| /* |
| * Copyright © 2010 Daniel Vetter |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <drm/drmP.h> |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| #include "i915_trace.h" |
| #include "intel_drv.h" |
| |
| #define GEN6_PPGTT_PD_ENTRIES 512 |
| #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t)) |
| typedef uint64_t gen8_gtt_pte_t; |
| typedef gen8_gtt_pte_t gen8_ppgtt_pde_t; |
| |
| /* PPGTT stuff */ |
| #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0)) |
| #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0)) |
| |
| #define GEN6_PDE_VALID (1 << 0) |
| /* gen6+ has bit 11-4 for physical addr bit 39-32 */ |
| #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) |
| |
| #define GEN6_PTE_VALID (1 << 0) |
| #define GEN6_PTE_UNCACHED (1 << 1) |
| #define HSW_PTE_UNCACHED (0) |
| #define GEN6_PTE_CACHE_LLC (2 << 1) |
| #define GEN7_PTE_CACHE_L3_LLC (3 << 1) |
| #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) |
| #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr) |
| |
| /* Cacheability Control is a 4-bit value. The low three bits are stored in * |
| * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE. |
| */ |
| #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \ |
| (((bits) & 0x8) << (11 - 3))) |
| #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2) |
| #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3) |
| #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb) |
| #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8) |
| #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6) |
| #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7) |
| |
| #define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t)) |
| #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t)) |
| #define GEN8_LEGACY_PDPS 4 |
| |
| #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD) |
| #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */ |
| #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */ |
| #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */ |
| |
| static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid) |
| { |
| gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0; |
| pte |= addr; |
| if (level != I915_CACHE_NONE) |
| pte |= PPAT_CACHED_INDEX; |
| else |
| pte |= PPAT_UNCACHED_INDEX; |
| return pte; |
| } |
| |
| static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev, |
| dma_addr_t addr, |
| enum i915_cache_level level) |
| { |
| gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW; |
| pde |= addr; |
| if (level != I915_CACHE_NONE) |
| pde |= PPAT_CACHED_PDE_INDEX; |
| else |
| pde |= PPAT_UNCACHED_INDEX; |
| return pde; |
| } |
| |
| static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid) |
| { |
| gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_L3_LLC: |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| return pte; |
| } |
| |
| static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid) |
| { |
| gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_L3_LLC: |
| pte |= GEN7_PTE_CACHE_L3_LLC; |
| break; |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| return pte; |
| } |
| |
| #define BYT_PTE_WRITEABLE (1 << 1) |
| #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2) |
| |
| static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid) |
| { |
| gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| /* Mark the page as writeable. Other platforms don't have a |
| * setting for read-only/writable, so this matches that behavior. |
| */ |
| pte |= BYT_PTE_WRITEABLE; |
| |
| if (level != I915_CACHE_NONE) |
| pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; |
| |
| return pte; |
| } |
| |
| static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid) |
| { |
| gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= HSW_PTE_ADDR_ENCODE(addr); |
| |
| if (level != I915_CACHE_NONE) |
| pte |= HSW_WB_LLC_AGE3; |
| |
| return pte; |
| } |
| |
| static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid) |
| { |
| gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= HSW_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_NONE: |
| break; |
| case I915_CACHE_WT: |
| pte |= HSW_WT_ELLC_LLC_AGE3; |
| break; |
| default: |
| pte |= HSW_WB_ELLC_LLC_AGE3; |
| break; |
| } |
| |
| return pte; |
| } |
| |
| /* Broadwell Page Directory Pointer Descriptors */ |
| static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry, |
| uint64_t val) |
| { |
| int ret; |
| |
| BUG_ON(entry >= 4); |
| |
| ret = intel_ring_begin(ring, 6); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry)); |
| intel_ring_emit(ring, (u32)(val >> 32)); |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry)); |
| intel_ring_emit(ring, (u32)(val)); |
| intel_ring_advance(ring); |
| |
| return 0; |
| } |
| |
| static int gen8_ppgtt_enable(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_ring_buffer *ring; |
| struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; |
| int i, j, ret; |
| |
| /* bit of a hack to find the actual last used pd */ |
| int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE; |
| |
| for_each_ring(ring, dev_priv, j) { |
| I915_WRITE(RING_MODE_GEN7(ring), |
| _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| } |
| |
| for (i = used_pd - 1; i >= 0; i--) { |
| dma_addr_t addr = ppgtt->pd_dma_addr[i]; |
| for_each_ring(ring, dev_priv, j) { |
| ret = gen8_write_pdp(ring, i, addr); |
| if (ret) |
| goto err_out; |
| } |
| } |
| return 0; |
| |
| err_out: |
| for_each_ring(ring, dev_priv, j) |
| I915_WRITE(RING_MODE_GEN7(ring), |
| _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE)); |
| return ret; |
| } |
| |
| static void gen8_ppgtt_clear_range(struct i915_address_space *vm, |
| unsigned first_entry, |
| unsigned num_entries, |
| bool use_scratch) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| gen8_gtt_pte_t *pt_vaddr, scratch_pte; |
| unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE; |
| unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE; |
| unsigned last_pte, i; |
| |
| scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr, |
| I915_CACHE_LLC, use_scratch); |
| |
| while (num_entries) { |
| struct page *page_table = &ppgtt->gen8_pt_pages[act_pt]; |
| |
| last_pte = first_pte + num_entries; |
| if (last_pte > GEN8_PTES_PER_PAGE) |
| last_pte = GEN8_PTES_PER_PAGE; |
| |
| pt_vaddr = kmap_atomic(page_table); |
| |
| for (i = first_pte; i < last_pte; i++) |
| pt_vaddr[i] = scratch_pte; |
| |
| kunmap_atomic(pt_vaddr); |
| |
| num_entries -= last_pte - first_pte; |
| first_pte = 0; |
| act_pt++; |
| } |
| } |
| |
| static void gen8_ppgtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *pages, |
| unsigned first_entry, |
| enum i915_cache_level cache_level) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| gen8_gtt_pte_t *pt_vaddr; |
| unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE; |
| unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE; |
| struct sg_page_iter sg_iter; |
| |
| pt_vaddr = NULL; |
| for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { |
| if (pt_vaddr == NULL) |
| pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]); |
| |
| pt_vaddr[act_pte] = |
| gen8_pte_encode(sg_page_iter_dma_address(&sg_iter), |
| cache_level, true); |
| if (++act_pte == GEN8_PTES_PER_PAGE) { |
| kunmap_atomic(pt_vaddr); |
| pt_vaddr = NULL; |
| act_pt++; |
| act_pte = 0; |
| } |
| } |
| if (pt_vaddr) |
| kunmap_atomic(pt_vaddr); |
| } |
| |
| static void gen8_ppgtt_cleanup(struct i915_address_space *vm) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| int i, j; |
| |
| drm_mm_takedown(&vm->mm); |
| |
| for (i = 0; i < ppgtt->num_pd_pages ; i++) { |
| if (ppgtt->pd_dma_addr[i]) { |
| pci_unmap_page(ppgtt->base.dev->pdev, |
| ppgtt->pd_dma_addr[i], |
| PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| |
| for (j = 0; j < GEN8_PDES_PER_PAGE; j++) { |
| dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j]; |
| if (addr) |
| pci_unmap_page(ppgtt->base.dev->pdev, |
| addr, |
| PAGE_SIZE, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| } |
| } |
| kfree(ppgtt->gen8_pt_dma_addr[i]); |
| } |
| |
| __free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT)); |
| __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT)); |
| } |
| |
| /** |
| * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a |
| * net effect resembling a 2-level page table in normal x86 terms. Each PDP |
| * represents 1GB of memory |
| * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space. |
| * |
| * TODO: Do something with the size parameter |
| **/ |
| static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size) |
| { |
| struct page *pt_pages; |
| int i, j, ret = -ENOMEM; |
| const int max_pdp = DIV_ROUND_UP(size, 1 << 30); |
| const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp; |
| |
| if (size % (1<<30)) |
| DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size); |
| |
| /* FIXME: split allocation into smaller pieces. For now we only ever do |
| * this once, but with full PPGTT, the multiple contiguous allocations |
| * will be bad. |
| */ |
| ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT)); |
| if (!ppgtt->pd_pages) |
| return -ENOMEM; |
| |
| pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT)); |
| if (!pt_pages) { |
| __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT)); |
| return -ENOMEM; |
| } |
| |
| ppgtt->gen8_pt_pages = pt_pages; |
| ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT); |
| ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT); |
| ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE; |
| ppgtt->enable = gen8_ppgtt_enable; |
| ppgtt->base.clear_range = gen8_ppgtt_clear_range; |
| ppgtt->base.insert_entries = gen8_ppgtt_insert_entries; |
| ppgtt->base.cleanup = gen8_ppgtt_cleanup; |
| ppgtt->base.start = 0; |
| ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE; |
| |
| BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS); |
| |
| /* |
| * - Create a mapping for the page directories. |
| * - For each page directory: |
| * allocate space for page table mappings. |
| * map each page table |
| */ |
| for (i = 0; i < max_pdp; i++) { |
| dma_addr_t temp; |
| temp = pci_map_page(ppgtt->base.dev->pdev, |
| &ppgtt->pd_pages[i], 0, |
| PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp)) |
| goto err_out; |
| |
| ppgtt->pd_dma_addr[i] = temp; |
| |
| ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL); |
| if (!ppgtt->gen8_pt_dma_addr[i]) |
| goto err_out; |
| |
| for (j = 0; j < GEN8_PDES_PER_PAGE; j++) { |
| struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j]; |
| temp = pci_map_page(ppgtt->base.dev->pdev, |
| p, 0, PAGE_SIZE, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp)) |
| goto err_out; |
| |
| ppgtt->gen8_pt_dma_addr[i][j] = temp; |
| } |
| } |
| |
| /* For now, the PPGTT helper functions all require that the PDEs are |
| * plugged in correctly. So we do that now/here. For aliasing PPGTT, we |
| * will never need to touch the PDEs again */ |
| for (i = 0; i < max_pdp; i++) { |
| gen8_ppgtt_pde_t *pd_vaddr; |
| pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]); |
| for (j = 0; j < GEN8_PDES_PER_PAGE; j++) { |
| dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j]; |
| pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr, |
| I915_CACHE_LLC); |
| } |
| kunmap_atomic(pd_vaddr); |
| } |
| |
| ppgtt->base.clear_range(&ppgtt->base, 0, |
| ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE, |
| true); |
| |
| DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n", |
| ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp); |
| DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n", |
| ppgtt->num_pt_pages, |
| (ppgtt->num_pt_pages - num_pt_pages) + |
| size % (1<<30)); |
| return 0; |
| |
| err_out: |
| ppgtt->base.cleanup(&ppgtt->base); |
| return ret; |
| } |
| |
| static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private; |
| gen6_gtt_pte_t __iomem *pd_addr; |
| uint32_t pd_entry; |
| int i; |
| |
| WARN_ON(ppgtt->pd_offset & 0x3f); |
| pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm + |
| ppgtt->pd_offset / sizeof(gen6_gtt_pte_t); |
| for (i = 0; i < ppgtt->num_pd_entries; i++) { |
| dma_addr_t pt_addr; |
| |
| pt_addr = ppgtt->pt_dma_addr[i]; |
| pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr); |
| pd_entry |= GEN6_PDE_VALID; |
| |
| writel(pd_entry, pd_addr + i); |
| } |
| readl(pd_addr); |
| } |
| |
| static int gen6_ppgtt_enable(struct drm_device *dev) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| uint32_t pd_offset; |
| struct intel_ring_buffer *ring; |
| struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; |
| int i; |
| |
| BUG_ON(ppgtt->pd_offset & 0x3f); |
| |
| gen6_write_pdes(ppgtt); |
| |
| pd_offset = ppgtt->pd_offset; |
| pd_offset /= 64; /* in cachelines, */ |
| pd_offset <<= 16; |
| |
| if (INTEL_INFO(dev)->gen == 6) { |
| uint32_t ecochk, gab_ctl, ecobits; |
| |
| ecobits = I915_READ(GAC_ECO_BITS); |
| I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | |
| ECOBITS_PPGTT_CACHE64B); |
| |
| gab_ctl = I915_READ(GAB_CTL); |
| I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); |
| |
| ecochk = I915_READ(GAM_ECOCHK); |
| I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | |
| ECOCHK_PPGTT_CACHE64B); |
| I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| } else if (INTEL_INFO(dev)->gen >= 7) { |
| uint32_t ecochk, ecobits; |
| |
| ecobits = I915_READ(GAC_ECO_BITS); |
| I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); |
| |
| ecochk = I915_READ(GAM_ECOCHK); |
| if (IS_HASWELL(dev)) { |
| ecochk |= ECOCHK_PPGTT_WB_HSW; |
| } else { |
| ecochk |= ECOCHK_PPGTT_LLC_IVB; |
| ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; |
| } |
| I915_WRITE(GAM_ECOCHK, ecochk); |
| /* GFX_MODE is per-ring on gen7+ */ |
| } |
| |
| for_each_ring(ring, dev_priv, i) { |
| if (INTEL_INFO(dev)->gen >= 7) |
| I915_WRITE(RING_MODE_GEN7(ring), |
| _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| |
| I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); |
| I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset); |
| } |
| return 0; |
| } |
| |
| /* PPGTT support for Sandybdrige/Gen6 and later */ |
| static void gen6_ppgtt_clear_range(struct i915_address_space *vm, |
| unsigned first_entry, |
| unsigned num_entries, |
| bool use_scratch) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| gen6_gtt_pte_t *pt_vaddr, scratch_pte; |
| unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES; |
| unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES; |
| unsigned last_pte, i; |
| |
| scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true); |
| |
| while (num_entries) { |
| last_pte = first_pte + num_entries; |
| if (last_pte > I915_PPGTT_PT_ENTRIES) |
| last_pte = I915_PPGTT_PT_ENTRIES; |
| |
| pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]); |
| |
| for (i = first_pte; i < last_pte; i++) |
| pt_vaddr[i] = scratch_pte; |
| |
| kunmap_atomic(pt_vaddr); |
| |
| num_entries -= last_pte - first_pte; |
| first_pte = 0; |
| act_pt++; |
| } |
| } |
| |
| static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *pages, |
| unsigned first_entry, |
| enum i915_cache_level cache_level) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| gen6_gtt_pte_t *pt_vaddr; |
| unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES; |
| unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES; |
| struct sg_page_iter sg_iter; |
| |
| pt_vaddr = NULL; |
| for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { |
| if (pt_vaddr == NULL) |
| pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]); |
| |
| pt_vaddr[act_pte] = |
| vm->pte_encode(sg_page_iter_dma_address(&sg_iter), |
| cache_level, true); |
| if (++act_pte == I915_PPGTT_PT_ENTRIES) { |
| kunmap_atomic(pt_vaddr); |
| pt_vaddr = NULL; |
| act_pt++; |
| act_pte = 0; |
| } |
| } |
| if (pt_vaddr) |
| kunmap_atomic(pt_vaddr); |
| } |
| |
| static void gen6_ppgtt_cleanup(struct i915_address_space *vm) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| int i; |
| |
| drm_mm_takedown(&ppgtt->base.mm); |
| |
| if (ppgtt->pt_dma_addr) { |
| for (i = 0; i < ppgtt->num_pd_entries; i++) |
| pci_unmap_page(ppgtt->base.dev->pdev, |
| ppgtt->pt_dma_addr[i], |
| 4096, PCI_DMA_BIDIRECTIONAL); |
| } |
| |
| kfree(ppgtt->pt_dma_addr); |
| for (i = 0; i < ppgtt->num_pd_entries; i++) |
| __free_page(ppgtt->pt_pages[i]); |
| kfree(ppgtt->pt_pages); |
| kfree(ppgtt); |
| } |
| |
| static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned first_pd_entry_in_global_pt; |
| int i; |
| int ret = -ENOMEM; |
| |
| /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024 |
| * entries. For aliasing ppgtt support we just steal them at the end for |
| * now. */ |
| first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt); |
| |
| ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode; |
| ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES; |
| ppgtt->enable = gen6_ppgtt_enable; |
| ppgtt->base.clear_range = gen6_ppgtt_clear_range; |
| ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; |
| ppgtt->base.cleanup = gen6_ppgtt_cleanup; |
| ppgtt->base.scratch = dev_priv->gtt.base.scratch; |
| ppgtt->base.start = 0; |
| ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE; |
| ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *), |
| GFP_KERNEL); |
| if (!ppgtt->pt_pages) |
| return -ENOMEM; |
| |
| for (i = 0; i < ppgtt->num_pd_entries; i++) { |
| ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL); |
| if (!ppgtt->pt_pages[i]) |
| goto err_pt_alloc; |
| } |
| |
| ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t), |
| GFP_KERNEL); |
| if (!ppgtt->pt_dma_addr) |
| goto err_pt_alloc; |
| |
| for (i = 0; i < ppgtt->num_pd_entries; i++) { |
| dma_addr_t pt_addr; |
| |
| pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| if (pci_dma_mapping_error(dev->pdev, pt_addr)) { |
| ret = -EIO; |
| goto err_pd_pin; |
| |
| } |
| ppgtt->pt_dma_addr[i] = pt_addr; |
| } |
| |
| ppgtt->base.clear_range(&ppgtt->base, 0, |
| ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true); |
| |
| ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t); |
| |
| return 0; |
| |
| err_pd_pin: |
| if (ppgtt->pt_dma_addr) { |
| for (i--; i >= 0; i--) |
| pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i], |
| 4096, PCI_DMA_BIDIRECTIONAL); |
| } |
| err_pt_alloc: |
| kfree(ppgtt->pt_dma_addr); |
| for (i = 0; i < ppgtt->num_pd_entries; i++) { |
| if (ppgtt->pt_pages[i]) |
| __free_page(ppgtt->pt_pages[i]); |
| } |
| kfree(ppgtt->pt_pages); |
| |
| return ret; |
| } |
| |
| static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_hw_ppgtt *ppgtt; |
| int ret; |
| |
| ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); |
| if (!ppgtt) |
| return -ENOMEM; |
| |
| ppgtt->base.dev = dev; |
| |
| if (INTEL_INFO(dev)->gen < 8) |
| ret = gen6_ppgtt_init(ppgtt); |
| else if (IS_GEN8(dev)) |
| ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total); |
| else |
| BUG(); |
| |
| if (ret) |
| kfree(ppgtt); |
| else { |
| dev_priv->mm.aliasing_ppgtt = ppgtt; |
| drm_mm_init(&ppgtt->base.mm, ppgtt->base.start, |
| ppgtt->base.total); |
| } |
| |
| return ret; |
| } |
| |
| void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; |
| |
| if (!ppgtt) |
| return; |
| |
| ppgtt->base.cleanup(&ppgtt->base); |
| dev_priv->mm.aliasing_ppgtt = NULL; |
| } |
| |
| void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_gem_object *obj, |
| enum i915_cache_level cache_level) |
| { |
| ppgtt->base.insert_entries(&ppgtt->base, obj->pages, |
| i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT, |
| cache_level); |
| } |
| |
| void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_gem_object *obj) |
| { |
| ppgtt->base.clear_range(&ppgtt->base, |
| i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT, |
| obj->base.size >> PAGE_SHIFT, |
| true); |
| } |
| |
| extern int intel_iommu_gfx_mapped; |
| /* Certain Gen5 chipsets require require idling the GPU before |
| * unmapping anything from the GTT when VT-d is enabled. |
| */ |
| static inline bool needs_idle_maps(struct drm_device *dev) |
| { |
| #ifdef CONFIG_INTEL_IOMMU |
| /* Query intel_iommu to see if we need the workaround. Presumably that |
| * was loaded first. |
| */ |
| if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped) |
| return true; |
| #endif |
| return false; |
| } |
| |
| static bool do_idling(struct drm_i915_private *dev_priv) |
| { |
| bool ret = dev_priv->mm.interruptible; |
| |
| if (unlikely(dev_priv->gtt.do_idle_maps)) { |
| dev_priv->mm.interruptible = false; |
| if (i915_gpu_idle(dev_priv->dev)) { |
| DRM_ERROR("Couldn't idle GPU\n"); |
| /* Wait a bit, in hopes it avoids the hang */ |
| udelay(10); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible) |
| { |
| if (unlikely(dev_priv->gtt.do_idle_maps)) |
| dev_priv->mm.interruptible = interruptible; |
| } |
| |
| void i915_check_and_clear_faults(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_ring_buffer *ring; |
| int i; |
| |
| if (INTEL_INFO(dev)->gen < 6) |
| return; |
| |
| for_each_ring(ring, dev_priv, i) { |
| u32 fault_reg; |
| fault_reg = I915_READ(RING_FAULT_REG(ring)); |
| if (fault_reg & RING_FAULT_VALID) { |
| DRM_DEBUG_DRIVER("Unexpected fault\n" |
| "\tAddr: 0x%08lx\\n" |
| "\tAddress space: %s\n" |
| "\tSource ID: %d\n" |
| "\tType: %d\n", |
| fault_reg & PAGE_MASK, |
| fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", |
| RING_FAULT_SRCID(fault_reg), |
| RING_FAULT_FAULT_TYPE(fault_reg)); |
| I915_WRITE(RING_FAULT_REG(ring), |
| fault_reg & ~RING_FAULT_VALID); |
| } |
| } |
| POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS])); |
| } |
| |
| void i915_gem_suspend_gtt_mappings(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| /* Don't bother messing with faults pre GEN6 as we have little |
| * documentation supporting that it's a good idea. |
| */ |
| if (INTEL_INFO(dev)->gen < 6) |
| return; |
| |
| i915_check_and_clear_faults(dev); |
| |
| dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, |
| dev_priv->gtt.base.start / PAGE_SIZE, |
| dev_priv->gtt.base.total / PAGE_SIZE, |
| true); |
| } |
| |
| void i915_gem_restore_gtt_mappings(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj; |
| |
| i915_check_and_clear_faults(dev); |
| |
| /* First fill our portion of the GTT with scratch pages */ |
| dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, |
| dev_priv->gtt.base.start / PAGE_SIZE, |
| dev_priv->gtt.base.total / PAGE_SIZE, |
| true); |
| |
| list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { |
| i915_gem_clflush_object(obj, obj->pin_display); |
| i915_gem_gtt_bind_object(obj, obj->cache_level); |
| } |
| |
| i915_gem_chipset_flush(dev); |
| } |
| |
| int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj) |
| { |
| if (obj->has_dma_mapping) |
| return 0; |
| |
| if (!dma_map_sg(&obj->base.dev->pdev->dev, |
| obj->pages->sgl, obj->pages->nents, |
| PCI_DMA_BIDIRECTIONAL)) |
| return -ENOSPC; |
| |
| return 0; |
| } |
| |
| static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte) |
| { |
| #ifdef writeq |
| writeq(pte, addr); |
| #else |
| iowrite32((u32)pte, addr); |
| iowrite32(pte >> 32, addr + 4); |
| #endif |
| } |
| |
| static void gen8_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *st, |
| unsigned int first_entry, |
| enum i915_cache_level level) |
| { |
| struct drm_i915_private *dev_priv = vm->dev->dev_private; |
| gen8_gtt_pte_t __iomem *gtt_entries = |
| (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; |
| int i = 0; |
| struct sg_page_iter sg_iter; |
| dma_addr_t addr; |
| |
| for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { |
| addr = sg_dma_address(sg_iter.sg) + |
| (sg_iter.sg_pgoffset << PAGE_SHIFT); |
| gen8_set_pte(>t_entries[i], |
| gen8_pte_encode(addr, level, true)); |
| i++; |
| } |
| |
| /* |
| * XXX: This serves as a posting read to make sure that the PTE has |
| * actually been updated. There is some concern that even though |
| * registers and PTEs are within the same BAR that they are potentially |
| * of NUMA access patterns. Therefore, even with the way we assume |
| * hardware should work, we must keep this posting read for paranoia. |
| */ |
| if (i != 0) |
| WARN_ON(readq(>t_entries[i-1]) |
| != gen8_pte_encode(addr, level, true)); |
| |
| /* This next bit makes the above posting read even more important. We |
| * want to flush the TLBs only after we're certain all the PTE updates |
| * have finished. |
| */ |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| POSTING_READ(GFX_FLSH_CNTL_GEN6); |
| } |
| |
| /* |
| * Binds an object into the global gtt with the specified cache level. The object |
| * will be accessible to the GPU via commands whose operands reference offsets |
| * within the global GTT as well as accessible by the GPU through the GMADR |
| * mapped BAR (dev_priv->mm.gtt->gtt). |
| */ |
| static void gen6_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *st, |
| unsigned int first_entry, |
| enum i915_cache_level level) |
| { |
| struct drm_i915_private *dev_priv = vm->dev->dev_private; |
| gen6_gtt_pte_t __iomem *gtt_entries = |
| (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; |
| int i = 0; |
| struct sg_page_iter sg_iter; |
| dma_addr_t addr; |
| |
| for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { |
| addr = sg_page_iter_dma_address(&sg_iter); |
| iowrite32(vm->pte_encode(addr, level, true), >t_entries[i]); |
| i++; |
| } |
| |
| /* XXX: This serves as a posting read to make sure that the PTE has |
| * actually been updated. There is some concern that even though |
| * registers and PTEs are within the same BAR that they are potentially |
| * of NUMA access patterns. Therefore, even with the way we assume |
| * hardware should work, we must keep this posting read for paranoia. |
| */ |
| if (i != 0) |
| WARN_ON(readl(>t_entries[i-1]) != |
| vm->pte_encode(addr, level, true)); |
| |
| /* This next bit makes the above posting read even more important. We |
| * want to flush the TLBs only after we're certain all the PTE updates |
| * have finished. |
| */ |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| POSTING_READ(GFX_FLSH_CNTL_GEN6); |
| } |
| |
| static void gen8_ggtt_clear_range(struct i915_address_space *vm, |
| unsigned int first_entry, |
| unsigned int num_entries, |
| bool use_scratch) |
| { |
| struct drm_i915_private *dev_priv = vm->dev->dev_private; |
| gen8_gtt_pte_t scratch_pte, __iomem *gtt_base = |
| (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; |
| const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; |
| int i; |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| scratch_pte = gen8_pte_encode(vm->scratch.addr, |
| I915_CACHE_LLC, |
| use_scratch); |
| for (i = 0; i < num_entries; i++) |
| gen8_set_pte(>t_base[i], scratch_pte); |
| readl(gtt_base); |
| } |
| |
| static void gen6_ggtt_clear_range(struct i915_address_space *vm, |
| unsigned int first_entry, |
| unsigned int num_entries, |
| bool use_scratch) |
| { |
| struct drm_i915_private *dev_priv = vm->dev->dev_private; |
| gen6_gtt_pte_t scratch_pte, __iomem *gtt_base = |
| (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; |
| const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; |
| int i; |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch); |
| |
| for (i = 0; i < num_entries; i++) |
| iowrite32(scratch_pte, >t_base[i]); |
| readl(gtt_base); |
| } |
| |
| static void i915_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *st, |
| unsigned int pg_start, |
| enum i915_cache_level cache_level) |
| { |
| unsigned int flags = (cache_level == I915_CACHE_NONE) ? |
| AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; |
| |
| intel_gtt_insert_sg_entries(st, pg_start, flags); |
| |
| } |
| |
| static void i915_ggtt_clear_range(struct i915_address_space *vm, |
| unsigned int first_entry, |
| unsigned int num_entries, |
| bool unused) |
| { |
| intel_gtt_clear_range(first_entry, num_entries); |
| } |
| |
| |
| void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj, |
| enum i915_cache_level cache_level) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT; |
| |
| dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages, |
| entry, |
| cache_level); |
| |
| obj->has_global_gtt_mapping = 1; |
| } |
| |
| void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT; |
| |
| dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, |
| entry, |
| obj->base.size >> PAGE_SHIFT, |
| true); |
| |
| obj->has_global_gtt_mapping = 0; |
| } |
| |
| void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| bool interruptible; |
| |
| interruptible = do_idling(dev_priv); |
| |
| if (!obj->has_dma_mapping) |
| dma_unmap_sg(&dev->pdev->dev, |
| obj->pages->sgl, obj->pages->nents, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| undo_idling(dev_priv, interruptible); |
| } |
| |
| static void i915_gtt_color_adjust(struct drm_mm_node *node, |
| unsigned long color, |
| unsigned long *start, |
| unsigned long *end) |
| { |
| if (node->color != color) |
| *start += 4096; |
| |
| if (!list_empty(&node->node_list)) { |
| node = list_entry(node->node_list.next, |
| struct drm_mm_node, |
| node_list); |
| if (node->allocated && node->color != color) |
| *end -= 4096; |
| } |
| } |
| |
| void i915_gem_setup_global_gtt(struct drm_device *dev, |
| unsigned long start, |
| unsigned long mappable_end, |
| unsigned long end) |
| { |
| /* Let GEM Manage all of the aperture. |
| * |
| * However, leave one page at the end still bound to the scratch page. |
| * There are a number of places where the hardware apparently prefetches |
| * past the end of the object, and we've seen multiple hangs with the |
| * GPU head pointer stuck in a batchbuffer bound at the last page of the |
| * aperture. One page should be enough to keep any prefetching inside |
| * of the aperture. |
| */ |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_address_space *ggtt_vm = &dev_priv->gtt.base; |
| struct drm_mm_node *entry; |
| struct drm_i915_gem_object *obj; |
| unsigned long hole_start, hole_end; |
| |
| BUG_ON(mappable_end > end); |
| |
| /* Subtract the guard page ... */ |
| drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE); |
| if (!HAS_LLC(dev)) |
| dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust; |
| |
| /* Mark any preallocated objects as occupied */ |
| list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { |
| struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm); |
| int ret; |
| DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n", |
| i915_gem_obj_ggtt_offset(obj), obj->base.size); |
| |
| WARN_ON(i915_gem_obj_ggtt_bound(obj)); |
| ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node); |
| if (ret) |
| DRM_DEBUG_KMS("Reservation failed\n"); |
| obj->has_global_gtt_mapping = 1; |
| } |
| |
| dev_priv->gtt.base.start = start; |
| dev_priv->gtt.base.total = end - start; |
| |
| /* Clear any non-preallocated blocks */ |
| drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) { |
| const unsigned long count = (hole_end - hole_start) / PAGE_SIZE; |
| DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", |
| hole_start, hole_end); |
| ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true); |
| } |
| |
| /* And finally clear the reserved guard page */ |
| ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true); |
| } |
| |
| static bool |
| intel_enable_ppgtt(struct drm_device *dev) |
| { |
| if (i915_enable_ppgtt >= 0) |
| return i915_enable_ppgtt; |
| |
| #ifdef CONFIG_INTEL_IOMMU |
| /* Disable ppgtt on SNB if VT-d is on. */ |
| if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) |
| return false; |
| #endif |
| |
| return true; |
| } |
| |
| void i915_gem_init_global_gtt(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned long gtt_size, mappable_size; |
| |
| gtt_size = dev_priv->gtt.base.total; |
| mappable_size = dev_priv->gtt.mappable_end; |
| |
| if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) { |
| int ret; |
| |
| if (INTEL_INFO(dev)->gen <= 7) { |
| /* PPGTT pdes are stolen from global gtt ptes, so shrink the |
| * aperture accordingly when using aliasing ppgtt. */ |
| gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE; |
| } |
| |
| i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size); |
| |
| ret = i915_gem_init_aliasing_ppgtt(dev); |
| if (!ret) |
| return; |
| |
| DRM_ERROR("Aliased PPGTT setup failed %d\n", ret); |
| drm_mm_takedown(&dev_priv->gtt.base.mm); |
| if (INTEL_INFO(dev)->gen < 8) |
| gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE; |
| } |
| i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size); |
| } |
| |
| static int setup_scratch_page(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct page *page; |
| dma_addr_t dma_addr; |
| |
| page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); |
| if (page == NULL) |
| return -ENOMEM; |
| get_page(page); |
| set_pages_uc(page, 1); |
| |
| #ifdef CONFIG_INTEL_IOMMU |
| dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE, |
| PCI_DMA_BIDIRECTIONAL); |
| if (pci_dma_mapping_error(dev->pdev, dma_addr)) |
| return -EINVAL; |
| #else |
| dma_addr = page_to_phys(page); |
| #endif |
| dev_priv->gtt.base.scratch.page = page; |
| dev_priv->gtt.base.scratch.addr = dma_addr; |
| |
| return 0; |
| } |
| |
| static void teardown_scratch_page(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct page *page = dev_priv->gtt.base.scratch.page; |
| |
| set_pages_wb(page, 1); |
| pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr, |
| PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| put_page(page); |
| __free_page(page); |
| } |
| |
| static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) |
| { |
| snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; |
| snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; |
| return snb_gmch_ctl << 20; |
| } |
| |
| static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) |
| { |
| bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; |
| bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; |
| if (bdw_gmch_ctl) |
| bdw_gmch_ctl = 1 << bdw_gmch_ctl; |
| if (bdw_gmch_ctl > 4) { |
| WARN_ON(!i915_preliminary_hw_support); |
| return 4<<20; |
| } |
| |
| return bdw_gmch_ctl << 20; |
| } |
| |
| static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl) |
| { |
| snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; |
| snb_gmch_ctl &= SNB_GMCH_GMS_MASK; |
| return snb_gmch_ctl << 25; /* 32 MB units */ |
| } |
| |
| static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) |
| { |
| bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; |
| bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; |
| return bdw_gmch_ctl << 25; /* 32 MB units */ |
| } |
| |
| static int ggtt_probe_common(struct drm_device *dev, |
| size_t gtt_size) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| phys_addr_t gtt_phys_addr; |
| int ret; |
| |
| /* For Modern GENs the PTEs and register space are split in the BAR */ |
| gtt_phys_addr = pci_resource_start(dev->pdev, 0) + |
| (pci_resource_len(dev->pdev, 0) / 2); |
| |
| dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size); |
| if (!dev_priv->gtt.gsm) { |
| DRM_ERROR("Failed to map the gtt page table\n"); |
| return -ENOMEM; |
| } |
| |
| ret = setup_scratch_page(dev); |
| if (ret) { |
| DRM_ERROR("Scratch setup failed\n"); |
| /* iounmap will also get called at remove, but meh */ |
| iounmap(dev_priv->gtt.gsm); |
| } |
| |
| return ret; |
| } |
| |
| /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability |
| * bits. When using advanced contexts each context stores its own PAT, but |
| * writing this data shouldn't be harmful even in those cases. */ |
| static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv) |
| { |
| #define GEN8_PPAT_UC (0<<0) |
| #define GEN8_PPAT_WC (1<<0) |
| #define GEN8_PPAT_WT (2<<0) |
| #define GEN8_PPAT_WB (3<<0) |
| #define GEN8_PPAT_ELLC_OVERRIDE (0<<2) |
| /* FIXME(BDW): Bspec is completely confused about cache control bits. */ |
| #define GEN8_PPAT_LLC (1<<2) |
| #define GEN8_PPAT_LLCELLC (2<<2) |
| #define GEN8_PPAT_LLCeLLC (3<<2) |
| #define GEN8_PPAT_AGE(x) (x<<4) |
| #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8)) |
| uint64_t pat; |
| |
| pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ |
| GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ |
| GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ |
| GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ |
| GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | |
| GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | |
| GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | |
| GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); |
| |
| /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b |
| * write would work. */ |
| I915_WRITE(GEN8_PRIVATE_PAT, pat); |
| I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32); |
| } |
| |
| static int gen8_gmch_probe(struct drm_device *dev, |
| size_t *gtt_total, |
| size_t *stolen, |
| phys_addr_t *mappable_base, |
| unsigned long *mappable_end) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned int gtt_size; |
| u16 snb_gmch_ctl; |
| int ret; |
| |
| /* TODO: We're not aware of mappable constraints on gen8 yet */ |
| *mappable_base = pci_resource_start(dev->pdev, 2); |
| *mappable_end = pci_resource_len(dev->pdev, 2); |
| |
| if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39))) |
| pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39)); |
| |
| pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| |
| *stolen = gen8_get_stolen_size(snb_gmch_ctl); |
| |
| gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl); |
| *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT; |
| |
| gen8_setup_private_ppat(dev_priv); |
| |
| ret = ggtt_probe_common(dev, gtt_size); |
| |
| dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range; |
| dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries; |
| |
| return ret; |
| } |
| |
| static int gen6_gmch_probe(struct drm_device *dev, |
| size_t *gtt_total, |
| size_t *stolen, |
| phys_addr_t *mappable_base, |
| unsigned long *mappable_end) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned int gtt_size; |
| u16 snb_gmch_ctl; |
| int ret; |
| |
| *mappable_base = pci_resource_start(dev->pdev, 2); |
| *mappable_end = pci_resource_len(dev->pdev, 2); |
| |
| /* 64/512MB is the current min/max we actually know of, but this is just |
| * a coarse sanity check. |
| */ |
| if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) { |
| DRM_ERROR("Unknown GMADR size (%lx)\n", |
| dev_priv->gtt.mappable_end); |
| return -ENXIO; |
| } |
| |
| if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40))) |
| pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40)); |
| pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| |
| *stolen = gen6_get_stolen_size(snb_gmch_ctl); |
| |
| gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl); |
| *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT; |
| |
| ret = ggtt_probe_common(dev, gtt_size); |
| |
| dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range; |
| dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries; |
| |
| return ret; |
| } |
| |
| static void gen6_gmch_remove(struct i915_address_space *vm) |
| { |
| |
| struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base); |
| |
| drm_mm_takedown(&vm->mm); |
| iounmap(gtt->gsm); |
| teardown_scratch_page(vm->dev); |
| } |
| |
| static int i915_gmch_probe(struct drm_device *dev, |
| size_t *gtt_total, |
| size_t *stolen, |
| phys_addr_t *mappable_base, |
| unsigned long *mappable_end) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL); |
| if (!ret) { |
| DRM_ERROR("failed to set up gmch\n"); |
| return -EIO; |
| } |
| |
| intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end); |
| |
| dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev); |
| dev_priv->gtt.base.clear_range = i915_ggtt_clear_range; |
| dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries; |
| |
| if (unlikely(dev_priv->gtt.do_idle_maps)) |
| DRM_INFO("applying Ironlake quirks for intel_iommu\n"); |
| |
| return 0; |
| } |
| |
| static void i915_gmch_remove(struct i915_address_space *vm) |
| { |
| intel_gmch_remove(); |
| } |
| |
| int i915_gem_gtt_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_gtt *gtt = &dev_priv->gtt; |
| int ret; |
| |
| if (INTEL_INFO(dev)->gen <= 5) { |
| gtt->gtt_probe = i915_gmch_probe; |
| gtt->base.cleanup = i915_gmch_remove; |
| } else if (INTEL_INFO(dev)->gen < 8) { |
| gtt->gtt_probe = gen6_gmch_probe; |
| gtt->base.cleanup = gen6_gmch_remove; |
| if (IS_HASWELL(dev) && dev_priv->ellc_size) |
| gtt->base.pte_encode = iris_pte_encode; |
| else if (IS_HASWELL(dev)) |
| gtt->base.pte_encode = hsw_pte_encode; |
| else if (IS_VALLEYVIEW(dev)) |
| gtt->base.pte_encode = byt_pte_encode; |
| else if (INTEL_INFO(dev)->gen >= 7) |
| gtt->base.pte_encode = ivb_pte_encode; |
| else |
| gtt->base.pte_encode = snb_pte_encode; |
| } else { |
| dev_priv->gtt.gtt_probe = gen8_gmch_probe; |
| dev_priv->gtt.base.cleanup = gen6_gmch_remove; |
| } |
| |
| ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size, |
| >t->mappable_base, >t->mappable_end); |
| if (ret) |
| return ret; |
| |
| gtt->base.dev = dev; |
| |
| /* GMADR is the PCI mmio aperture into the global GTT. */ |
| DRM_INFO("Memory usable by graphics device = %zdM\n", |
| gtt->base.total >> 20); |
| DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20); |
| DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20); |
| |
| return 0; |
| } |