->vc_mode) { |
| if (vc->vc_mode == KD_TEXT) |
| do_unblank_screen(1); |
| else |
| do_blank_screen(1); |
| } |
| } |
| } |
| |
| /* |
| * Wake anyone waiting for their VT to activate |
| */ |
| vt_wake_waitactive(); |
| return; |
| } |
| |
| /* |
| * Performs the front-end of a vt switch |
| */ |
| void change_console(struct vc_data *new_vc) |
| { |
| struct vc_data *vc; |
| |
| if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch) |
| return; |
| |
| /* |
| * If this vt is in process mode, then we need to handshake with |
| * that process before switching. Essentially, we store where that |
| * vt wants to switch to and wait for it to tell us when it's done |
| * (via VT_RELDISP ioctl). |
| * |
| * We also check to see if the controlling process still exists. |
| * If it doesn't, we reset this vt to auto mode and continue. |
| * This is a cheap way to track process control. The worst thing |
| * that can happen is: we send a signal to a process, it dies, and |
| * the switch gets "lost" waiting for a response; hopefully, the |
| * user will try again, we'll detect the process is gone (unless |
| * the user waits just the right amount of time :-) and revert the |
| * vt to auto control. |
| */ |
| vc = vc_cons[fg_console].d; |
| if (vc->vt_mode.mode == VT_PROCESS) { |
| /* |
| * Send the signal as privileged - kill_pid() will |
| * tell us if the process has gone or something else |
| * is awry. |
| * |
| * We need to set vt_newvt *before* sending the signal or we |
| * have a race. |
| */ |
| vc->vt_newvt = new_vc->vc_num; |
| if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) { |
| /* |
| * It worked. Mark the vt to switch to and |
| * return. The process needs to send us a |
| * VT_RELDISP ioctl to complete the switch. |
| */ |
| return; |
| } |
| |
| /* |
| * The controlling process has died, so we revert back to |
| * normal operation. In this case, we'll also change back |
| * to KD_TEXT mode. I'm not sure if this is strictly correct |
| * but it saves the agony when the X server dies and the screen |
| * remains blanked due to KD_GRAPHICS! It would be nice to do |
| * this outside of VT_PROCESS but there is no single process |
| * to account for and tracking tty count may be undesirable. |
| */ |
| reset_vc(vc); |
| |
| /* |
| * Fall through to normal (VT_AUTO) handling of the switch... |
| */ |
| } |
| |
| /* |
| * Ignore all switches in KD_GRAPHICS+VT_AUTO mode |
| */ |
| if (vc->vc_mode == KD_GRAPHICS) |
| return; |
| |
| complete_change_console(new_vc); |
| } |