| /* |
| Montage Technology DS3000/TS2020 - DVBS/S2 Demodulator/Tuner driver |
| Copyright (C) 2009 Konstantin Dimitrov <kosio.dimitrov@gmail.com> |
| |
| Copyright (C) 2009 TurboSight.com |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/init.h> |
| #include <linux/firmware.h> |
| |
| #include "dvb_frontend.h" |
| #include "ds3000.h" |
| |
| static int debug; |
| |
| #define dprintk(args...) \ |
| do { \ |
| if (debug) \ |
| printk(args); \ |
| } while (0) |
| |
| /* as of March 2009 current DS3000 firmware version is 1.78 */ |
| /* DS3000 FW v1.78 MD5: a32d17910c4f370073f9346e71d34b80 */ |
| #define DS3000_DEFAULT_FIRMWARE "dvb-fe-ds3000.fw" |
| |
| #define DS3000_SAMPLE_RATE 96000 /* in kHz */ |
| #define DS3000_XTAL_FREQ 27000 /* in kHz */ |
| |
| /* Register values to initialise the demod in DVB-S mode */ |
| static u8 ds3000_dvbs_init_tab[] = { |
| 0x23, 0x05, |
| 0x08, 0x03, |
| 0x0c, 0x00, |
| 0x21, 0x54, |
| 0x25, 0x82, |
| 0x27, 0x31, |
| 0x30, 0x08, |
| 0x31, 0x40, |
| 0x32, 0x32, |
| 0x33, 0x35, |
| 0x35, 0xff, |
| 0x3a, 0x00, |
| 0x37, 0x10, |
| 0x38, 0x10, |
| 0x39, 0x02, |
| 0x42, 0x60, |
| 0x4a, 0x40, |
| 0x4b, 0x04, |
| 0x4d, 0x91, |
| 0x5d, 0xc8, |
| 0x50, 0x77, |
| 0x51, 0x77, |
| 0x52, 0x36, |
| 0x53, 0x36, |
| 0x56, 0x01, |
| 0x63, 0x43, |
| 0x64, 0x30, |
| 0x65, 0x40, |
| 0x68, 0x26, |
| 0x69, 0x4c, |
| 0x70, 0x20, |
| 0x71, 0x70, |
| 0x72, 0x04, |
| 0x73, 0x00, |
| 0x70, 0x40, |
| 0x71, 0x70, |
| 0x72, 0x04, |
| 0x73, 0x00, |
| 0x70, 0x60, |
| 0x71, 0x70, |
| 0x72, 0x04, |
| 0x73, 0x00, |
| 0x70, 0x80, |
| 0x71, 0x70, |
| 0x72, 0x04, |
| 0x73, 0x00, |
| 0x70, 0xa0, |
| 0x71, 0x70, |
| 0x72, 0x04, |
| 0x73, 0x00, |
| 0x70, 0x1f, |
| 0x76, 0x00, |
| 0x77, 0xd1, |
| 0x78, 0x0c, |
| 0x79, 0x80, |
| 0x7f, 0x04, |
| 0x7c, 0x00, |
| 0x80, 0x86, |
| 0x81, 0xa6, |
| 0x85, 0x04, |
| 0xcd, 0xf4, |
| 0x90, 0x33, |
| 0xa0, 0x44, |
| 0xc0, 0x18, |
| 0xc3, 0x10, |
| 0xc4, 0x08, |
| 0xc5, 0x80, |
| 0xc6, 0x80, |
| 0xc7, 0x0a, |
| 0xc8, 0x1a, |
| 0xc9, 0x80, |
| 0xfe, 0x92, |
| 0xe0, 0xf8, |
| 0xe6, 0x8b, |
| 0xd0, 0x40, |
| 0xf8, 0x20, |
| 0xfa, 0x0f, |
| 0xfd, 0x20, |
| 0xad, 0x20, |
| 0xae, 0x07, |
| 0xb8, 0x00, |
| }; |
| |
| /* Register values to initialise the demod in DVB-S2 mode */ |
| static u8 ds3000_dvbs2_init_tab[] = { |
| 0x23, 0x0f, |
| 0x08, 0x07, |
| 0x0c, 0x00, |
| 0x21, 0x54, |
| 0x25, 0x82, |
| 0x27, 0x31, |
| 0x30, 0x08, |
| 0x31, 0x32, |
| 0x32, 0x32, |
| 0x33, 0x35, |
| 0x35, 0xff, |
| 0x3a, 0x00, |
| 0x37, 0x10, |
| 0x38, 0x10, |
| 0x39, 0x02, |
| 0x42, 0x60, |
| 0x4a, 0x80, |
| 0x4b, 0x04, |
| 0x4d, 0x81, |
| 0x5d, 0x88, |
| 0x50, 0x36, |
| 0x51, 0x36, |
| 0x52, 0x36, |
| 0x53, 0x36, |
| 0x63, 0x60, |
| 0x64, 0x10, |
| 0x65, 0x10, |
| 0x68, 0x04, |
| 0x69, 0x29, |
| 0x70, 0x20, |
| 0x71, 0x70, |
| 0x72, 0x04, |
| 0x73, 0x00, |
| 0x70, 0x40, |
| 0x71, 0x70, |
| 0x72, 0x04, |
| 0x73, 0x00, |
| 0x70, 0x60, |
| 0x71, 0x70, |
| 0x72, 0x04, |
| 0x73, 0x00, |
| 0x70, 0x80, |
| 0x71, 0x70, |
| 0x72, 0x04, |
| 0x73, 0x00, |
| 0x70, 0xa0, |
| 0x71, 0x70, |
| 0x72, 0x04, |
| 0x73, 0x00, |
| 0x70, 0x1f, |
| 0xa0, 0x44, |
| 0xc0, 0x08, |
| 0xc1, 0x10, |
| 0xc2, 0x08, |
| 0xc3, 0x10, |
| 0xc4, 0x08, |
| 0xc5, 0xf0, |
| 0xc6, 0xf0, |
| 0xc7, 0x0a, |
| 0xc8, 0x1a, |
| 0xc9, 0x80, |
| 0xca, 0x23, |
| 0xcb, 0x24, |
| 0xce, 0x74, |
| 0x90, 0x03, |
| 0x76, 0x80, |
| 0x77, 0x42, |
| 0x78, 0x0a, |
| 0x79, 0x80, |
| 0xad, 0x40, |
| 0xae, 0x07, |
| 0x7f, 0xd4, |
| 0x7c, 0x00, |
| 0x80, 0xa8, |
| 0x81, 0xda, |
| 0x7c, 0x01, |
| 0x80, 0xda, |
| 0x81, 0xec, |
| 0x7c, 0x02, |
| 0x80, 0xca, |
| 0x81, 0xeb, |
| 0x7c, 0x03, |
| 0x80, 0xba, |
| 0x81, 0xdb, |
| 0x85, 0x08, |
| 0x86, 0x00, |
| 0x87, 0x02, |
| 0x89, 0x80, |
| 0x8b, 0x44, |
| 0x8c, 0xaa, |
| 0x8a, 0x10, |
| 0xba, 0x00, |
| 0xf5, 0x04, |
| 0xfe, 0x44, |
| 0xd2, 0x32, |
| 0xb8, 0x00, |
| }; |
| |
| /* DS3000 doesn't need some parameters as input and auto-detects them */ |
| /* save input from the application of those parameters */ |
| struct ds3000_tuning { |
| u32 frequency; |
| u32 symbol_rate; |
| fe_spectral_inversion_t inversion; |
| enum fe_code_rate fec; |
| |
| /* input values */ |
| u8 inversion_val; |
| fe_modulation_t delivery; |
| u8 rolloff; |
| }; |
| |
| struct ds3000_state { |
| struct i2c_adapter *i2c; |
| const struct ds3000_config *config; |
| |
| struct dvb_frontend frontend; |
| |
| struct ds3000_tuning dcur; |
| struct ds3000_tuning dnxt; |
| |
| u8 skip_fw_load; |
| |
| /* previous uncorrected block counter for DVB-S2 */ |
| u16 prevUCBS2; |
| }; |
| |
| static int ds3000_writereg(struct ds3000_state *state, int reg, int data) |
| { |
| u8 buf[] = { reg, data }; |
| struct i2c_msg msg = { .addr = state->config->demod_address, |
| .flags = 0, .buf = buf, .len = 2 }; |
| int err; |
| |
| dprintk("%s: write reg 0x%02x, value 0x%02x\n", __func__, reg, data); |
| |
| err = i2c_transfer(state->i2c, &msg, 1); |
| if (err != 1) { |
| printk(KERN_ERR "%s: writereg error(err == %i, reg == 0x%02x," |
| " value == 0x%02x)\n", __func__, err, reg, data); |
| return -EREMOTEIO; |
| } |
| |
| return 0; |
| } |
| |
| static int ds3000_tuner_writereg(struct ds3000_state *state, int reg, int data) |
| { |
| u8 buf[] = { reg, data }; |
| struct i2c_msg msg = { .addr = 0x60, |
| .flags = 0, .buf = buf, .len = 2 }; |
| int err; |
| |
| dprintk("%s: write reg 0x%02x, value 0x%02x\n", __func__, reg, data); |
| |
| ds3000_writereg(state, 0x03, 0x11); |
| err = i2c_transfer(state->i2c, &msg, 1); |
| if (err != 1) { |
| printk("%s: writereg error(err == %i, reg == 0x%02x," |
| " value == 0x%02x)\n", __func__, err, reg, data); |
| return -EREMOTEIO; |
| } |
| |
| return 0; |
| } |
| |
| /* I2C write for 8k firmware load */ |
| static int ds3000_writeFW(struct ds3000_state *state, int reg, |
| const u8 *data, u16 len) |
| { |
| int i, ret = -EREMOTEIO; |
| struct i2c_msg msg; |
| u8 *buf; |
| |
| buf = kmalloc(3, GFP_KERNEL); |
| if (buf == NULL) { |
| printk(KERN_ERR "Unable to kmalloc\n"); |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| *(buf) = reg; |
| |
| msg.addr = state->config->demod_address; |
| msg.flags = 0; |
| msg.buf = buf; |
| msg.len = 3; |
| |
| for (i = 0; i < len; i += 2) { |
| memcpy(buf + 1, data + i, 2); |
| |
| dprintk("%s: write reg 0x%02x, len = %d\n", __func__, reg, len); |
| |
| ret = i2c_transfer(state->i2c, &msg, 1); |
| if (ret != 1) { |
| printk(KERN_ERR "%s: write error(err == %i, " |
| "reg == 0x%02x\n", __func__, ret, reg); |
| ret = -EREMOTEIO; |
| } |
| } |
| |
| error: |
| kfree(buf); |
| |
| return ret; |
| } |
| |
| static int ds3000_readreg(struct ds3000_state *state, u8 reg) |
| { |
| int ret; |
| u8 b0[] = { reg }; |
| u8 b1[] = { 0 }; |
| struct i2c_msg msg[] = { |
| { |
| .addr = state->config->demod_address, |
| .flags = 0, |
| .buf = b0, |
| .len = 1 |
| }, { |
| .addr = state->config->demod_address, |
| .flags = I2C_M_RD, |
| .buf = b1, |
| .len = 1 |
| } |
| }; |
| |
| ret = i2c_transfer(state->i2c, msg, 2); |
| |
| if (ret != 2) { |
| printk(KERN_ERR "%s: reg=0x%x(error=%d)\n", __func__, reg, ret); |
| return ret; |
| } |
| |
| dprintk("%s: read reg 0x%02x, value 0x%02x\n", __func__, reg, b1[0]); |
| |
| return b1[0]; |
| } |
| |
| static int ds3000_tuner_readreg(struct ds3000_state *state, u8 reg) |
| { |
| int ret; |
| u8 b0[] = { reg }; |
| u8 b1[] = { 0 }; |
| struct i2c_msg msg[] = { |
| { |
| .addr = 0x60, |
| .flags = 0, |
| .buf = b0, |
| .len = 1 |
| }, { |
| .addr = 0x60, |
| .flags = I2C_M_RD, |
| .buf = b1, |
| .len = 1 |
| } |
| }; |
| |
| ds3000_writereg(state, 0x03, 0x12); |
| ret = i2c_transfer(state->i2c, msg, 2); |
| |
| if (ret != 2) { |
| printk(KERN_ERR "%s: reg=0x%x(error=%d)\n", __func__, reg, ret); |
| return ret; |
| } |
| |
| dprintk("%s: read reg 0x%02x, value 0x%02x\n", __func__, reg, b1[0]); |
| |
| return b1[0]; |
| } |
| |
| static int ds3000_set_inversion(struct ds3000_state *state, |
| fe_spectral_inversion_t inversion) |
| { |
| dprintk("%s(%d)\n", __func__, inversion); |
| |
| switch (inversion) { |
| case INVERSION_OFF: |
| case INVERSION_ON: |
| case INVERSION_AUTO: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| state->dnxt.inversion = inversion; |
| |
| return 0; |
| } |
| |
| static int ds3000_set_symbolrate(struct ds3000_state *state, u32 rate) |
| { |
| int ret = 0; |
| |
| dprintk("%s()\n", __func__); |
| |
| dprintk("%s() symbol_rate = %d\n", __func__, state->dnxt.symbol_rate); |
| |
| /* check if symbol rate is within limits */ |
| if ((state->dnxt.symbol_rate > |
| state->frontend.ops.info.symbol_rate_max) || |
| (state->dnxt.symbol_rate < |
| state->frontend.ops.info.symbol_rate_min)) |
| ret = -EOPNOTSUPP; |
| |
| state->dnxt.symbol_rate = rate; |
| |
| return ret; |
| } |
| |
| static int ds3000_load_firmware(struct dvb_frontend *fe, |
| const struct firmware *fw); |
| |
| static int ds3000_firmware_ondemand(struct dvb_frontend *fe) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| const struct firmware *fw; |
| int ret = 0; |
| |
| dprintk("%s()\n", __func__); |
| |
| if (ds3000_readreg(state, 0xb2) <= 0) |
| return ret; |
| |
| if (state->skip_fw_load) |
| return 0; |
| /* Load firmware */ |
| /* request the firmware, this will block until someone uploads it */ |
| printk(KERN_INFO "%s: Waiting for firmware upload (%s)...\n", __func__, |
| DS3000_DEFAULT_FIRMWARE); |
| ret = request_firmware(&fw, DS3000_DEFAULT_FIRMWARE, |
| state->i2c->dev.parent); |
| printk(KERN_INFO "%s: Waiting for firmware upload(2)...\n", __func__); |
| if (ret) { |
| printk(KERN_ERR "%s: No firmware uploaded (timeout or file not " |
| "found?)\n", __func__); |
| return ret; |
| } |
| |
| /* Make sure we don't recurse back through here during loading */ |
| state->skip_fw_load = 1; |
| |
| ret = ds3000_load_firmware(fe, fw); |
| if (ret) |
| printk("%s: Writing firmware to device failed\n", __func__); |
| |
| release_firmware(fw); |
| |
| dprintk("%s: Firmware upload %s\n", __func__, |
| ret == 0 ? "complete" : "failed"); |
| |
| /* Ensure firmware is always loaded if required */ |
| state->skip_fw_load = 0; |
| |
| return ret; |
| } |
| |
| static int ds3000_load_firmware(struct dvb_frontend *fe, |
| const struct firmware *fw) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| |
| dprintk("%s\n", __func__); |
| dprintk("Firmware is %zu bytes (%02x %02x .. %02x %02x)\n", |
| fw->size, |
| fw->data[0], |
| fw->data[1], |
| fw->data[fw->size - 2], |
| fw->data[fw->size - 1]); |
| |
| /* Begin the firmware load process */ |
| ds3000_writereg(state, 0xb2, 0x01); |
| /* write the entire firmware */ |
| ds3000_writeFW(state, 0xb0, fw->data, fw->size); |
| ds3000_writereg(state, 0xb2, 0x00); |
| |
| return 0; |
| } |
| |
| static void ds3000_dump_registers(struct dvb_frontend *fe) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| int x, y, reg = 0, val; |
| |
| for (y = 0; y < 16; y++) { |
| dprintk("%s: %02x: ", __func__, y); |
| for (x = 0; x < 16; x++) { |
| reg = (y << 4) + x; |
| val = ds3000_readreg(state, reg); |
| if (x != 15) |
| dprintk("%02x ", val); |
| else |
| dprintk("%02x\n", val); |
| } |
| } |
| dprintk("%s: -- DS3000 DUMP DONE --\n", __func__); |
| } |
| |
| static int ds3000_read_status(struct dvb_frontend *fe, fe_status_t* status) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| int lock; |
| |
| *status = 0; |
| |
| switch (c->delivery_system) { |
| case SYS_DVBS: |
| lock = ds3000_readreg(state, 0xd1); |
| if ((lock & 0x07) == 0x07) |
| *status = FE_HAS_SIGNAL | FE_HAS_CARRIER | |
| FE_HAS_VITERBI | FE_HAS_SYNC | |
| FE_HAS_LOCK; |
| |
| break; |
| case SYS_DVBS2: |
| lock = ds3000_readreg(state, 0x0d); |
| if ((lock & 0x8f) == 0x8f) |
| *status = FE_HAS_SIGNAL | FE_HAS_CARRIER | |
| FE_HAS_VITERBI | FE_HAS_SYNC | |
| FE_HAS_LOCK; |
| |
| break; |
| default: |
| return 1; |
| } |
| |
| dprintk("%s: status = 0x%02x\n", __func__, lock); |
| |
| return 0; |
| } |
| |
| #define FE_IS_TUNED (FE_HAS_SIGNAL + FE_HAS_LOCK) |
| static int ds3000_is_tuned(struct dvb_frontend *fe) |
| { |
| fe_status_t tunerstat; |
| |
| ds3000_read_status(fe, &tunerstat); |
| |
| return ((tunerstat & FE_IS_TUNED) == FE_IS_TUNED); |
| } |
| |
| /* read DS3000 BER value */ |
| static int ds3000_read_ber(struct dvb_frontend *fe, u32* ber) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| u8 data; |
| u32 ber_reading, lpdc_frames; |
| |
| dprintk("%s()\n", __func__); |
| |
| switch (c->delivery_system) { |
| case SYS_DVBS: |
| /* set the number of bytes checked during |
| BER estimation */ |
| ds3000_writereg(state, 0xf9, 0x04); |
| /* read BER estimation status */ |
| data = ds3000_readreg(state, 0xf8); |
| /* check if BER estimation is ready */ |
| if ((data & 0x10) == 0) { |
| /* this is the number of error bits, |
| to calculate the bit error rate |
| divide to 8388608 */ |
| *ber = (ds3000_readreg(state, 0xf7) << 8) | |
| ds3000_readreg(state, 0xf6); |
| /* start counting error bits */ |
| /* need to be set twice |
| otherwise it fails sometimes */ |
| data |= 0x10; |
| ds3000_writereg(state, 0xf8, data); |
| ds3000_writereg(state, 0xf8, data); |
| } else |
| /* used to indicate that BER estimation |
| is not ready, i.e. BER is unknown */ |
| *ber = 0xffffffff; |
| break; |
| case SYS_DVBS2: |
| /* read the number of LPDC decoded frames */ |
| lpdc_frames = (ds3000_readreg(state, 0xd7) << 16) | |
| (ds3000_readreg(state, 0xd6) << 8) | |
| ds3000_readreg(state, 0xd5); |
| /* read the number of packets with bad CRC */ |
| ber_reading = (ds3000_readreg(state, 0xf8) << 8) | |
| ds3000_readreg(state, 0xf7); |
| if (lpdc_frames > 750) { |
| /* clear LPDC frame counters */ |
| ds3000_writereg(state, 0xd1, 0x01); |
| /* clear bad packets counter */ |
| ds3000_writereg(state, 0xf9, 0x01); |
| /* enable bad packets counter */ |
| ds3000_writereg(state, 0xf9, 0x00); |
| /* enable LPDC frame counters */ |
| ds3000_writereg(state, 0xd1, 0x00); |
| *ber = ber_reading; |
| } else |
| /* used to indicate that BER estimation is not ready, |
| i.e. BER is unknown */ |
| *ber = 0xffffffff; |
| break; |
| default: |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* read TS2020 signal strength */ |
| static int ds3000_read_signal_strength(struct dvb_frontend *fe, |
| u16 *signal_strength) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| u16 sig_reading, sig_strength; |
| u8 rfgain, bbgain; |
| |
| dprintk("%s()\n", __func__); |
| |
| rfgain = ds3000_tuner_readreg(state, 0x3d) & 0x1f; |
| bbgain = ds3000_tuner_readreg(state, 0x21) & 0x1f; |
| |
| if (rfgain > 15) |
| rfgain = 15; |
| if (bbgain > 13) |
| bbgain = 13; |
| |
| sig_reading = rfgain * 2 + bbgain * 3; |
| |
| sig_strength = 40 + (64 - sig_reading) * 50 / 64 ; |
| |
| /* cook the value to be suitable for szap-s2 human readable output */ |
| *signal_strength = sig_strength * 1000; |
| |
| dprintk("%s: raw / cooked = 0x%04x / 0x%04x\n", __func__, |
| sig_reading, *signal_strength); |
| |
| return 0; |
| } |
| |
| /* calculate DS3000 snr value in dB */ |
| static int ds3000_read_snr(struct dvb_frontend *fe, u16 *snr) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| u8 snr_reading, snr_value; |
| u32 dvbs2_signal_reading, dvbs2_noise_reading, tmp; |
| static const u16 dvbs_snr_tab[] = { /* 20 x Table (rounded up) */ |
| 0x0000, 0x1b13, 0x2aea, 0x3627, 0x3ede, 0x45fe, 0x4c03, |
| 0x513a, 0x55d4, 0x59f2, 0x5dab, 0x6111, 0x6431, 0x6717, |
| 0x69c9, 0x6c4e, 0x6eac, 0x70e8, 0x7304, 0x7505 |
| }; |
| static const u16 dvbs2_snr_tab[] = { /* 80 x Table (rounded up) */ |
| 0x0000, 0x0bc2, 0x12a3, 0x1785, 0x1b4e, 0x1e65, 0x2103, |
| 0x2347, 0x2546, 0x2710, 0x28ae, 0x2a28, 0x2b83, 0x2cc5, |
| 0x2df1, 0x2f09, 0x3010, 0x3109, 0x31f4, 0x32d2, 0x33a6, |
| 0x3470, 0x3531, 0x35ea, 0x369b, 0x3746, 0x37ea, 0x3888, |
| 0x3920, 0x39b3, 0x3a42, 0x3acc, 0x3b51, 0x3bd3, 0x3c51, |
| 0x3ccb, 0x3d42, 0x3db6, 0x3e27, 0x3e95, 0x3f00, 0x3f68, |
| 0x3fcf, 0x4033, 0x4094, 0x40f4, 0x4151, 0x41ac, 0x4206, |
| 0x425e, 0x42b4, 0x4308, 0x435b, 0x43ac, 0x43fc, 0x444a, |
| 0x4497, 0x44e2, 0x452d, 0x4576, 0x45bd, 0x4604, 0x4649, |
| 0x468e, 0x46d1, 0x4713, 0x4755, 0x4795, 0x47d4, 0x4813, |
| 0x4851, 0x488d, 0x48c9, 0x4904, 0x493f, 0x4978, 0x49b1, |
| 0x49e9, 0x4a20, 0x4a57 |
| }; |
| |
| dprintk("%s()\n", __func__); |
| |
| switch (c->delivery_system) { |
| case SYS_DVBS: |
| snr_reading = ds3000_readreg(state, 0xff); |
| snr_reading /= 8; |
| if (snr_reading == 0) |
| *snr = 0x0000; |
| else { |
| if (snr_reading > 20) |
| snr_reading = 20; |
| snr_value = dvbs_snr_tab[snr_reading - 1] * 10 / 23026; |
| /* cook the value to be suitable for szap-s2 |
| human readable output */ |
| *snr = snr_value * 8 * 655; |
| } |
| dprintk("%s: raw / cooked = 0x%02x / 0x%04x\n", __func__, |
| snr_reading, *snr); |
| break; |
| case SYS_DVBS2: |
| dvbs2_noise_reading = (ds3000_readreg(state, 0x8c) & 0x3f) + |
| (ds3000_readreg(state, 0x8d) << 4); |
| dvbs2_signal_reading = ds3000_readreg(state, 0x8e); |
| tmp = dvbs2_signal_reading * dvbs2_signal_reading >> 1; |
| if (tmp == 0) { |
| *snr = 0x0000; |
| return 0; |
| } |
| if (dvbs2_noise_reading == 0) { |
| snr_value = 0x0013; |
| /* cook the value to be suitable for szap-s2 |
| human readable output */ |
| *snr = 0xffff; |
| return 0; |
| } |
| if (tmp > dvbs2_noise_reading) { |
| snr_reading = tmp / dvbs2_noise_reading; |
| if (snr_reading > 80) |
| snr_reading = 80; |
| snr_value = dvbs2_snr_tab[snr_reading - 1] / 1000; |
| /* cook the value to be suitable for szap-s2 |
| human readable output */ |
| *snr = snr_value * 5 * 655; |
| } else { |
| snr_reading = dvbs2_noise_reading / tmp; |
| if (snr_reading > 80) |
| snr_reading = 80; |
| *snr = -(dvbs2_snr_tab[snr_reading] / 1000); |
| } |
| dprintk("%s: raw / cooked = 0x%02x / 0x%04x\n", __func__, |
| snr_reading, *snr); |
| break; |
| default: |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* read DS3000 uncorrected blocks */ |
| static int ds3000_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| u8 data; |
| u16 _ucblocks; |
| |
| dprintk("%s()\n", __func__); |
| |
| switch (c->delivery_system) { |
| case SYS_DVBS: |
| *ucblocks = (ds3000_readreg(state, 0xf5) << 8) | |
| ds3000_readreg(state, 0xf4); |
| data = ds3000_readreg(state, 0xf8); |
| /* clear packet counters */ |
| data &= ~0x20; |
| ds3000_writereg(state, 0xf8, data); |
| /* enable packet counters */ |
| data |= 0x20; |
| ds3000_writereg(state, 0xf8, data); |
| break; |
| case SYS_DVBS2: |
| _ucblocks = (ds3000_readreg(state, 0xe2) << 8) | |
| ds3000_readreg(state, 0xe1); |
| if (_ucblocks > state->prevUCBS2) |
| *ucblocks = _ucblocks - state->prevUCBS2; |
| else |
| *ucblocks = state->prevUCBS2 - _ucblocks; |
| state->prevUCBS2 = _ucblocks; |
| break; |
| default: |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Overwrite the current tuning params, we are about to tune */ |
| static void ds3000_clone_params(struct dvb_frontend *fe) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| memcpy(&state->dcur, &state->dnxt, sizeof(state->dcur)); |
| } |
| |
| static int ds3000_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| u8 data; |
| |
| dprintk("%s(%d)\n", __func__, tone); |
| if ((tone != SEC_TONE_ON) && (tone != SEC_TONE_OFF)) { |
| printk(KERN_ERR "%s: Invalid, tone=%d\n", __func__, tone); |
| return -EINVAL; |
| } |
| |
| data = ds3000_readreg(state, 0xa2); |
| data &= ~0xc0; |
| ds3000_writereg(state, 0xa2, data); |
| |
| switch (tone) { |
| case SEC_TONE_ON: |
| dprintk("%s: setting tone on\n", __func__); |
| data = ds3000_readreg(state, 0xa1); |
| data &= ~0x43; |
| data |= 0x04; |
| ds3000_writereg(state, 0xa1, data); |
| break; |
| case SEC_TONE_OFF: |
| dprintk("%s: setting tone off\n", __func__); |
| data = ds3000_readreg(state, 0xa2); |
| data |= 0x80; |
| ds3000_writereg(state, 0xa2, data); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int ds3000_send_diseqc_msg(struct dvb_frontend *fe, |
| struct dvb_diseqc_master_cmd *d) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| int i; |
| u8 data; |
| |
| /* Dump DiSEqC message */ |
| dprintk("%s(", __func__); |
| for (i = 0 ; i < d->msg_len;) { |
| dprintk("0x%02x", d->msg[i]); |
| if (++i < d->msg_len) |
| dprintk(", "); |
| } |
| |
| /* enable DiSEqC message send pin */ |
| data = ds3000_readreg(state, 0xa2); |
| data &= ~0xc0; |
| ds3000_writereg(state, 0xa2, data); |
| |
| /* DiSEqC message */ |
| for (i = 0; i < d->msg_len; i++) |
| ds3000_writereg(state, 0xa3 + i, d->msg[i]); |
| |
| data = ds3000_readreg(state, 0xa1); |
| /* clear DiSEqC message length and status, |
| enable DiSEqC message send */ |
| data &= ~0xf8; |
| /* set DiSEqC mode, modulation active during 33 pulses, |
| set DiSEqC message length */ |
| data |= ((d->msg_len - 1) << 3) | 0x07; |
| ds3000_writereg(state, 0xa1, data); |
| |
| /* wait up to 150ms for DiSEqC transmission to complete */ |
| for (i = 0; i < 15; i++) { |
| data = ds3000_readreg(state, 0xa1); |
| if ((data & 0x40) == 0) |
| break; |
| msleep(10); |
| } |
| |
| /* DiSEqC timeout after 150ms */ |
| if (i == 15) { |
| data = ds3000_readreg(state, 0xa1); |
| data &= ~0x80; |
| data |= 0x40; |
| ds3000_writereg(state, 0xa1, data); |
| |
| data = ds3000_readreg(state, 0xa2); |
| data &= ~0xc0; |
| data |= 0x80; |
| ds3000_writereg(state, 0xa2, data); |
| |
| return 1; |
| } |
| |
| data = ds3000_readreg(state, 0xa2); |
| data &= ~0xc0; |
| data |= 0x80; |
| ds3000_writereg(state, 0xa2, data); |
| |
| return 0; |
| } |
| |
| /* Send DiSEqC burst */ |
| static int ds3000_diseqc_send_burst(struct dvb_frontend *fe, |
| fe_sec_mini_cmd_t burst) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| int i; |
| u8 data; |
| |
| dprintk("%s()\n", __func__); |
| |
| data = ds3000_readreg(state, 0xa2); |
| data &= ~0xc0; |
| ds3000_writereg(state, 0xa2, data); |
| |
| /* DiSEqC burst */ |
| if (burst == SEC_MINI_A) |
| /* Unmodulated tone burst */ |
| ds3000_writereg(state, 0xa1, 0x02); |
| else if (burst == SEC_MINI_B) |
| /* Modulated tone burst */ |
| ds3000_writereg(state, 0xa1, 0x01); |
| else |
| return -EINVAL; |
| |
| msleep(13); |
| for (i = 0; i < 5; i++) { |
| data = ds3000_readreg(state, 0xa1); |
| if ((data & 0x40) == 0) |
| break; |
| msleep(1); |
| } |
| |
| if (i == 5) { |
| data = ds3000_readreg(state, 0xa1); |
| data &= ~0x80; |
| data |= 0x40; |
| ds3000_writereg(state, 0xa1, data); |
| |
| data = ds3000_readreg(state, 0xa2); |
| data &= ~0xc0; |
| data |= 0x80; |
| ds3000_writereg(state, 0xa2, data); |
| |
| return 1; |
| } |
| |
| data = ds3000_readreg(state, 0xa2); |
| data &= ~0xc0; |
| data |= 0x80; |
| ds3000_writereg(state, 0xa2, data); |
| |
| return 0; |
| } |
| |
| static void ds3000_release(struct dvb_frontend *fe) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| dprintk("%s\n", __func__); |
| kfree(state); |
| } |
| |
| static struct dvb_frontend_ops ds3000_ops; |
| |
| struct dvb_frontend *ds3000_attach(const struct ds3000_config *config, |
| struct i2c_adapter *i2c) |
| { |
| struct ds3000_state *state = NULL; |
| int ret; |
| |
| dprintk("%s\n", __func__); |
| |
| /* allocate memory for the internal state */ |
| state = kmalloc(sizeof(struct ds3000_state), GFP_KERNEL); |
| if (state == NULL) { |
| printk(KERN_ERR "Unable to kmalloc\n"); |
| goto error2; |
| } |
| |
| /* setup the state */ |
| memset(state, 0, sizeof(struct ds3000_state)); |
| |
| state->config = config; |
| state->i2c = i2c; |
| state->prevUCBS2 = 0; |
| |
| /* check if the demod is present */ |
| ret = ds3000_readreg(state, 0x00) & 0xfe; |
| if (ret != 0xe0) { |
| printk(KERN_ERR "Invalid probe, probably not a DS3000\n"); |
| goto error3; |
| } |
| |
| printk(KERN_INFO "DS3000 chip version: %d.%d attached.\n", |
| ds3000_readreg(state, 0x02), |
| ds3000_readreg(state, 0x01)); |
| |
| memcpy(&state->frontend.ops, &ds3000_ops, |
| sizeof(struct dvb_frontend_ops)); |
| state->frontend.demodulator_priv = state; |
| return &state->frontend; |
| |
| error3: |
| kfree(state); |
| error2: |
| return NULL; |
| } |
| EXPORT_SYMBOL(ds3000_attach); |
| |
| static int ds3000_set_property(struct dvb_frontend *fe, |
| struct dtv_property *tvp) |
| { |
| dprintk("%s(..)\n", __func__); |
| return 0; |
| } |
| |
| static int ds3000_get_property(struct dvb_frontend *fe, |
| struct dtv_property *tvp) |
| { |
| dprintk("%s(..)\n", __func__); |
| return 0; |
| } |
| |
| static int ds3000_tune(struct dvb_frontend *fe, |
| struct dvb_frontend_parameters *p) |
| { |
| struct ds3000_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| |
| int ret = 0, retune, i; |
| u8 status, mlpf, mlpf_new, mlpf_max, mlpf_min, nlpf; |
| u16 value, ndiv; |
| u32 f3db; |
| |
| dprintk("%s() ", __func__); |
| |
| /* Load the firmware if required */ |
| ret = ds3000_firmware_ondemand(fe); |
| if (ret != 0) { |
| printk(KERN_ERR "%s: Unable initialise the firmware\n", |
| __func__); |
| return ret; |
| } |
| |
| state->dnxt.delivery = c->modulation; |
| state->dnxt.frequency = c->frequency; |
| state->dnxt.rolloff = 2; /* fixme */ |
| state->dnxt.fec = c->fec_inner; |
| |
| ret = ds3000_set_inversion(state, p->inversion); |
| if (ret != 0) |
| return ret; |
| |
| ret = ds3000_set_symbolrate(state, c->symbol_rate); |
| if (ret != 0) |
| return ret; |
| |
| /* discard the 'current' tuning parameters and prepare to tune */ |
| ds3000_clone_params(fe); |
| |
| retune = 1; /* try 1 times */ |
| dprintk("%s: retune = %d\n", __func__, retune); |
| dprintk("%s: frequency = %d\n", __func__, state->dcur.frequency); |
| dprintk("%s: symbol_rate = %d\n", __func__, state->dcur.symbol_rate); |
| dprintk("%s: FEC = %d \n", __func__, |
| state->dcur.fec); |
| dprintk("%s: Inversion = %d\n", __func__, state->dcur.inversion); |
| |
| do { |
| /* Reset status register */ |
| status = 0; |
| /* Tune */ |
| /* TS2020 init */ |
| ds3000_tuner_writereg(state, 0x42, 0x73); |
| ds3000_tuner_writereg(state, 0x05, 0x01); |
| ds3000_tuner_writereg(state, 0x62, 0xf5); |
| /* unknown */ |
| ds3000_tuner_writereg(state, 0x07, 0x02); |
| ds3000_tuner_writereg(state, 0x10, 0x00); |
| ds3000_tuner_writereg(state, 0x60, 0x79); |
| ds3000_tuner_writereg(state, 0x08, 0x01); |
| ds3000_tuner_writereg(state, 0x00, 0x01); |
| /* calculate and set freq divider */ |
| if (state->dcur.frequency < 1146000) { |
| ds3000_tuner_writereg(state, 0x10, 0x11); |
| ndiv = ((state->dcur.frequency * (6 + 8) * 4) + |
| (DS3000_XTAL_FREQ / 2)) / |
| DS3000_XTAL_FREQ - 1024; |
| } else { |
| ds3000_tuner_writereg(state, 0x10, 0x01); |
| ndiv = ((state->dcur.frequency * (6 + 8) * 2) + |
| (DS3000_XTAL_FREQ / 2)) / |
| DS3000_XTAL_FREQ - 1024; |
| } |
| |
| ds3000_tuner_writereg(state, 0x01, (ndiv & 0x0f00) >> 8); |
| ds3000_tuner_writereg(state, 0x02, ndiv & 0x00ff); |
| |
| /* set pll */ |
| ds3000_tuner_writereg(state, 0x03, 0x06); |
| ds3000_tuner_writereg(state, 0x51, 0x0f); |
| ds3000_tuner_writereg(state, 0x51, 0x1f); |
| ds3000_tuner_writereg(state, 0x50, 0x10); |
| ds3000_tuner_writereg(state, 0x50, 0x00); |
| msleep(5); |
| |
| /* unknown */ |
| ds3000_tuner_writereg(state, 0x51, 0x17); |
| ds3000_tuner_writereg(state, 0x51, 0x1f); |
| ds3000_tuner_writereg(state, 0x50, 0x08); |
| ds3000_tuner_writereg(state, 0x50, 0x00); |
| msleep(5); |
| |
| value = ds3000_tuner_readreg(state, 0x3d); |
| value &= 0x0f; |
| if ((value > 4) && (value < 15)) { |
| value -= 3; |
| if (value < 4) |
| value = 4; |
| value = ((value << 3) | 0x01) & 0x79; |
| } |
| |
| ds3000_tuner_writereg(state, 0x60, value); |
| ds3000_tuner_writereg(state, 0x51, 0x17); |
| ds3000_tuner_writereg(state, 0x51, 0x1f); |
| ds3000_tuner_writereg(state, 0x50, 0x08); |
| ds3000_tuner_writereg(state, 0x50, 0x00); |
| |
| /* set low-pass filter period */ |
| ds3000_tuner_writereg(state, 0x04, 0x2e); |
| ds3000_tuner_writereg(state, 0x51, 0x1b); |
| ds3000_tuner_writereg(state, 0x51, 0x1f); |
| ds3000_tuner_writereg(state, 0x50, 0x04); |
| ds3000_tuner_writereg(state, 0x50, 0x00); |
| msleep(5); |
| |
| f3db = ((state->dcur.symbol_rate / 1000) << 2) / 5 + 2000; |
| if ((state->dcur.symbol_rate / 1000) < 5000) |
| f3db += 3000; |
| if (f3db < 7000) |
| f3db = 7000; |
| if (f3db > 40000) |
| f3db = 40000; |
| |
| /* set low-pass filter baseband */ |
| value = ds3000_tuner_readreg(state, 0x26); |
| mlpf = 0x2e * 207 / ((value << 1) + 151); |
| mlpf_max = mlpf * 135 / 100; |
| mlpf_min = mlpf * 78 / 100; |
| if (mlpf_max > 63) |
| mlpf_max = 63; |
| |
| /* rounded to the closest integer */ |
| nlpf = ((mlpf * f3db * 1000) + (2766 * DS3000_XTAL_FREQ / 2)) |
| / (2766 * DS3000_XTAL_FREQ); |
| if (nlpf > 23) |
| nlpf = 23; |
| if (nlpf < 1) |
| nlpf = 1; |
| |
| /* rounded to the closest integer */ |
| mlpf_new = ((DS3000_XTAL_FREQ * nlpf * 2766) + |
| (1000 * f3db / 2)) / (1000 * f3db); |
| |
| if (mlpf_new < mlpf_min) { |
| nlpf++; |
| mlpf_new = ((DS3000_XTAL_FREQ * nlpf * 2766) + |
| (1000 * f3db / 2)) / (1000 * f3db); |
| } |
| |
| if (mlpf_new > mlpf_max) |
| mlpf_new = mlpf_max; |
| |
| ds3000_tuner_writereg(state, 0x04, mlpf_new); |
| ds3000_tuner_writereg(state, 0x06, nlpf); |
| ds3000_tuner_writereg(state, 0x51, 0x1b); |
| ds3000_tuner_writereg(state, 0x51, 0x1f); |
| ds3000_tuner_writereg(state, 0x50, 0x04); |
| ds3000_tuner_writereg(state, 0x50, 0x00); |
| msleep(5); |
| |
| /* unknown */ |
| ds3000_tuner_writereg(state, 0x51, 0x1e); |
| ds3000_tuner_writereg(state, 0x51, 0x1f); |
| ds3000_tuner_writereg(state, 0x50, 0x01); |
| ds3000_tuner_writereg(state, 0x50, 0x00); |
| msleep(60); |
| |
| /* ds3000 global reset */ |
| ds3000_writereg(state, 0x07, 0x80); |
| ds3000_writereg(state, 0x07, 0x00); |
| /* ds3000 build-in uC reset */ |
| ds3000_writereg(state, 0xb2, 0x01); |
| /* ds3000 software reset */ |
| ds3000_writereg(state, 0x00, 0x01); |
| |
| switch (c->delivery_system) { |
| case SYS_DVBS: |
| /* initialise the demod in DVB-S mode */ |
| for (i = 0; i < sizeof(ds3000_dvbs_init_tab); i += 2) |
| ds3000_writereg(state, |
| ds3000_dvbs_init_tab[i], |
| ds3000_dvbs_init_tab[i + 1]); |
| value = ds3000_readreg(state, 0xfe); |
| value &= 0xc0; |
| value |= 0x1b; |
| ds3000_writereg(state, 0xfe, value); |
| break; |
| case SYS_DVBS2: |
| /* initialise the demod in DVB-S2 mode */ |
| for (i = 0; i < sizeof(ds3000_dvbs2_init_tab); i += 2) |
| ds3000_writereg(state, |
| ds3000_dvbs2_init_tab[i], |
| ds3000_dvbs2_init_tab[i + 1]); |
| ds3000_writereg(state, 0xfe, 0x54); |
| break; |
| default: |
| return 1; |
| } |
| |
| /* enable 27MHz clock output */ |
| ds3000_writereg(state, 0x29, 0x80); |
| /* enable ac coupling */ |
| ds3000_writereg(state, 0x25, 0x8a); |
| |
| /* enhance symbol rate performance */ |
| if ((state->dcur.symbol_rate / 1000) <= 5000) { |
| value = 29777 / (state->dcur.symbol_rate / 1000) + 1; |
| if (value % 2 != 0) |
| value++; |
| ds3000_writereg(state, 0xc3, 0x0d); |
| ds3000_writereg(state, 0xc8, value); |
| ds3000_writereg(state, 0xc4, 0x10); |
| ds3000_writereg(state, 0xc7, 0x0e); |
| } else if ((state->dcur.symbol_rate / 1000) <= 10000) { |
| value = 92166 / (state->dcur.symbol_rate / 1000) + 1; |
| if (value % 2 != 0) |
| value++; |
| ds3000_writereg(state, 0xc3, 0x07); |
| ds3000_writereg(state, 0xc8, value); |
| ds3000_writereg(state, 0xc4, 0x09); |
| ds3000_writereg(state, 0xc7, 0x12); |
| } else if ((state->dcur.symbol_rate / 1000) <= 20000) { |
| value = 64516 / (state->dcur.symbol_rate / 1000) + 1; |
| ds3000_writereg(state, 0xc3, value); |
| ds3000_writereg(state, 0xc8, 0x0e); |
| ds3000_writereg(state, 0xc4, 0x07); |
| ds3000_writereg(state, 0xc7, 0x18); |
| } else { |
| value = 129032 / (state->dcur.symbol_rate / 1000) + 1; |
| ds3000_writereg(state, 0xc3, value); |
| ds3000_writereg(state, 0xc8, 0x0a); |
| ds3000_writereg(state, 0xc4, 0x05); |
| ds3000_writereg(state, 0xc7, 0x24); |
| } |
| |
| /* normalized symbol rate rounded to the closest integer */ |
| value = (((state->dcur.symbol_rate / 1000) << 16) + |
| (DS3000_SAMPLE_RATE / 2)) / DS3000_SAMPLE_RATE; |
| ds3000_writereg(state, 0x61, value & 0x00ff); |
| ds3000_writereg(state, 0x62, (value & 0xff00) >> 8); |
| |
| /* co-channel interference cancellation disabled */ |
| ds3000_writereg(state, 0x56, 0x00); |
| |
| /* equalizer disabled */ |
| ds3000_writereg(state, 0x76, 0x00); |
| |
| /*ds3000_writereg(state, 0x08, 0x03); |
| ds3000_writereg(state, 0xfd, 0x22); |
| ds3000_writereg(state, 0x08, 0x07); |
| ds3000_writereg(state, 0xfd, 0x42); |
| ds3000_writereg(state, 0x08, 0x07);*/ |
| |
| /* ds3000 out of software reset */ |
| ds3000_writereg(state, 0x00, 0x00); |
| /* start ds3000 build-in uC */ |
| ds3000_writereg(state, 0xb2, 0x00); |
| |
| /* TODO: calculate and set carrier offset */ |
| |
| /* wait before retrying */ |
| for (i = 0; i < 30 ; i++) { |
| if (ds3000_is_tuned(fe)) { |
| dprintk("%s: Tuned\n", __func__); |
| ds3000_dump_registers(fe); |
| goto tuned; |
| } |
| msleep(1); |
| } |
| |
| dprintk("%s: Not tuned\n", __func__); |
| ds3000_dump_registers(fe); |
| |
| } while (--retune); |
| |
| tuned: |
| return ret; |
| } |
| |
| static enum dvbfe_algo ds3000_get_algo(struct dvb_frontend *fe) |
| { |
| dprintk("%s()\n", __func__); |
| return DVBFE_ALGO_SW; |
| } |
| |
| /* |
| * Initialise or wake up device |
| * |
| * Power config will reset and load initial firmware if required |
| */ |
| static int ds3000_initfe(struct dvb_frontend *fe) |
| { |
| dprintk("%s()\n", __func__); |
| return 0; |
| } |
| |
| /* Put device to sleep */ |
| static int ds3000_sleep(struct dvb_frontend *fe) |
| { |
| dprintk("%s()\n", __func__); |
| return 0; |
| } |
| |
| static struct dvb_frontend_ops ds3000_ops = { |
| |
| .info = { |
| .name = "Montage Technology DS3000/TS2020", |
| .type = FE_QPSK, |
| .frequency_min = 950000, |
| .frequency_max = 2150000, |
| .frequency_stepsize = 1011, /* kHz for QPSK frontends */ |
| .frequency_tolerance = 5000, |
| .symbol_rate_min = 1000000, |
| .symbol_rate_max = 45000000, |
| .caps = FE_CAN_INVERSION_AUTO | |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | |
| FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_2G_MODULATION | |
| FE_CAN_QPSK | FE_CAN_RECOVER |
| }, |
| |
| .release = ds3000_release, |
| |
| .init = ds3000_initfe, |
| .sleep = ds3000_sleep, |
| .read_status = ds3000_read_status, |
| .read_ber = ds3000_read_ber, |
| .read_signal_strength = ds3000_read_signal_strength, |
| .read_snr = ds3000_read_snr, |
| .read_ucblocks = ds3000_read_ucblocks, |
| .set_tone = ds3000_set_tone, |
| .diseqc_send_master_cmd = ds3000_send_diseqc_msg, |
| .diseqc_send_burst = ds3000_diseqc_send_burst, |
| .get_frontend_algo = ds3000_get_algo, |
| |
| .set_property = ds3000_set_property, |
| .get_property = ds3000_get_property, |
| .set_frontend = ds3000_tune, |
| }; |
| |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)"); |
| |
| MODULE_DESCRIPTION("DVB Frontend module for Montage Technology " |
| "DS3000/TS2020 hardware"); |
| MODULE_AUTHOR("Konstantin Dimitrov"); |
| MODULE_LICENSE("GPL"); |