| /* |
| * Driver for Cirrus Logic EP93xx SPI controller. |
| * |
| * Copyright (C) 2010-2011 Mika Westerberg |
| * |
| * Explicit FIFO handling code was inspired by amba-pl022 driver. |
| * |
| * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. |
| * |
| * For more information about the SPI controller see documentation on Cirrus |
| * Logic web site: |
| * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/io.h> |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/dmaengine.h> |
| #include <linux/bitops.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| #include <linux/workqueue.h> |
| #include <linux/sched.h> |
| #include <linux/scatterlist.h> |
| #include <linux/spi/spi.h> |
| |
| #include <mach/dma.h> |
| #include <mach/ep93xx_spi.h> |
| |
| #define SSPCR0 0x0000 |
| #define SSPCR0_MODE_SHIFT 6 |
| #define SSPCR0_SCR_SHIFT 8 |
| |
| #define SSPCR1 0x0004 |
| #define SSPCR1_RIE BIT(0) |
| #define SSPCR1_TIE BIT(1) |
| #define SSPCR1_RORIE BIT(2) |
| #define SSPCR1_LBM BIT(3) |
| #define SSPCR1_SSE BIT(4) |
| #define SSPCR1_MS BIT(5) |
| #define SSPCR1_SOD BIT(6) |
| |
| #define SSPDR 0x0008 |
| |
| #define SSPSR 0x000c |
| #define SSPSR_TFE BIT(0) |
| #define SSPSR_TNF BIT(1) |
| #define SSPSR_RNE BIT(2) |
| #define SSPSR_RFF BIT(3) |
| #define SSPSR_BSY BIT(4) |
| #define SSPCPSR 0x0010 |
| |
| #define SSPIIR 0x0014 |
| #define SSPIIR_RIS BIT(0) |
| #define SSPIIR_TIS BIT(1) |
| #define SSPIIR_RORIS BIT(2) |
| #define SSPICR SSPIIR |
| |
| /* timeout in milliseconds */ |
| #define SPI_TIMEOUT 5 |
| /* maximum depth of RX/TX FIFO */ |
| #define SPI_FIFO_SIZE 8 |
| |
| /** |
| * struct ep93xx_spi - EP93xx SPI controller structure |
| * @lock: spinlock that protects concurrent accesses to fields @running, |
| * @current_msg and @msg_queue |
| * @pdev: pointer to platform device |
| * @clk: clock for the controller |
| * @regs_base: pointer to ioremap()'d registers |
| * @sspdr_phys: physical address of the SSPDR register |
| * @irq: IRQ number used by the driver |
| * @min_rate: minimum clock rate (in Hz) supported by the controller |
| * @max_rate: maximum clock rate (in Hz) supported by the controller |
| * @running: is the queue running |
| * @wq: workqueue used by the driver |
| * @msg_work: work that is queued for the driver |
| * @wait: wait here until given transfer is completed |
| * @msg_queue: queue for the messages |
| * @current_msg: message that is currently processed (or %NULL if none) |
| * @tx: current byte in transfer to transmit |
| * @rx: current byte in transfer to receive |
| * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one |
| * frame decreases this level and sending one frame increases it. |
| * @dma_rx: RX DMA channel |
| * @dma_tx: TX DMA channel |
| * @dma_rx_data: RX parameters passed to the DMA engine |
| * @dma_tx_data: TX parameters passed to the DMA engine |
| * @rx_sgt: sg table for RX transfers |
| * @tx_sgt: sg table for TX transfers |
| * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by |
| * the client |
| * |
| * This structure holds EP93xx SPI controller specific information. When |
| * @running is %true, driver accepts transfer requests from protocol drivers. |
| * @current_msg is used to hold pointer to the message that is currently |
| * processed. If @current_msg is %NULL, it means that no processing is going |
| * on. |
| * |
| * Most of the fields are only written once and they can be accessed without |
| * taking the @lock. Fields that are accessed concurrently are: @current_msg, |
| * @running, and @msg_queue. |
| */ |
| struct ep93xx_spi { |
| spinlock_t lock; |
| const struct platform_device *pdev; |
| struct clk *clk; |
| void __iomem *regs_base; |
| unsigned long sspdr_phys; |
| int irq; |
| unsigned long min_rate; |
| unsigned long max_rate; |
| bool running; |
| struct workqueue_struct *wq; |
| struct work_struct msg_work; |
| struct completion wait; |
| struct list_head msg_queue; |
| struct spi_message *current_msg; |
| size_t tx; |
| size_t rx; |
| size_t fifo_level; |
| struct dma_chan *dma_rx; |
| struct dma_chan *dma_tx; |
| struct ep93xx_dma_data dma_rx_data; |
| struct ep93xx_dma_data dma_tx_data; |
| struct sg_table rx_sgt; |
| struct sg_table tx_sgt; |
| void *zeropage; |
| }; |
| |
| /** |
| * struct ep93xx_spi_chip - SPI device hardware settings |
| * @spi: back pointer to the SPI device |
| * @rate: max rate in hz this chip supports |
| * @div_cpsr: cpsr (pre-scaler) divider |
| * @div_scr: scr divider |
| * @dss: bits per word (4 - 16 bits) |
| * @ops: private chip operations |
| * |
| * This structure is used to store hardware register specific settings for each |
| * SPI device. Settings are written to hardware by function |
| * ep93xx_spi_chip_setup(). |
| */ |
| struct ep93xx_spi_chip { |
| const struct spi_device *spi; |
| unsigned long rate; |
| u8 div_cpsr; |
| u8 div_scr; |
| u8 dss; |
| struct ep93xx_spi_chip_ops *ops; |
| }; |
| |
| /* converts bits per word to CR0.DSS value */ |
| #define bits_per_word_to_dss(bpw) ((bpw) - 1) |
| |
| static inline void |
| ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value) |
| { |
| __raw_writeb(value, espi->regs_base + reg); |
| } |
| |
| static inline u8 |
| ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg) |
| { |
| return __raw_readb(spi->regs_base + reg); |
| } |
| |
| static inline void |
| ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value) |
| { |
| __raw_writew(value, espi->regs_base + reg); |
| } |
| |
| static inline u16 |
| ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg) |
| { |
| return __raw_readw(spi->regs_base + reg); |
| } |
| |
| static int ep93xx_spi_enable(const struct ep93xx_spi *espi) |
| { |
| u8 regval; |
| int err; |
| |
| err = clk_enable(espi->clk); |
| if (err) |
| return err; |
| |
| regval = ep93xx_spi_read_u8(espi, SSPCR1); |
| regval |= SSPCR1_SSE; |
| ep93xx_spi_write_u8(espi, SSPCR1, regval); |
| |
| return 0; |
| } |
| |
| static void ep93xx_spi_disable(const struct ep93xx_spi *espi) |
| { |
| u8 regval; |
| |
| regval = ep93xx_spi_read_u8(espi, SSPCR1); |
| regval &= ~SSPCR1_SSE; |
| ep93xx_spi_write_u8(espi, SSPCR1, regval); |
| |
| clk_disable(espi->clk); |
| } |
| |
| static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi) |
| { |
| u8 regval; |
| |
| regval = ep93xx_spi_read_u8(espi, SSPCR1); |
| regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); |
| ep93xx_spi_write_u8(espi, SSPCR1, regval); |
| } |
| |
| static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi) |
| { |
| u8 regval; |
| |
| regval = ep93xx_spi_read_u8(espi, SSPCR1); |
| regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); |
| ep93xx_spi_write_u8(espi, SSPCR1, regval); |
| } |
| |
| /** |
| * ep93xx_spi_calc_divisors() - calculates SPI clock divisors |
| * @espi: ep93xx SPI controller struct |
| * @chip: divisors are calculated for this chip |
| * @rate: desired SPI output clock rate |
| * |
| * Function calculates cpsr (clock pre-scaler) and scr divisors based on |
| * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If, |
| * for some reason, divisors cannot be calculated nothing is stored and |
| * %-EINVAL is returned. |
| */ |
| static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi, |
| struct ep93xx_spi_chip *chip, |
| unsigned long rate) |
| { |
| unsigned long spi_clk_rate = clk_get_rate(espi->clk); |
| int cpsr, scr; |
| |
| /* |
| * Make sure that max value is between values supported by the |
| * controller. Note that minimum value is already checked in |
| * ep93xx_spi_transfer(). |
| */ |
| rate = clamp(rate, espi->min_rate, espi->max_rate); |
| |
| /* |
| * Calculate divisors so that we can get speed according the |
| * following formula: |
| * rate = spi_clock_rate / (cpsr * (1 + scr)) |
| * |
| * cpsr must be even number and starts from 2, scr can be any number |
| * between 0 and 255. |
| */ |
| for (cpsr = 2; cpsr <= 254; cpsr += 2) { |
| for (scr = 0; scr <= 255; scr++) { |
| if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { |
| chip->div_scr = (u8)scr; |
| chip->div_cpsr = (u8)cpsr; |
| return 0; |
| } |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| static void ep93xx_spi_cs_control(struct spi_device *spi, bool control) |
| { |
| struct ep93xx_spi_chip *chip = spi_get_ctldata(spi); |
| int value = (spi->mode & SPI_CS_HIGH) ? control : !control; |
| |
| if (chip->ops && chip->ops->cs_control) |
| chip->ops->cs_control(spi, value); |
| } |
| |
| /** |
| * ep93xx_spi_setup() - setup an SPI device |
| * @spi: SPI device to setup |
| * |
| * This function sets up SPI device mode, speed etc. Can be called multiple |
| * times for a single device. Returns %0 in case of success, negative error in |
| * case of failure. When this function returns success, the device is |
| * deselected. |
| */ |
| static int ep93xx_spi_setup(struct spi_device *spi) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(spi->master); |
| struct ep93xx_spi_chip *chip; |
| |
| if (spi->bits_per_word < 4 || spi->bits_per_word > 16) { |
| dev_err(&espi->pdev->dev, "invalid bits per word %d\n", |
| spi->bits_per_word); |
| return -EINVAL; |
| } |
| |
| chip = spi_get_ctldata(spi); |
| if (!chip) { |
| dev_dbg(&espi->pdev->dev, "initial setup for %s\n", |
| spi->modalias); |
| |
| chip = kzalloc(sizeof(*chip), GFP_KERNEL); |
| if (!chip) |
| return -ENOMEM; |
| |
| chip->spi = spi; |
| chip->ops = spi->controller_data; |
| |
| if (chip->ops && chip->ops->setup) { |
| int ret = chip->ops->setup(spi); |
| if (ret) { |
| kfree(chip); |
| return ret; |
| } |
| } |
| |
| spi_set_ctldata(spi, chip); |
| } |
| |
| if (spi->max_speed_hz != chip->rate) { |
| int err; |
| |
| err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz); |
| if (err != 0) { |
| spi_set_ctldata(spi, NULL); |
| kfree(chip); |
| return err; |
| } |
| chip->rate = spi->max_speed_hz; |
| } |
| |
| chip->dss = bits_per_word_to_dss(spi->bits_per_word); |
| |
| ep93xx_spi_cs_control(spi, false); |
| return 0; |
| } |
| |
| /** |
| * ep93xx_spi_transfer() - queue message to be transferred |
| * @spi: target SPI device |
| * @msg: message to be transferred |
| * |
| * This function is called by SPI device drivers when they are going to transfer |
| * a new message. It simply puts the message in the queue and schedules |
| * workqueue to perform the actual transfer later on. |
| * |
| * Returns %0 on success and negative error in case of failure. |
| */ |
| static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg) |
| { |
| struct ep93xx_spi *espi = spi_master_get_devdata(spi->master); |
| struct spi_transfer *t; |
| unsigned long flags; |
| |
| if (!msg || !msg->complete) |
| return -EINVAL; |
| |
| /* first validate each transfer */ |
| list_for_each_entry(t, &msg->transfers, transfer_list) { |
| if (t->bits_per_word) { |
| if (t->bits_per_word < 4 || t->bits_per_word > 16) |
| return -EINVAL; |
| } |
| if (t->speed_hz && t->speed_hz < espi->min_rate) |
| return -EINVAL; |
| } |
| |
| /* |
| * Now that we own the message, let's initialize it so that it is |
| * suitable for us. We use @msg->status to signal whether there was |
| * error in transfer and @msg->state is used to hold pointer to the |
| * current transfer (or %NULL if no active current transfer). |
| */ |
| msg->state = NULL; |
| msg->status = 0; |
| msg->actual_length = 0; |
| |
| spin_lock_irqsave(&espi->lock, flags); |
| if (!espi->running) { |
| spin_unlock_irqrestore(&espi->lock, flags); |
| return -ESHUTDOWN; |
| } |
| list_add_tail(&msg->queue, &espi->msg_queue); |
| queue_work(espi->wq, &espi->msg_work); |
| spin_unlock_irqrestore(&espi->lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * ep93xx_spi_cleanup() - cleans up master controller specific state |
| * @spi: SPI device to cleanup |
| * |
| * This function releases master controller specific state for given @spi |
| * device. |
| */ |
| static void ep93xx_spi_cleanup(struct spi_device *spi) |
| { |
| struct ep93xx_spi_chip *chip; |
| |
| chip = spi_get_ctldata(spi); |
| if (chip) { |
| if (chip->ops && chip->ops->cleanup) |
| chip->ops->cleanup(spi); |
| spi_set_ctldata(spi, NULL); |
| kfree(chip); |
| } |
| } |
| |
| /** |
| * ep93xx_spi_chip_setup() - configures hardware according to given @chip |
| * @espi: ep93xx SPI controller struct |
| * @chip: chip specific settings |
| * |
| * This function sets up the actual hardware registers with settings given in |
| * @chip. Note that no validation is done so make sure that callers validate |
| * settings before calling this. |
| */ |
| static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi, |
| const struct ep93xx_spi_chip *chip) |
| { |
| u16 cr0; |
| |
| cr0 = chip->div_scr << SSPCR0_SCR_SHIFT; |
| cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT; |
| cr0 |= chip->dss; |
| |
| dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", |
| chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss); |
| dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0); |
| |
| ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr); |
| ep93xx_spi_write_u16(espi, SSPCR0, cr0); |
| } |
| |
| static inline int bits_per_word(const struct ep93xx_spi *espi) |
| { |
| struct spi_message *msg = espi->current_msg; |
| struct spi_transfer *t = msg->state; |
| |
| return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word; |
| } |
| |
| static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t) |
| { |
| if (bits_per_word(espi) > 8) { |
| u16 tx_val = 0; |
| |
| if (t->tx_buf) |
| tx_val = ((u16 *)t->tx_buf)[espi->tx]; |
| ep93xx_spi_write_u16(espi, SSPDR, tx_val); |
| espi->tx += sizeof(tx_val); |
| } else { |
| u8 tx_val = 0; |
| |
| if (t->tx_buf) |
| tx_val = ((u8 *)t->tx_buf)[espi->tx]; |
| ep93xx_spi_write_u8(espi, SSPDR, tx_val); |
| espi->tx += sizeof(tx_val); |
| } |
| } |
| |
| static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t) |
| { |
| if (bits_per_word(espi) > 8) { |
| u16 rx_val; |
| |
| rx_val = ep93xx_spi_read_u16(espi, SSPDR); |
| if (t->rx_buf) |
| ((u16 *)t->rx_buf)[espi->rx] = rx_val; |
| espi->rx += sizeof(rx_val); |
| } else { |
| u8 rx_val; |
| |
| rx_val = ep93xx_spi_read_u8(espi, SSPDR); |
| if (t->rx_buf) |
| ((u8 *)t->rx_buf)[espi->rx] = rx_val; |
| espi->rx += sizeof(rx_val); |
| } |
| } |
| |
| /** |
| * ep93xx_spi_read_write() - perform next RX/TX transfer |
| * @espi: ep93xx SPI controller struct |
| * |
| * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If |
| * called several times, the whole transfer will be completed. Returns |
| * %-EINPROGRESS when current transfer was not yet completed otherwise %0. |
| * |
| * When this function is finished, RX FIFO should be empty and TX FIFO should be |
| * full. |
| */ |
| static int ep93xx_spi_read_write(struct ep93xx_spi *espi) |
| { |
| struct spi_message *msg = espi->current_msg; |
| struct spi_transfer *t = msg->state; |
| |
| /* read as long as RX FIFO has frames in it */ |
| while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) { |
| ep93xx_do_read(espi, t); |
| espi->fifo_level--; |
| } |
| |
| /* write as long as TX FIFO has room */ |
| while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) { |
| ep93xx_do_write(espi, t); |
| espi->fifo_level++; |
| } |
| |
| if (espi->rx == t->len) |
| return 0; |
| |
| return -EINPROGRESS; |
| } |
| |
| static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi) |
| { |
| /* |
| * Now everything is set up for the current transfer. We prime the TX |
| * FIFO, enable interrupts, and wait for the transfer to complete. |
| */ |
| if (ep93xx_spi_read_write(espi)) { |
| ep93xx_spi_enable_interrupts(espi); |
| wait_for_completion(&espi->wait); |
| } |
| } |
| |
| /** |
| * ep93xx_spi_dma_prepare() - prepares a DMA transfer |
| * @espi: ep93xx SPI controller struct |
| * @dir: DMA transfer direction |
| * |
| * Function configures the DMA, maps the buffer and prepares the DMA |
| * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR |
| * in case of failure. |
| */ |
| static struct dma_async_tx_descriptor * |
| ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_data_direction dir) |
| { |
| struct spi_transfer *t = espi->current_msg->state; |
| struct dma_async_tx_descriptor *txd; |
| enum dma_slave_buswidth buswidth; |
| struct dma_slave_config conf; |
| enum dma_transfer_direction slave_dirn; |
| struct scatterlist *sg; |
| struct sg_table *sgt; |
| struct dma_chan *chan; |
| const void *buf, *pbuf; |
| size_t len = t->len; |
| int i, ret, nents; |
| |
| if (bits_per_word(espi) > 8) |
| buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| else |
| buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| |
| memset(&conf, 0, sizeof(conf)); |
| conf.direction = dir; |
| |
| if (dir == DMA_FROM_DEVICE) { |
| chan = espi->dma_rx; |
| buf = t->rx_buf; |
| sgt = &espi->rx_sgt; |
| |
| conf.src_addr = espi->sspdr_phys; |
| conf.src_addr_width = buswidth; |
| slave_dirn = DMA_DEV_TO_MEM; |
| } else { |
| chan = espi->dma_tx; |
| buf = t->tx_buf; |
| sgt = &espi->tx_sgt; |
| |
| conf.dst_addr = espi->sspdr_phys; |
| conf.dst_addr_width = buswidth; |
| slave_dirn = DMA_MEM_TO_DEV; |
| } |
| |
| ret = dmaengine_slave_config(chan, &conf); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| /* |
| * We need to split the transfer into PAGE_SIZE'd chunks. This is |
| * because we are using @espi->zeropage to provide a zero RX buffer |
| * for the TX transfers and we have only allocated one page for that. |
| * |
| * For performance reasons we allocate a new sg_table only when |
| * needed. Otherwise we will re-use the current one. Eventually the |
| * last sg_table is released in ep93xx_spi_release_dma(). |
| */ |
| |
| nents = DIV_ROUND_UP(len, PAGE_SIZE); |
| if (nents != sgt->nents) { |
| sg_free_table(sgt); |
| |
| ret = sg_alloc_table(sgt, nents, GFP_KERNEL); |
| if (ret) |
| return ERR_PTR(ret); |
| } |
| |
| pbuf = buf; |
| for_each_sg(sgt->sgl, sg, sgt->nents, i) { |
| size_t bytes = min_t(size_t, len, PAGE_SIZE); |
| |
| if (buf) { |
| sg_set_page(sg, virt_to_page(pbuf), bytes, |
| offset_in_page(pbuf)); |
| } else { |
| sg_set_page(sg, virt_to_page(espi->zeropage), |
| bytes, 0); |
| } |
| |
| pbuf += bytes; |
| len -= bytes; |
| } |
| |
| if (WARN_ON(len)) { |
| dev_warn(&espi->pdev->dev, "len = %d expected 0!", len); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); |
| if (!nents) |
| return ERR_PTR(-ENOMEM); |
| |
| txd = chan->device->device_prep_slave_sg(chan, sgt->sgl, nents, |
| slave_dirn, DMA_CTRL_ACK); |
| if (!txd) { |
| dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); |
| return ERR_PTR(-ENOMEM); |
| } |
| return txd; |
| } |
| |
| /** |
| * ep93xx_spi_dma_finish() - finishes with a DMA transfer |
| * @espi: ep93xx SPI controller struct |
| * @dir: DMA transfer direction |
| * |
| * Function finishes with the DMA transfer. After this, the DMA buffer is |
| * unmapped. |
| */ |
| static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi, |
| enum dma_data_direction dir) |
| { |
| struct dma_chan *chan; |
| struct sg_table *sgt; |
| |
| if (dir == DMA_FROM_DEVICE) { |
| chan = espi->dma_rx; |
| sgt = &espi->rx_sgt; |
| } else { |
| chan = espi->dma_tx; |
| sgt = &espi->tx_sgt; |
| } |
| |
| dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); |
| } |
| |
| static void ep93xx_spi_dma_callback(void *callback_param) |
| { |
| complete(callback_param); |
| } |
| |
| static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi) |
| { |
| struct spi_message *msg = espi->current_msg; |
| struct dma_async_tx_descriptor *rxd, *txd; |
| |
| rxd = ep93xx_spi_dma_prepare(espi, DMA_FROM_DEVICE); |
| if (IS_ERR(rxd)) { |
| dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); |
| msg->status = PTR_ERR(rxd); |
| return; |
| } |
| |
| txd = ep93xx_spi_dma_prepare(espi, DMA_TO_DEVICE); |
| if (IS_ERR(txd)) { |
| ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE); |
| dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd)); |
| msg->status = PTR_ERR(txd); |
| return; |
| } |
| |
| /* We are ready when RX is done */ |
| rxd->callback = ep93xx_spi_dma_callback; |
| rxd->callback_param = &espi->wait; |
| |
| /* Now submit both descriptors and wait while they finish */ |
| dmaengine_submit(rxd); |
| dmaengine_submit(txd); |
| |
| dma_async_issue_pending(espi->dma_rx); |
| dma_async_issue_pending(espi->dma_tx); |
| |
| wait_for_completion(&espi->wait); |
| |
| ep93xx_spi_dma_finish(espi, DMA_TO_DEVICE); |
| ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE); |
| } |
| |
| /** |
| * ep93xx_spi_process_transfer() - processes one SPI transfer |
| * @espi: ep93xx SPI controller struct |
| * @msg: current message |
| * @t: transfer to process |
| * |
| * This function processes one SPI transfer given in @t. Function waits until |
| * transfer is complete (may sleep) and updates @msg->status based on whether |
| * transfer was successfully processed or not. |
| */ |
| static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi, |
| struct spi_message *msg, |
| struct spi_transfer *t) |
| { |
| struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi); |
| |
| msg->state = t; |
| |
| /* |
| * Handle any transfer specific settings if needed. We use |
| * temporary chip settings here and restore original later when |
| * the transfer is finished. |
| */ |
| if (t->speed_hz || t->bits_per_word) { |
| struct ep93xx_spi_chip tmp_chip = *chip; |
| |
| if (t->speed_hz) { |
| int err; |
| |
| err = ep93xx_spi_calc_divisors(espi, &tmp_chip, |
| t->speed_hz); |
| if (err) { |
| dev_err(&espi->pdev->dev, |
| "failed to adjust speed\n"); |
| msg->status = err; |
| return; |
| } |
| } |
| |
| if (t->bits_per_word) |
| tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word); |
| |
| /* |
| * Set up temporary new hw settings for this transfer. |
| */ |
| ep93xx_spi_chip_setup(espi, &tmp_chip); |
| } |
| |
| espi->rx = 0; |
| espi->tx = 0; |
| |
| /* |
| * There is no point of setting up DMA for the transfers which will |
| * fit into the FIFO and can be transferred with a single interrupt. |
| * So in these cases we will be using PIO and don't bother for DMA. |
| */ |
| if (espi->dma_rx && t->len > SPI_FIFO_SIZE) |
| ep93xx_spi_dma_transfer(espi); |
| else |
| ep93xx_spi_pio_transfer(espi); |
| |
| /* |
| * In case of error during transmit, we bail out from processing |
| * the message. |
| */ |
| if (msg->status) |
| return; |
| |
| msg->actual_length += t->len; |
| |
| /* |
| * After this transfer is finished, perform any possible |
| * post-transfer actions requested by the protocol driver. |
| */ |
| if (t->delay_usecs) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_timeout(usecs_to_jiffies(t->delay_usecs)); |
| } |
| if (t->cs_change) { |
| if (!list_is_last(&t->transfer_list, &msg->transfers)) { |
| /* |
| * In case protocol driver is asking us to drop the |
| * chipselect briefly, we let the scheduler to handle |
| * any "delay" here. |
| */ |
| ep93xx_spi_cs_control(msg->spi, false); |
| cond_resched(); |
| ep93xx_spi_cs_control(msg->spi, true); |
| } |
| } |
| |
| if (t->speed_hz || t->bits_per_word) |
| ep93xx_spi_chip_setup(espi, chip); |
| } |
| |
| /* |
| * ep93xx_spi_process_message() - process one SPI message |
| * @espi: ep93xx SPI controller struct |
| * @msg: message to process |
| * |
| * This function processes a single SPI message. We go through all transfers in |
| * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is |
| * asserted during the whole message (unless per transfer cs_change is set). |
| * |
| * @msg->status contains %0 in case of success or negative error code in case of |
| * failure. |
| */ |
| static void ep93xx_spi_process_message(struct ep93xx_spi *espi, |
| struct spi_message *msg) |
| { |
| unsigned long timeout; |
| struct spi_transfer *t; |
| int err; |
| |
| /* |
| * Enable the SPI controller and its clock. |
| */ |
| err = ep93xx_spi_enable(espi); |
| if (err) { |
| dev_err(&espi->pdev->dev, "failed to enable SPI controller\n"); |
| msg->status = err; |
| return; |
| } |
| |
| /* |
| * Just to be sure: flush any data from RX FIFO. |
| */ |
| timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); |
| while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) { |
| if (time_after(jiffies, timeout)) { |
| dev_warn(&espi->pdev->dev, |
| "timeout while flushing RX FIFO\n"); |
| msg->status = -ETIMEDOUT; |
| return; |
| } |
| ep93xx_spi_read_u16(espi, SSPDR); |
| } |
| |
| /* |
| * We explicitly handle FIFO level. This way we don't have to check TX |
| * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. |
| */ |
| espi->fifo_level = 0; |
| |
| /* |
| * Update SPI controller registers according to spi device and assert |
| * the chipselect. |
| */ |
| ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi)); |
| ep93xx_spi_cs_control(msg->spi, true); |
| |
| list_for_each_entry(t, &msg->transfers, transfer_list) { |
| ep93xx_spi_process_transfer(espi, msg, t); |
| if (msg->status) |
| break; |
| } |
| |
| /* |
| * Now the whole message is transferred (or failed for some reason). We |
| * deselect the device and disable the SPI controller. |
| */ |
| ep93xx_spi_cs_control(msg->spi, false); |
| ep93xx_spi_disable(espi); |
| } |
| |
| #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work)) |
| |
| /** |
| * ep93xx_spi_work() - EP93xx SPI workqueue worker function |
| * @work: work struct |
| * |
| * Workqueue worker function. This function is called when there are new |
| * SPI messages to be processed. Message is taken out from the queue and then |
| * passed to ep93xx_spi_process_message(). |
| * |
| * After message is transferred, protocol driver is notified by calling |
| * @msg->complete(). In case of error, @msg->status is set to negative error |
| * number, otherwise it contains zero (and @msg->actual_length is updated). |
| */ |
| static void ep93xx_spi_work(struct work_struct *work) |
| { |
| struct ep93xx_spi *espi = work_to_espi(work); |
| struct spi_message *msg; |
| |
| spin_lock_irq(&espi->lock); |
| if (!espi->running || espi->current_msg || |
| list_empty(&espi->msg_queue)) { |
| spin_unlock_irq(&espi->lock); |
| return; |
| } |
| msg = list_first_entry(&espi->msg_queue, struct spi_message, queue); |
| list_del_init(&msg->queue); |
| espi->current_msg = msg; |
| spin_unlock_irq(&espi->lock); |
| |
| ep93xx_spi_process_message(espi, msg); |
| |
| /* |
| * Update the current message and re-schedule ourselves if there are |
| * more messages in the queue. |
| */ |
| spin_lock_irq(&espi->lock); |
| espi->current_msg = NULL; |
| if (espi->running && !list_empty(&espi->msg_queue)) |
| queue_work(espi->wq, &espi->msg_work); |
| spin_unlock_irq(&espi->lock); |
| |
| /* notify the protocol driver that we are done with this message */ |
| msg->complete(msg->context); |
| } |
| |
| static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) |
| { |
| struct ep93xx_spi *espi = dev_id; |
| u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR); |
| |
| /* |
| * If we got ROR (receive overrun) interrupt we know that something is |
| * wrong. Just abort the message. |
| */ |
| if (unlikely(irq_status & SSPIIR_RORIS)) { |
| /* clear the overrun interrupt */ |
| ep93xx_spi_write_u8(espi, SSPICR, 0); |
| dev_warn(&espi->pdev->dev, |
| "receive overrun, aborting the message\n"); |
| espi->current_msg->status = -EIO; |
| } else { |
| /* |
| * Interrupt is either RX (RIS) or TX (TIS). For both cases we |
| * simply execute next data transfer. |
| */ |
| if (ep93xx_spi_read_write(espi)) { |
| /* |
| * In normal case, there still is some processing left |
| * for current transfer. Let's wait for the next |
| * interrupt then. |
| */ |
| return IRQ_HANDLED; |
| } |
| } |
| |
| /* |
| * Current transfer is finished, either with error or with success. In |
| * any case we disable interrupts and notify the worker to handle |
| * any post-processing of the message. |
| */ |
| ep93xx_spi_disable_interrupts(espi); |
| complete(&espi->wait); |
| return IRQ_HANDLED; |
| } |
| |
| static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param) |
| { |
| if (ep93xx_dma_chan_is_m2p(chan)) |
| return false; |
| |
| chan->private = filter_param; |
| return true; |
| } |
| |
| static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi) |
| { |
| dma_cap_mask_t mask; |
| int ret; |
| |
| espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); |
| if (!espi->zeropage) |
| return -ENOMEM; |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| espi->dma_rx_data.port = EP93XX_DMA_SSP; |
| espi->dma_rx_data.direction = DMA_DEV_TO_MEM; |
| espi->dma_rx_data.name = "ep93xx-spi-rx"; |
| |
| espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter, |
| &espi->dma_rx_data); |
| if (!espi->dma_rx) { |
| ret = -ENODEV; |
| goto fail_free_page; |
| } |
| |
| espi->dma_tx_data.port = EP93XX_DMA_SSP; |
| espi->dma_tx_data.direction = DMA_MEM_TO_DEV; |
| espi->dma_tx_data.name = "ep93xx-spi-tx"; |
| |
| espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter, |
| &espi->dma_tx_data); |
| if (!espi->dma_tx) { |
| ret = -ENODEV; |
| goto fail_release_rx; |
| } |
| |
| return 0; |
| |
| fail_release_rx: |
| dma_release_channel(espi->dma_rx); |
| espi->dma_rx = NULL; |
| fail_free_page: |
| free_page((unsigned long)espi->zeropage); |
| |
| return ret; |
| } |
| |
| static void ep93xx_spi_release_dma(struct ep93xx_spi *espi) |
| { |
| if (espi->dma_rx) { |
| dma_release_channel(espi->dma_rx); |
| sg_free_table(&espi->rx_sgt); |
| } |
| if (espi->dma_tx) { |
| dma_release_channel(espi->dma_tx); |
| sg_free_table(&espi->tx_sgt); |
| } |
| |
| if (espi->zeropage) |
| free_page((unsigned long)espi->zeropage); |
| } |
| |
| static int __init ep93xx_spi_probe(struct platform_device *pdev) |
| { |
| struct spi_master *master; |
| struct ep93xx_spi_info *info; |
| struct ep93xx_spi *espi; |
| struct resource *res; |
| int error; |
| |
| info = pdev->dev.platform_data; |
| |
| master = spi_alloc_master(&pdev->dev, sizeof(*espi)); |
| if (!master) { |
| dev_err(&pdev->dev, "failed to allocate spi master\n"); |
| return -ENOMEM; |
| } |
| |
| master->setup = ep93xx_spi_setup; |
| master->transfer = ep93xx_spi_transfer; |
| master->cleanup = ep93xx_spi_cleanup; |
| master->bus_num = pdev->id; |
| master->num_chipselect = info->num_chipselect; |
| master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; |
| |
| platform_set_drvdata(pdev, master); |
| |
| espi = spi_master_get_devdata(master); |
| |
| espi->clk = clk_get(&pdev->dev, NULL); |
| if (IS_ERR(espi->clk)) { |
| dev_err(&pdev->dev, "unable to get spi clock\n"); |
| error = PTR_ERR(espi->clk); |
| goto fail_release_master; |
| } |
| |
| spin_lock_init(&espi->lock); |
| init_completion(&espi->wait); |
| |
| /* |
| * Calculate maximum and minimum supported clock rates |
| * for the controller. |
| */ |
| espi->max_rate = clk_get_rate(espi->clk) / 2; |
| espi->min_rate = clk_get_rate(espi->clk) / (254 * 256); |
| espi->pdev = pdev; |
| |
| espi->irq = platform_get_irq(pdev, 0); |
| if (espi->irq < 0) { |
| error = -EBUSY; |
| dev_err(&pdev->dev, "failed to get irq resources\n"); |
| goto fail_put_clock; |
| } |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!res) { |
| dev_err(&pdev->dev, "unable to get iomem resource\n"); |
| error = -ENODEV; |
| goto fail_put_clock; |
| } |
| |
| res = request_mem_region(res->start, resource_size(res), pdev->name); |
| if (!res) { |
| dev_err(&pdev->dev, "unable to request iomem resources\n"); |
| error = -EBUSY; |
| goto fail_put_clock; |
| } |
| |
| espi->sspdr_phys = res->start + SSPDR; |
| espi->regs_base = ioremap(res->start, resource_size(res)); |
| if (!espi->regs_base) { |
| dev_err(&pdev->dev, "failed to map resources\n"); |
| error = -ENODEV; |
| goto fail_free_mem; |
| } |
| |
| error = request_irq(espi->irq, ep93xx_spi_interrupt, 0, |
| "ep93xx-spi", espi); |
| if (error) { |
| dev_err(&pdev->dev, "failed to request irq\n"); |
| goto fail_unmap_regs; |
| } |
| |
| if (info->use_dma && ep93xx_spi_setup_dma(espi)) |
| dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); |
| |
| espi->wq = create_singlethread_workqueue("ep93xx_spid"); |
| if (!espi->wq) { |
| dev_err(&pdev->dev, "unable to create workqueue\n"); |
| goto fail_free_dma; |
| } |
| INIT_WORK(&espi->msg_work, ep93xx_spi_work); |
| INIT_LIST_HEAD(&espi->msg_queue); |
| espi->running = true; |
| |
| /* make sure that the hardware is disabled */ |
| ep93xx_spi_write_u8(espi, SSPCR1, 0); |
| |
| error = spi_register_master(master); |
| if (error) { |
| dev_err(&pdev->dev, "failed to register SPI master\n"); |
| goto fail_free_queue; |
| } |
| |
| dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", |
| (unsigned long)res->start, espi->irq); |
| |
| return 0; |
| |
| fail_free_queue: |
| destroy_workqueue(espi->wq); |
| fail_free_dma: |
| ep93xx_spi_release_dma(espi); |
| free_irq(espi->irq, espi); |
| fail_unmap_regs: |
| iounmap(espi->regs_base); |
| fail_free_mem: |
| release_mem_region(res->start, resource_size(res)); |
| fail_put_clock: |
| clk_put(espi->clk); |
| fail_release_master: |
| spi_master_put(master); |
| platform_set_drvdata(pdev, NULL); |
| |
| return error; |
| } |
| |
| static int __exit ep93xx_spi_remove(struct platform_device *pdev) |
| { |
| struct spi_master *master = platform_get_drvdata(pdev); |
| struct ep93xx_spi *espi = spi_master_get_devdata(master); |
| struct resource *res; |
| |
| spin_lock_irq(&espi->lock); |
| espi->running = false; |
| spin_unlock_irq(&espi->lock); |
| |
| destroy_workqueue(espi->wq); |
| |
| /* |
| * Complete remaining messages with %-ESHUTDOWN status. |
| */ |
| spin_lock_irq(&espi->lock); |
| while (!list_empty(&espi->msg_queue)) { |
| struct spi_message *msg; |
| |
| msg = list_first_entry(&espi->msg_queue, |
| struct spi_message, queue); |
| list_del_init(&msg->queue); |
| msg->status = -ESHUTDOWN; |
| spin_unlock_irq(&espi->lock); |
| msg->complete(msg->context); |
| spin_lock_irq(&espi->lock); |
| } |
| spin_unlock_irq(&espi->lock); |
| |
| ep93xx_spi_release_dma(espi); |
| free_irq(espi->irq, espi); |
| iounmap(espi->regs_base); |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| release_mem_region(res->start, resource_size(res)); |
| clk_put(espi->clk); |
| platform_set_drvdata(pdev, NULL); |
| |
| spi_unregister_master(master); |
| return 0; |
| } |
| |
| static struct platform_driver ep93xx_spi_driver = { |
| .driver = { |
| .name = "ep93xx-spi", |
| .owner = THIS_MODULE, |
| }, |
| .remove = __exit_p(ep93xx_spi_remove), |
| }; |
| |
| static int __init ep93xx_spi_init(void) |
| { |
| return platform_driver_probe(&ep93xx_spi_driver, ep93xx_spi_probe); |
| } |
| module_init(ep93xx_spi_init); |
| |
| static void __exit ep93xx_spi_exit(void) |
| { |
| platform_driver_unregister(&ep93xx_spi_driver); |
| } |
| module_exit(ep93xx_spi_exit); |
| |
| MODULE_DESCRIPTION("EP93xx SPI Controller driver"); |
| MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:ep93xx-spi"); |