| /**************************************************************************** |
| * Driver for Solarflare Solarstorm network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2005-2009 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/tcp.h> |
| #include <linux/ip.h> |
| #include <linux/in.h> |
| #include <linux/ipv6.h> |
| #include <linux/slab.h> |
| #include <net/ipv6.h> |
| #include <linux/if_ether.h> |
| #include <linux/highmem.h> |
| #include "net_driver.h" |
| #include "efx.h" |
| #include "nic.h" |
| #include "workarounds.h" |
| |
| /* |
| * TX descriptor ring full threshold |
| * |
| * The tx_queue descriptor ring fill-level must fall below this value |
| * before we restart the netif queue |
| */ |
| #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u) |
| |
| static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, |
| struct efx_tx_buffer *buffer) |
| { |
| if (buffer->unmap_len) { |
| struct pci_dev *pci_dev = tx_queue->efx->pci_dev; |
| dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len - |
| buffer->unmap_len); |
| if (buffer->unmap_single) |
| pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len, |
| PCI_DMA_TODEVICE); |
| else |
| pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len, |
| PCI_DMA_TODEVICE); |
| buffer->unmap_len = 0; |
| buffer->unmap_single = false; |
| } |
| |
| if (buffer->skb) { |
| dev_kfree_skb_any((struct sk_buff *) buffer->skb); |
| buffer->skb = NULL; |
| netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, |
| "TX queue %d transmission id %x complete\n", |
| tx_queue->queue, tx_queue->read_count); |
| } |
| } |
| |
| /** |
| * struct efx_tso_header - a DMA mapped buffer for packet headers |
| * @next: Linked list of free ones. |
| * The list is protected by the TX queue lock. |
| * @dma_unmap_len: Length to unmap for an oversize buffer, or 0. |
| * @dma_addr: The DMA address of the header below. |
| * |
| * This controls the memory used for a TSO header. Use TSOH_DATA() |
| * to find the packet header data. Use TSOH_SIZE() to calculate the |
| * total size required for a given packet header length. TSO headers |
| * in the free list are exactly %TSOH_STD_SIZE bytes in size. |
| */ |
| struct efx_tso_header { |
| union { |
| struct efx_tso_header *next; |
| size_t unmap_len; |
| }; |
| dma_addr_t dma_addr; |
| }; |
| |
| static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, |
| struct sk_buff *skb); |
| static void efx_fini_tso(struct efx_tx_queue *tx_queue); |
| static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, |
| struct efx_tso_header *tsoh); |
| |
| static void efx_tsoh_free(struct efx_tx_queue *tx_queue, |
| struct efx_tx_buffer *buffer) |
| { |
| if (buffer->tsoh) { |
| if (likely(!buffer->tsoh->unmap_len)) { |
| buffer->tsoh->next = tx_queue->tso_headers_free; |
| tx_queue->tso_headers_free = buffer->tsoh; |
| } else { |
| efx_tsoh_heap_free(tx_queue, buffer->tsoh); |
| } |
| buffer->tsoh = NULL; |
| } |
| } |
| |
| |
| static inline unsigned |
| efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr) |
| { |
| /* Depending on the NIC revision, we can use descriptor |
| * lengths up to 8K or 8K-1. However, since PCI Express |
| * devices must split read requests at 4K boundaries, there is |
| * little benefit from using descriptors that cross those |
| * boundaries and we keep things simple by not doing so. |
| */ |
| unsigned len = (~dma_addr & 0xfff) + 1; |
| |
| /* Work around hardware bug for unaligned buffers. */ |
| if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf)) |
| len = min_t(unsigned, len, 512 - (dma_addr & 0xf)); |
| |
| return len; |
| } |
| |
| /* |
| * Add a socket buffer to a TX queue |
| * |
| * This maps all fragments of a socket buffer for DMA and adds them to |
| * the TX queue. The queue's insert pointer will be incremented by |
| * the number of fragments in the socket buffer. |
| * |
| * If any DMA mapping fails, any mapped fragments will be unmapped, |
| * the queue's insert pointer will be restored to its original value. |
| * |
| * This function is split out from efx_hard_start_xmit to allow the |
| * loopback test to direct packets via specific TX queues. |
| * |
| * Returns NETDEV_TX_OK or NETDEV_TX_BUSY |
| * You must hold netif_tx_lock() to call this function. |
| */ |
| netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| struct pci_dev *pci_dev = efx->pci_dev; |
| struct efx_tx_buffer *buffer; |
| skb_frag_t *fragment; |
| struct page *page; |
| int page_offset; |
| unsigned int len, unmap_len = 0, fill_level, insert_ptr; |
| dma_addr_t dma_addr, unmap_addr = 0; |
| unsigned int dma_len; |
| bool unmap_single; |
| int q_space, i = 0; |
| netdev_tx_t rc = NETDEV_TX_OK; |
| |
| EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); |
| |
| if (skb_shinfo(skb)->gso_size) |
| return efx_enqueue_skb_tso(tx_queue, skb); |
| |
| /* Get size of the initial fragment */ |
| len = skb_headlen(skb); |
| |
| /* Pad if necessary */ |
| if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) { |
| EFX_BUG_ON_PARANOID(skb->data_len); |
| len = 32 + 1; |
| if (skb_pad(skb, len - skb->len)) |
| return NETDEV_TX_OK; |
| } |
| |
| fill_level = tx_queue->insert_count - tx_queue->old_read_count; |
| q_space = efx->txq_entries - 1 - fill_level; |
| |
| /* Map for DMA. Use pci_map_single rather than pci_map_page |
| * since this is more efficient on machines with sparse |
| * memory. |
| */ |
| unmap_single = true; |
| dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE); |
| |
| /* Process all fragments */ |
| while (1) { |
| if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr))) |
| goto pci_err; |
| |
| /* Store fields for marking in the per-fragment final |
| * descriptor */ |
| unmap_len = len; |
| unmap_addr = dma_addr; |
| |
| /* Add to TX queue, splitting across DMA boundaries */ |
| do { |
| if (unlikely(q_space-- <= 0)) { |
| /* It might be that completions have |
| * happened since the xmit path last |
| * checked. Update the xmit path's |
| * copy of read_count. |
| */ |
| netif_tx_stop_queue(tx_queue->core_txq); |
| /* This memory barrier protects the |
| * change of queue state from the access |
| * of read_count. */ |
| smp_mb(); |
| tx_queue->old_read_count = |
| ACCESS_ONCE(tx_queue->read_count); |
| fill_level = (tx_queue->insert_count |
| - tx_queue->old_read_count); |
| q_space = efx->txq_entries - 1 - fill_level; |
| if (unlikely(q_space-- <= 0)) { |
| rc = NETDEV_TX_BUSY; |
| goto unwind; |
| } |
| smp_mb(); |
| netif_tx_start_queue(tx_queue->core_txq); |
| } |
| |
| insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; |
| buffer = &tx_queue->buffer[insert_ptr]; |
| efx_tsoh_free(tx_queue, buffer); |
| EFX_BUG_ON_PARANOID(buffer->tsoh); |
| EFX_BUG_ON_PARANOID(buffer->skb); |
| EFX_BUG_ON_PARANOID(buffer->len); |
| EFX_BUG_ON_PARANOID(!buffer->continuation); |
| EFX_BUG_ON_PARANOID(buffer->unmap_len); |
| |
| dma_len = efx_max_tx_len(efx, dma_addr); |
| if (likely(dma_len >= len)) |
| dma_len = len; |
| |
| /* Fill out per descriptor fields */ |
| buffer->len = dma_len; |
| buffer->dma_addr = dma_addr; |
| len -= dma_len; |
| dma_addr += dma_len; |
| ++tx_queue->insert_count; |
| } while (len); |
| |
| /* Transfer ownership of the unmapping to the final buffer */ |
| buffer->unmap_single = unmap_single; |
| buffer->unmap_len = unmap_len; |
| unmap_len = 0; |
| |
| /* Get address and size of next fragment */ |
| if (i >= skb_shinfo(skb)->nr_frags) |
| break; |
| fragment = &skb_shinfo(skb)->frags[i]; |
| len = fragment->size; |
| page = fragment->page; |
| page_offset = fragment->page_offset; |
| i++; |
| /* Map for DMA */ |
| unmap_single = false; |
| dma_addr = pci_map_page(pci_dev, page, page_offset, len, |
| PCI_DMA_TODEVICE); |
| } |
| |
| /* Transfer ownership of the skb to the final buffer */ |
| buffer->skb = skb; |
| buffer->continuation = false; |
| |
| /* Pass off to hardware */ |
| efx_nic_push_buffers(tx_queue); |
| |
| return NETDEV_TX_OK; |
| |
| pci_err: |
| netif_err(efx, tx_err, efx->net_dev, |
| " TX queue %d could not map skb with %d bytes %d " |
| "fragments for DMA\n", tx_queue->queue, skb->len, |
| skb_shinfo(skb)->nr_frags + 1); |
| |
| /* Mark the packet as transmitted, and free the SKB ourselves */ |
| dev_kfree_skb_any(skb); |
| |
| unwind: |
| /* Work backwards until we hit the original insert pointer value */ |
| while (tx_queue->insert_count != tx_queue->write_count) { |
| --tx_queue->insert_count; |
| insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; |
| buffer = &tx_queue->buffer[insert_ptr]; |
| efx_dequeue_buffer(tx_queue, buffer); |
| buffer->len = 0; |
| } |
| |
| /* Free the fragment we were mid-way through pushing */ |
| if (unmap_len) { |
| if (unmap_single) |
| pci_unmap_single(pci_dev, unmap_addr, unmap_len, |
| PCI_DMA_TODEVICE); |
| else |
| pci_unmap_page(pci_dev, unmap_addr, unmap_len, |
| PCI_DMA_TODEVICE); |
| } |
| |
| return rc; |
| } |
| |
| /* Remove packets from the TX queue |
| * |
| * This removes packets from the TX queue, up to and including the |
| * specified index. |
| */ |
| static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, |
| unsigned int index) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| unsigned int stop_index, read_ptr; |
| |
| stop_index = (index + 1) & tx_queue->ptr_mask; |
| read_ptr = tx_queue->read_count & tx_queue->ptr_mask; |
| |
| while (read_ptr != stop_index) { |
| struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; |
| if (unlikely(buffer->len == 0)) { |
| netif_err(efx, tx_err, efx->net_dev, |
| "TX queue %d spurious TX completion id %x\n", |
| tx_queue->queue, read_ptr); |
| efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); |
| return; |
| } |
| |
| efx_dequeue_buffer(tx_queue, buffer); |
| buffer->continuation = true; |
| buffer->len = 0; |
| |
| ++tx_queue->read_count; |
| read_ptr = tx_queue->read_count & tx_queue->ptr_mask; |
| } |
| } |
| |
| /* Initiate a packet transmission. We use one channel per CPU |
| * (sharing when we have more CPUs than channels). On Falcon, the TX |
| * completion events will be directed back to the CPU that transmitted |
| * the packet, which should be cache-efficient. |
| * |
| * Context: non-blocking. |
| * Note that returning anything other than NETDEV_TX_OK will cause the |
| * OS to free the skb. |
| */ |
| netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb, |
| struct net_device *net_dev) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct efx_tx_queue *tx_queue; |
| unsigned index, type; |
| |
| if (unlikely(efx->port_inhibited)) |
| return NETDEV_TX_BUSY; |
| |
| index = skb_get_queue_mapping(skb); |
| type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; |
| if (index >= efx->n_tx_channels) { |
| index -= efx->n_tx_channels; |
| type |= EFX_TXQ_TYPE_HIGHPRI; |
| } |
| tx_queue = efx_get_tx_queue(efx, index, type); |
| |
| return efx_enqueue_skb(tx_queue, skb); |
| } |
| |
| void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| |
| /* Must be inverse of queue lookup in efx_hard_start_xmit() */ |
| tx_queue->core_txq = |
| netdev_get_tx_queue(efx->net_dev, |
| tx_queue->queue / EFX_TXQ_TYPES + |
| ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? |
| efx->n_tx_channels : 0)); |
| } |
| |
| int efx_setup_tc(struct net_device *net_dev, u8 num_tc) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct efx_channel *channel; |
| struct efx_tx_queue *tx_queue; |
| unsigned tc; |
| int rc; |
| |
| if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC) |
| return -EINVAL; |
| |
| if (num_tc == net_dev->num_tc) |
| return 0; |
| |
| for (tc = 0; tc < num_tc; tc++) { |
| net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; |
| net_dev->tc_to_txq[tc].count = efx->n_tx_channels; |
| } |
| |
| if (num_tc > net_dev->num_tc) { |
| /* Initialise high-priority queues as necessary */ |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_possible_channel_tx_queue(tx_queue, |
| channel) { |
| if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI)) |
| continue; |
| if (!tx_queue->buffer) { |
| rc = efx_probe_tx_queue(tx_queue); |
| if (rc) |
| return rc; |
| } |
| if (!tx_queue->initialised) |
| efx_init_tx_queue(tx_queue); |
| efx_init_tx_queue_core_txq(tx_queue); |
| } |
| } |
| } else { |
| /* Reduce number of classes before number of queues */ |
| net_dev->num_tc = num_tc; |
| } |
| |
| rc = netif_set_real_num_tx_queues(net_dev, |
| max_t(int, num_tc, 1) * |
| efx->n_tx_channels); |
| if (rc) |
| return rc; |
| |
| /* Do not destroy high-priority queues when they become |
| * unused. We would have to flush them first, and it is |
| * fairly difficult to flush a subset of TX queues. Leave |
| * it to efx_fini_channels(). |
| */ |
| |
| net_dev->num_tc = num_tc; |
| return 0; |
| } |
| |
| void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) |
| { |
| unsigned fill_level; |
| struct efx_nic *efx = tx_queue->efx; |
| |
| EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask); |
| |
| efx_dequeue_buffers(tx_queue, index); |
| |
| /* See if we need to restart the netif queue. This barrier |
| * separates the update of read_count from the test of the |
| * queue state. */ |
| smp_mb(); |
| if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && |
| likely(efx->port_enabled)) { |
| fill_level = tx_queue->insert_count - tx_queue->read_count; |
| if (fill_level < EFX_TXQ_THRESHOLD(efx)) { |
| EFX_BUG_ON_PARANOID(!efx_dev_registered(efx)); |
| netif_tx_wake_queue(tx_queue->core_txq); |
| } |
| } |
| |
| /* Check whether the hardware queue is now empty */ |
| if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { |
| tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count); |
| if (tx_queue->read_count == tx_queue->old_write_count) { |
| smp_mb(); |
| tx_queue->empty_read_count = |
| tx_queue->read_count | EFX_EMPTY_COUNT_VALID; |
| } |
| } |
| } |
| |
| int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| unsigned int entries; |
| int i, rc; |
| |
| /* Create the smallest power-of-two aligned ring */ |
| entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE); |
| EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); |
| tx_queue->ptr_mask = entries - 1; |
| |
| netif_dbg(efx, probe, efx->net_dev, |
| "creating TX queue %d size %#x mask %#x\n", |
| tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); |
| |
| /* Allocate software ring */ |
| tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer), |
| GFP_KERNEL); |
| if (!tx_queue->buffer) |
| return -ENOMEM; |
| for (i = 0; i <= tx_queue->ptr_mask; ++i) |
| tx_queue->buffer[i].continuation = true; |
| |
| /* Allocate hardware ring */ |
| rc = efx_nic_probe_tx(tx_queue); |
| if (rc) |
| goto fail; |
| |
| return 0; |
| |
| fail: |
| kfree(tx_queue->buffer); |
| tx_queue->buffer = NULL; |
| return rc; |
| } |
| |
| void efx_init_tx_queue(struct efx_tx_queue *tx_queue) |
| { |
| netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, |
| "initialising TX queue %d\n", tx_queue->queue); |
| |
| tx_queue->insert_count = 0; |
| tx_queue->write_count = 0; |
| tx_queue->old_write_count = 0; |
| tx_queue->read_count = 0; |
| tx_queue->old_read_count = 0; |
| tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID; |
| |
| /* Set up TX descriptor ring */ |
| efx_nic_init_tx(tx_queue); |
| |
| tx_queue->initialised = true; |
| } |
| |
| void efx_release_tx_buffers(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_tx_buffer *buffer; |
| |
| if (!tx_queue->buffer) |
| return; |
| |
| /* Free any buffers left in the ring */ |
| while (tx_queue->read_count != tx_queue->write_count) { |
| buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; |
| efx_dequeue_buffer(tx_queue, buffer); |
| buffer->continuation = true; |
| buffer->len = 0; |
| |
| ++tx_queue->read_count; |
| } |
| } |
| |
| void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) |
| { |
| if (!tx_queue->initialised) |
| return; |
| |
| netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, |
| "shutting down TX queue %d\n", tx_queue->queue); |
| |
| tx_queue->initialised = false; |
| |
| /* Flush TX queue, remove descriptor ring */ |
| efx_nic_fini_tx(tx_queue); |
| |
| efx_release_tx_buffers(tx_queue); |
| |
| /* Free up TSO header cache */ |
| efx_fini_tso(tx_queue); |
| } |
| |
| void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) |
| { |
| if (!tx_queue->buffer) |
| return; |
| |
| netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, |
| "destroying TX queue %d\n", tx_queue->queue); |
| efx_nic_remove_tx(tx_queue); |
| |
| kfree(tx_queue->buffer); |
| tx_queue->buffer = NULL; |
| } |
| |
| |
| /* Efx TCP segmentation acceleration. |
| * |
| * Why? Because by doing it here in the driver we can go significantly |
| * faster than the GSO. |
| * |
| * Requires TX checksum offload support. |
| */ |
| |
| /* Number of bytes inserted at the start of a TSO header buffer, |
| * similar to NET_IP_ALIGN. |
| */ |
| #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS |
| #define TSOH_OFFSET 0 |
| #else |
| #define TSOH_OFFSET NET_IP_ALIGN |
| #endif |
| |
| #define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET) |
| |
| /* Total size of struct efx_tso_header, buffer and padding */ |
| #define TSOH_SIZE(hdr_len) \ |
| (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len) |
| |
| /* Size of blocks on free list. Larger blocks must be allocated from |
| * the heap. |
| */ |
| #define TSOH_STD_SIZE 128 |
| |
| #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2)) |
| #define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data) |
| #define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data) |
| #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data) |
| #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data) |
| |
| /** |
| * struct tso_state - TSO state for an SKB |
| * @out_len: Remaining length in current segment |
| * @seqnum: Current sequence number |
| * @ipv4_id: Current IPv4 ID, host endian |
| * @packet_space: Remaining space in current packet |
| * @dma_addr: DMA address of current position |
| * @in_len: Remaining length in current SKB fragment |
| * @unmap_len: Length of SKB fragment |
| * @unmap_addr: DMA address of SKB fragment |
| * @unmap_single: DMA single vs page mapping flag |
| * @protocol: Network protocol (after any VLAN header) |
| * @header_len: Number of bytes of header |
| * @full_packet_size: Number of bytes to put in each outgoing segment |
| * |
| * The state used during segmentation. It is put into this data structure |
| * just to make it easy to pass into inline functions. |
| */ |
| struct tso_state { |
| /* Output position */ |
| unsigned out_len; |
| unsigned seqnum; |
| unsigned ipv4_id; |
| unsigned packet_space; |
| |
| /* Input position */ |
| dma_addr_t dma_addr; |
| unsigned in_len; |
| unsigned unmap_len; |
| dma_addr_t unmap_addr; |
| bool unmap_single; |
| |
| __be16 protocol; |
| unsigned header_len; |
| int full_packet_size; |
| }; |
| |
| |
| /* |
| * Verify that our various assumptions about sk_buffs and the conditions |
| * under which TSO will be attempted hold true. Return the protocol number. |
| */ |
| static __be16 efx_tso_check_protocol(struct sk_buff *skb) |
| { |
| __be16 protocol = skb->protocol; |
| |
| EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto != |
| protocol); |
| if (protocol == htons(ETH_P_8021Q)) { |
| /* Find the encapsulated protocol; reset network header |
| * and transport header based on that. */ |
| struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; |
| protocol = veh->h_vlan_encapsulated_proto; |
| skb_set_network_header(skb, sizeof(*veh)); |
| if (protocol == htons(ETH_P_IP)) |
| skb_set_transport_header(skb, sizeof(*veh) + |
| 4 * ip_hdr(skb)->ihl); |
| else if (protocol == htons(ETH_P_IPV6)) |
| skb_set_transport_header(skb, sizeof(*veh) + |
| sizeof(struct ipv6hdr)); |
| } |
| |
| if (protocol == htons(ETH_P_IP)) { |
| EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); |
| } else { |
| EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6)); |
| EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP); |
| } |
| EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) |
| + (tcp_hdr(skb)->doff << 2u)) > |
| skb_headlen(skb)); |
| |
| return protocol; |
| } |
| |
| |
| /* |
| * Allocate a page worth of efx_tso_header structures, and string them |
| * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM. |
| */ |
| static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue) |
| { |
| |
| struct pci_dev *pci_dev = tx_queue->efx->pci_dev; |
| struct efx_tso_header *tsoh; |
| dma_addr_t dma_addr; |
| u8 *base_kva, *kva; |
| |
| base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr); |
| if (base_kva == NULL) { |
| netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev, |
| "Unable to allocate page for TSO headers\n"); |
| return -ENOMEM; |
| } |
| |
| /* pci_alloc_consistent() allocates pages. */ |
| EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u)); |
| |
| for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) { |
| tsoh = (struct efx_tso_header *)kva; |
| tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva); |
| tsoh->next = tx_queue->tso_headers_free; |
| tx_queue->tso_headers_free = tsoh; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* Free up a TSO header, and all others in the same page. */ |
| static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue, |
| struct efx_tso_header *tsoh, |
| struct pci_dev *pci_dev) |
| { |
| struct efx_tso_header **p; |
| unsigned long base_kva; |
| dma_addr_t base_dma; |
| |
| base_kva = (unsigned long)tsoh & PAGE_MASK; |
| base_dma = tsoh->dma_addr & PAGE_MASK; |
| |
| p = &tx_queue->tso_headers_free; |
| while (*p != NULL) { |
| if (((unsigned long)*p & PAGE_MASK) == base_kva) |
| *p = (*p)->next; |
| else |
| p = &(*p)->next; |
| } |
| |
| pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma); |
| } |
| |
| static struct efx_tso_header * |
| efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len) |
| { |
| struct efx_tso_header *tsoh; |
| |
| tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA); |
| if (unlikely(!tsoh)) |
| return NULL; |
| |
| tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev, |
| TSOH_BUFFER(tsoh), header_len, |
| PCI_DMA_TODEVICE); |
| if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev, |
| tsoh->dma_addr))) { |
| kfree(tsoh); |
| return NULL; |
| } |
| |
| tsoh->unmap_len = header_len; |
| return tsoh; |
| } |
| |
| static void |
| efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh) |
| { |
| pci_unmap_single(tx_queue->efx->pci_dev, |
| tsoh->dma_addr, tsoh->unmap_len, |
| PCI_DMA_TODEVICE); |
| kfree(tsoh); |
| } |
| |
| /** |
| * efx_tx_queue_insert - push descriptors onto the TX queue |
| * @tx_queue: Efx TX queue |
| * @dma_addr: DMA address of fragment |
| * @len: Length of fragment |
| * @final_buffer: The final buffer inserted into the queue |
| * |
| * Push descriptors onto the TX queue. Return 0 on success or 1 if |
| * @tx_queue full. |
| */ |
| static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, |
| dma_addr_t dma_addr, unsigned len, |
| struct efx_tx_buffer **final_buffer) |
| { |
| struct efx_tx_buffer *buffer; |
| struct efx_nic *efx = tx_queue->efx; |
| unsigned dma_len, fill_level, insert_ptr; |
| int q_space; |
| |
| EFX_BUG_ON_PARANOID(len <= 0); |
| |
| fill_level = tx_queue->insert_count - tx_queue->old_read_count; |
| /* -1 as there is no way to represent all descriptors used */ |
| q_space = efx->txq_entries - 1 - fill_level; |
| |
| while (1) { |
| if (unlikely(q_space-- <= 0)) { |
| /* It might be that completions have happened |
| * since the xmit path last checked. Update |
| * the xmit path's copy of read_count. |
| */ |
| netif_tx_stop_queue(tx_queue->core_txq); |
| /* This memory barrier protects the change of |
| * queue state from the access of read_count. */ |
| smp_mb(); |
| tx_queue->old_read_count = |
| ACCESS_ONCE(tx_queue->read_count); |
| fill_level = (tx_queue->insert_count |
| - tx_queue->old_read_count); |
| q_space = efx->txq_entries - 1 - fill_level; |
| if (unlikely(q_space-- <= 0)) { |
| *final_buffer = NULL; |
| return 1; |
| } |
| smp_mb(); |
| netif_tx_start_queue(tx_queue->core_txq); |
| } |
| |
| insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; |
| buffer = &tx_queue->buffer[insert_ptr]; |
| ++tx_queue->insert_count; |
| |
| EFX_BUG_ON_PARANOID(tx_queue->insert_count - |
| tx_queue->read_count >= |
| efx->txq_entries); |
| |
| efx_tsoh_free(tx_queue, buffer); |
| EFX_BUG_ON_PARANOID(buffer->len); |
| EFX_BUG_ON_PARANOID(buffer->unmap_len); |
| EFX_BUG_ON_PARANOID(buffer->skb); |
| EFX_BUG_ON_PARANOID(!buffer->continuation); |
| EFX_BUG_ON_PARANOID(buffer->tsoh); |
| |
| buffer->dma_addr = dma_addr; |
| |
| dma_len = efx_max_tx_len(efx, dma_addr); |
| |
| /* If there is enough space to send then do so */ |
| if (dma_len >= len) |
| break; |
| |
| buffer->len = dma_len; /* Don't set the other members */ |
| dma_addr += dma_len; |
| len -= dma_len; |
| } |
| |
| EFX_BUG_ON_PARANOID(!len); |
| buffer->len = len; |
| *final_buffer = buffer; |
| return 0; |
| } |
| |
| |
| /* |
| * Put a TSO header into the TX queue. |
| * |
| * This is special-cased because we know that it is small enough to fit in |
| * a single fragment, and we know it doesn't cross a page boundary. It |
| * also allows us to not worry about end-of-packet etc. |
| */ |
| static void efx_tso_put_header(struct efx_tx_queue *tx_queue, |
| struct efx_tso_header *tsoh, unsigned len) |
| { |
| struct efx_tx_buffer *buffer; |
| |
| buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask]; |
| efx_tsoh_free(tx_queue, buffer); |
| EFX_BUG_ON_PARANOID(buffer->len); |
| EFX_BUG_ON_PARANOID(buffer->unmap_len); |
| EFX_BUG_ON_PARANOID(buffer->skb); |
| EFX_BUG_ON_PARANOID(!buffer->continuation); |
| EFX_BUG_ON_PARANOID(buffer->tsoh); |
| buffer->len = len; |
| buffer->dma_addr = tsoh->dma_addr; |
| buffer->tsoh = tsoh; |
| |
| ++tx_queue->insert_count; |
| } |
| |
| |
| /* Remove descriptors put into a tx_queue. */ |
| static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) |
| { |
| struct efx_tx_buffer *buffer; |
| dma_addr_t unmap_addr; |
| |
| /* Work backwards until we hit the original insert pointer value */ |
| while (tx_queue->insert_count != tx_queue->write_count) { |
| --tx_queue->insert_count; |
| buffer = &tx_queue->buffer[tx_queue->insert_count & |
| tx_queue->ptr_mask]; |
| efx_tsoh_free(tx_queue, buffer); |
| EFX_BUG_ON_PARANOID(buffer->skb); |
| if (buffer->unmap_len) { |
| unmap_addr = (buffer->dma_addr + buffer->len - |
| buffer->unmap_len); |
| if (buffer->unmap_single) |
| pci_unmap_single(tx_queue->efx->pci_dev, |
| unmap_addr, buffer->unmap_len, |
| PCI_DMA_TODEVICE); |
| else |
| pci_unmap_page(tx_queue->efx->pci_dev, |
| unmap_addr, buffer->unmap_len, |
| PCI_DMA_TODEVICE); |
| buffer->unmap_len = 0; |
| } |
| buffer->len = 0; |
| buffer->continuation = true; |
| } |
| } |
| |
| |
| /* Parse the SKB header and initialise state. */ |
| static void tso_start(struct tso_state *st, const struct sk_buff *skb) |
| { |
| /* All ethernet/IP/TCP headers combined size is TCP header size |
| * plus offset of TCP header relative to start of packet. |
| */ |
| st->header_len = ((tcp_hdr(skb)->doff << 2u) |
| + PTR_DIFF(tcp_hdr(skb), skb->data)); |
| st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size; |
| |
| if (st->protocol == htons(ETH_P_IP)) |
| st->ipv4_id = ntohs(ip_hdr(skb)->id); |
| else |
| st->ipv4_id = 0; |
| st->seqnum = ntohl(tcp_hdr(skb)->seq); |
| |
| EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg); |
| EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn); |
| EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst); |
| |
| st->packet_space = st->full_packet_size; |
| st->out_len = skb->len - st->header_len; |
| st->unmap_len = 0; |
| st->unmap_single = false; |
| } |
| |
| static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, |
| skb_frag_t *frag) |
| { |
| st->unmap_addr = pci_map_page(efx->pci_dev, frag->page, |
| frag->page_offset, frag->size, |
| PCI_DMA_TODEVICE); |
| if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) { |
| st->unmap_single = false; |
| st->unmap_len = frag->size; |
| st->in_len = frag->size; |
| st->dma_addr = st->unmap_addr; |
| return 0; |
| } |
| return -ENOMEM; |
| } |
| |
| static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx, |
| const struct sk_buff *skb) |
| { |
| int hl = st->header_len; |
| int len = skb_headlen(skb) - hl; |
| |
| st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl, |
| len, PCI_DMA_TODEVICE); |
| if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) { |
| st->unmap_single = true; |
| st->unmap_len = len; |
| st->in_len = len; |
| st->dma_addr = st->unmap_addr; |
| return 0; |
| } |
| return -ENOMEM; |
| } |
| |
| |
| /** |
| * tso_fill_packet_with_fragment - form descriptors for the current fragment |
| * @tx_queue: Efx TX queue |
| * @skb: Socket buffer |
| * @st: TSO state |
| * |
| * Form descriptors for the current fragment, until we reach the end |
| * of fragment or end-of-packet. Return 0 on success, 1 if not enough |
| * space in @tx_queue. |
| */ |
| static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, |
| const struct sk_buff *skb, |
| struct tso_state *st) |
| { |
| struct efx_tx_buffer *buffer; |
| int n, end_of_packet, rc; |
| |
| if (st->in_len == 0) |
| return 0; |
| if (st->packet_space == 0) |
| return 0; |
| |
| EFX_BUG_ON_PARANOID(st->in_len <= 0); |
| EFX_BUG_ON_PARANOID(st->packet_space <= 0); |
| |
| n = min(st->in_len, st->packet_space); |
| |
| st->packet_space -= n; |
| st->out_len -= n; |
| st->in_len -= n; |
| |
| rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer); |
| if (likely(rc == 0)) { |
| if (st->out_len == 0) |
| /* Transfer ownership of the skb */ |
| buffer->skb = skb; |
| |
| end_of_packet = st->out_len == 0 || st->packet_space == 0; |
| buffer->continuation = !end_of_packet; |
| |
| if (st->in_len == 0) { |
| /* Transfer ownership of the pci mapping */ |
| buffer->unmap_len = st->unmap_len; |
| buffer->unmap_single = st->unmap_single; |
| st->unmap_len = 0; |
| } |
| } |
| |
| st->dma_addr += n; |
| return rc; |
| } |
| |
| |
| /** |
| * tso_start_new_packet - generate a new header and prepare for the new packet |
| * @tx_queue: Efx TX queue |
| * @skb: Socket buffer |
| * @st: TSO state |
| * |
| * Generate a new header and prepare for the new packet. Return 0 on |
| * success, or -1 if failed to alloc header. |
| */ |
| static int tso_start_new_packet(struct efx_tx_queue *tx_queue, |
| const struct sk_buff *skb, |
| struct tso_state *st) |
| { |
| struct efx_tso_header *tsoh; |
| struct tcphdr *tsoh_th; |
| unsigned ip_length; |
| u8 *header; |
| |
| /* Allocate a DMA-mapped header buffer. */ |
| if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) { |
| if (tx_queue->tso_headers_free == NULL) { |
| if (efx_tsoh_block_alloc(tx_queue)) |
| return -1; |
| } |
| EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free); |
| tsoh = tx_queue->tso_headers_free; |
| tx_queue->tso_headers_free = tsoh->next; |
| tsoh->unmap_len = 0; |
| } else { |
| tx_queue->tso_long_headers++; |
| tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len); |
| if (unlikely(!tsoh)) |
| return -1; |
| } |
| |
| header = TSOH_BUFFER(tsoh); |
| tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb)); |
| |
| /* Copy and update the headers. */ |
| memcpy(header, skb->data, st->header_len); |
| |
| tsoh_th->seq = htonl(st->seqnum); |
| st->seqnum += skb_shinfo(skb)->gso_size; |
| if (st->out_len > skb_shinfo(skb)->gso_size) { |
| /* This packet will not finish the TSO burst. */ |
| ip_length = st->full_packet_size - ETH_HDR_LEN(skb); |
| tsoh_th->fin = 0; |
| tsoh_th->psh = 0; |
| } else { |
| /* This packet will be the last in the TSO burst. */ |
| ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len; |
| tsoh_th->fin = tcp_hdr(skb)->fin; |
| tsoh_th->psh = tcp_hdr(skb)->psh; |
| } |
| |
| if (st->protocol == htons(ETH_P_IP)) { |
| struct iphdr *tsoh_iph = |
| (struct iphdr *)(header + SKB_IPV4_OFF(skb)); |
| |
| tsoh_iph->tot_len = htons(ip_length); |
| |
| /* Linux leaves suitable gaps in the IP ID space for us to fill. */ |
| tsoh_iph->id = htons(st->ipv4_id); |
| st->ipv4_id++; |
| } else { |
| struct ipv6hdr *tsoh_iph = |
| (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb)); |
| |
| tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph)); |
| } |
| |
| st->packet_space = skb_shinfo(skb)->gso_size; |
| ++tx_queue->tso_packets; |
| |
| /* Form a descriptor for this header. */ |
| efx_tso_put_header(tx_queue, tsoh, st->header_len); |
| |
| return 0; |
| } |
| |
| |
| /** |
| * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer |
| * @tx_queue: Efx TX queue |
| * @skb: Socket buffer |
| * |
| * Context: You must hold netif_tx_lock() to call this function. |
| * |
| * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if |
| * @skb was not enqueued. In all cases @skb is consumed. Return |
| * %NETDEV_TX_OK or %NETDEV_TX_BUSY. |
| */ |
| static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, |
| struct sk_buff *skb) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| int frag_i, rc, rc2 = NETDEV_TX_OK; |
| struct tso_state state; |
| |
| /* Find the packet protocol and sanity-check it */ |
| state.protocol = efx_tso_check_protocol(skb); |
| |
| EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); |
| |
| tso_start(&state, skb); |
| |
| /* Assume that skb header area contains exactly the headers, and |
| * all payload is in the frag list. |
| */ |
| if (skb_headlen(skb) == state.header_len) { |
| /* Grab the first payload fragment. */ |
| EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1); |
| frag_i = 0; |
| rc = tso_get_fragment(&state, efx, |
| skb_shinfo(skb)->frags + frag_i); |
| if (rc) |
| goto mem_err; |
| } else { |
| rc = tso_get_head_fragment(&state, efx, skb); |
| if (rc) |
| goto mem_err; |
| frag_i = -1; |
| } |
| |
| if (tso_start_new_packet(tx_queue, skb, &state) < 0) |
| goto mem_err; |
| |
| while (1) { |
| rc = tso_fill_packet_with_fragment(tx_queue, skb, &state); |
| if (unlikely(rc)) { |
| rc2 = NETDEV_TX_BUSY; |
| goto unwind; |
| } |
| |
| /* Move onto the next fragment? */ |
| if (state.in_len == 0) { |
| if (++frag_i >= skb_shinfo(skb)->nr_frags) |
| /* End of payload reached. */ |
| break; |
| rc = tso_get_fragment(&state, efx, |
| skb_shinfo(skb)->frags + frag_i); |
| if (rc) |
| goto mem_err; |
| } |
| |
| /* Start at new packet? */ |
| if (state.packet_space == 0 && |
| tso_start_new_packet(tx_queue, skb, &state) < 0) |
| goto mem_err; |
| } |
| |
| /* Pass off to hardware */ |
| efx_nic_push_buffers(tx_queue); |
| |
| tx_queue->tso_bursts++; |
| return NETDEV_TX_OK; |
| |
| mem_err: |
| netif_err(efx, tx_err, efx->net_dev, |
| "Out of memory for TSO headers, or PCI mapping error\n"); |
| dev_kfree_skb_any(skb); |
| |
| unwind: |
| /* Free the DMA mapping we were in the process of writing out */ |
| if (state.unmap_len) { |
| if (state.unmap_single) |
| pci_unmap_single(efx->pci_dev, state.unmap_addr, |
| state.unmap_len, PCI_DMA_TODEVICE); |
| else |
| pci_unmap_page(efx->pci_dev, state.unmap_addr, |
| state.unmap_len, PCI_DMA_TODEVICE); |
| } |
| |
| efx_enqueue_unwind(tx_queue); |
| return rc2; |
| } |
| |
| |
| /* |
| * Free up all TSO datastructures associated with tx_queue. This |
| * routine should be called only once the tx_queue is both empty and |
| * will no longer be used. |
| */ |
| static void efx_fini_tso(struct efx_tx_queue *tx_queue) |
| { |
| unsigned i; |
| |
| if (tx_queue->buffer) { |
| for (i = 0; i <= tx_queue->ptr_mask; ++i) |
| efx_tsoh_free(tx_queue, &tx_queue->buffer[i]); |
| } |
| |
| while (tx_queue->tso_headers_free != NULL) |
| efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free, |
| tx_queue->efx->pci_dev); |
| } |