blob: df278b2685bff16c4da8b1a26eb6982149fce4e1 [file] [log] [blame]
/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <linux/acpi.h>
#include <linux/pnp.h>
#include "linux/string.h"
#include "linux/bitops.h"
#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
/** @file i915_gem_tiling.c
*
* Support for managing tiling state of buffer objects.
*
* The idea behind tiling is to increase cache hit rates by rearranging
* pixel data so that a group of pixel accesses are in the same cacheline.
* Performance improvement from doing this on the back/depth buffer are on
* the order of 30%.
*
* Intel architectures make this somewhat more complicated, though, by
* adjustments made to addressing of data when the memory is in interleaved
* mode (matched pairs of DIMMS) to improve memory bandwidth.
* For interleaved memory, the CPU sends every sequential 64 bytes
* to an alternate memory channel so it can get the bandwidth from both.
*
* The GPU also rearranges its accesses for increased bandwidth to interleaved
* memory, and it matches what the CPU does for non-tiled. However, when tiled
* it does it a little differently, since one walks addresses not just in the
* X direction but also Y. So, along with alternating channels when bit
* 6 of the address flips, it also alternates when other bits flip -- Bits 9
* (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
* are common to both the 915 and 965-class hardware.
*
* The CPU also sometimes XORs in higher bits as well, to improve
* bandwidth doing strided access like we do so frequently in graphics. This
* is called "Channel XOR Randomization" in the MCH documentation. The result
* is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
* decode.
*
* All of this bit 6 XORing has an effect on our memory management,
* as we need to make sure that the 3d driver can correctly address object
* contents.
*
* If we don't have interleaved memory, all tiling is safe and no swizzling is
* required.
*
* When bit 17 is XORed in, we simply refuse to tile at all. Bit
* 17 is not just a page offset, so as we page an objet out and back in,
* individual pages in it will have different bit 17 addresses, resulting in
* each 64 bytes being swapped with its neighbor!
*
* Otherwise, if interleaved, we have to tell the 3d driver what the address
* swizzling it needs to do is, since it's writing with the CPU to the pages
* (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
* pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
* required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
* to match what the GPU expects.
*/
#define MCHBAR_I915 0x44
#define MCHBAR_I965 0x48
#define MCHBAR_SIZE (4*4096)
#define DEVEN_REG 0x54
#define DEVEN_MCHBAR_EN (1 << 28)
/* Allocate space for the MCH regs if needed, return nonzero on error */
static int
intel_alloc_mchbar_resource(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int reg = IS_I965G(dev) ? MCHBAR_I965 : MCHBAR_I915;
u32 temp_lo, temp_hi = 0;
u64 mchbar_addr;
int ret = 0;
if (IS_I965G(dev))
pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
/* If ACPI doesn't have it, assume we need to allocate it ourselves */
#ifdef CONFIG_PNP
if (mchbar_addr &&
pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE)) {
ret = 0;
goto out;
}
#endif
/* Get some space for it */
ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus, &dev_priv->mch_res,
MCHBAR_SIZE, MCHBAR_SIZE,
PCIBIOS_MIN_MEM,
0, pcibios_align_resource,
dev_priv->bridge_dev);
if (ret) {
DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
dev_priv->mch_res.start = 0;
goto out;
}
if (IS_I965G(dev))
pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
upper_32_bits(dev_priv->mch_res.start));
pci_write_config_dword(dev_priv->bridge_dev, reg,
lower_32_bits(dev_priv->mch_res.start));
out:
return ret;
}
/* Setup MCHBAR if possible, return true if we should disable it again */
static bool
intel_setup_mchbar(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int mchbar_reg = IS_I965G(dev) ? MCHBAR_I965 : MCHBAR_I915;
u32 temp;
bool need_disable = false, enabled;
if (IS_I915G(dev) || IS_I915GM(dev)) {
pci_read_config_dword(dev_priv->bridge_dev, DEVEN_REG, &temp);
enabled = !!(temp & DEVEN_MCHBAR_EN);
} else {
pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
enabled = temp & 1;
}
/* If it's already enabled, don't have to do anything */
if (enabled)
goto out;
if (intel_alloc_mchbar_resource(dev))
goto out;
need_disable = true;
/* Space is allocated or reserved, so enable it. */
if (IS_I915G(dev) || IS_I915GM(dev)) {
pci_write_config_dword(dev_priv->bridge_dev, DEVEN_REG,
temp | DEVEN_MCHBAR_EN);
} else {
pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
}
out:
return need_disable;
}
static void
intel_teardown_mchbar(struct drm_device *dev, bool disable)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int mchbar_reg = IS_I965G(dev) ? MCHBAR_I965 : MCHBAR_I915;
u32 temp;
if (disable) {
if (IS_I915G(dev) || IS_I915GM(dev)) {
pci_read_config_dword(dev_priv->bridge_dev, DEVEN_REG, &temp);
temp &= ~DEVEN_MCHBAR_EN;
pci_write_config_dword(dev_priv->bridge_dev, DEVEN_REG, temp);
} else {
pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
temp &= ~1;
pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp);
}
}
if (dev_priv->mch_res.start)
release_resource(&dev_priv->mch_res);
}
/**
* Detects bit 6 swizzling of address lookup between IGD access and CPU
* access through main memory.
*/
void
i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
bool need_disable;
if (IS_IRONLAKE(dev)) {
/* On Ironlake whatever DRAM config, GPU always do
* same swizzling setup.
*/
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
swizzle_y = I915_BIT_6_SWIZZLE_9;
} else if (!IS_I9XX(dev)) {
/* As far as we know, the 865 doesn't have these bit 6
* swizzling issues.
*/
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
} else if (IS_MOBILE(dev)) {
uint32_t dcc;
/* Try to make sure MCHBAR is enabled before poking at it */
need_disable = intel_setup_mchbar(dev);
/* On mobile 9xx chipsets, channel interleave by the CPU is
* determined by DCC. For single-channel, neither the CPU
* nor the GPU do swizzling. For dual channel interleaved,
* the GPU's interleave is bit 9 and 10 for X tiled, and bit
* 9 for Y tiled. The CPU's interleave is independent, and
* can be based on either bit 11 (haven't seen this yet) or
* bit 17 (common).
*/
dcc = I915_READ(DCC);
switch (dcc & DCC_ADDRESSING_MODE_MASK) {
case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
break;
case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
if (dcc & DCC_CHANNEL_XOR_DISABLE) {
/* This is the base swizzling by the GPU for
* tiled buffers.
*/
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
swizzle_y = I915_BIT_6_SWIZZLE_9;
} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
/* Bit 11 swizzling by the CPU in addition. */
swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
swizzle_y = I915_BIT_6_SWIZZLE_9_11;
} else {
/* Bit 17 swizzling by the CPU in addition. */
swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
swizzle_y = I915_BIT_6_SWIZZLE_9_17;
}
break;
}
if (dcc == 0xffffffff) {
DRM_ERROR("Couldn't read from MCHBAR. "
"Disabling tiling.\n");
swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
}
intel_teardown_mchbar(dev, need_disable);
} else {
/* The 965, G33, and newer, have a very flexible memory
* configuration. It will enable dual-channel mode
* (interleaving) on as much memory as it can, and the GPU
* will additionally sometimes enable different bit 6
* swizzling for tiled objects from the CPU.
*
* Here's what I found on the G965:
* slot fill memory size swizzling
* 0A 0B 1A 1B 1-ch 2-ch
* 512 0 0 0 512 0 O
* 512 0 512 0 16 1008 X
* 512 0 0 512 16 1008 X
* 0 512 0 512 16 1008 X
* 1024 1024 1024 0 2048 1024 O
*
* We could probably detect this based on either the DRB
* matching, which was the case for the swizzling required in
* the table above, or from the 1-ch value being less than
* the minimum size of a rank.
*/
if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
} else {
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
swizzle_y = I915_BIT_6_SWIZZLE_9;
}
}
dev_priv->mm.bit_6_swizzle_x = swizzle_x;
dev_priv->mm.bit_6_swizzle_y = swizzle_y;
}
/**
* Returns whether an object is currently fenceable. If not, it may need
* to be unbound and have its pitch adjusted.
*/
bool
i915_obj_fenceable(struct drm_device *dev, struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
if (IS_I965G(dev)) {
/* The 965 can have fences at any page boundary. */
if (obj->size & 4095)
return false;
return true;
} else if (IS_I9XX(dev)) {
if (obj_priv->gtt_offset & ~I915_FENCE_START_MASK)
return false;
} else {
if (obj_priv->gtt_offset & ~I830_FENCE_START_MASK)
return false;
}
/* Power of two sized... */
if (obj->size & (obj->size - 1))
return false;
/* Objects must be size aligned as well */
if (obj_priv->gtt_offset & (obj->size - 1))
return false;
return true;
}
/* Check pitch constriants for all chips & tiling formats */
bool
i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
{
int tile_width;
/* Linear is always fine */
if (tiling_mode == I915_TILING_NONE)
return true;
if (!IS_I9XX(dev) ||
(tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
tile_width = 128;
else
tile_width = 512;
/* check maximum stride & object size */
if (IS_I965G(dev)) {
/* i965 stores the end address of the gtt mapping in the fence
* reg, so dont bother to check the size */
if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
return false;
} else if (IS_I9XX(dev)) {
uint32_t pitch_val = ffs(stride / tile_width) - 1;
/* XXX: For Y tiling, FENCE_MAX_PITCH_VAL is actually 6 (8KB)
* instead of 4 (2KB) on 945s.
*/
if (pitch_val > I915_FENCE_MAX_PITCH_VAL ||
size > (I830_FENCE_MAX_SIZE_VAL << 20))
return false;
} else {
uint32_t pitch_val = ffs(stride / tile_width) - 1;
if (pitch_val > I830_FENCE_MAX_PITCH_VAL ||
size > (I830_FENCE_MAX_SIZE_VAL << 19))
return false;
}
/* 965+ just needs multiples of tile width */
if (IS_I965G(dev)) {
if (stride & (tile_width - 1))
return false;
return true;
}
/* Pre-965 needs power of two tile widths */
if (stride < tile_width)
return false;
if (stride & (stride - 1))
return false;
return true;
}
static bool
i915_gem_object_fence_offset_ok(struct drm_gem_object *obj, int tiling_mode)
{
struct drm_device *dev = obj->dev;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
if (obj_priv->gtt_space == NULL)
return true;
if (tiling_mode == I915_TILING_NONE)
return true;
if (!IS_I965G(dev)) {
if (obj_priv->gtt_offset & (obj->size - 1))
return false;
if (IS_I9XX(dev)) {
if (obj_priv->gtt_offset & ~I915_FENCE_START_MASK)
return false;
} else {
if (obj_priv->gtt_offset & ~I830_FENCE_START_MASK)
return false;
}
}
return true;
}
/**
* Sets the tiling mode of an object, returning the required swizzling of
* bit 6 of addresses in the object.
*/
int
i915_gem_set_tiling(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_set_tiling *args = data;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret = 0;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL)
return -EINVAL;
obj_priv = obj->driver_private;
if (!i915_tiling_ok(dev, args->stride, obj->size, args->tiling_mode)) {
mutex_lock(&dev->struct_mutex);
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
return -EINVAL;
}
if (args->tiling_mode == I915_TILING_NONE) {
args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
args->stride = 0;
} else {
if (args->tiling_mode == I915_TILING_X)
args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
else
args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
/* Hide bit 17 swizzling from the user. This prevents old Mesa
* from aborting the application on sw fallbacks to bit 17,
* and we use the pread/pwrite bit17 paths to swizzle for it.
* If there was a user that was relying on the swizzle
* information for drm_intel_bo_map()ed reads/writes this would
* break it, but we don't have any of those.
*/
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
/* If we can't handle the swizzling, make it untiled. */
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
args->tiling_mode = I915_TILING_NONE;
args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
args->stride = 0;
}
}
mutex_lock(&dev->struct_mutex);
if (args->tiling_mode != obj_priv->tiling_mode ||
args->stride != obj_priv->stride) {
/* We need to rebind the object if its current allocation
* no longer meets the alignment restrictions for its new
* tiling mode. Otherwise we can just leave it alone, but
* need to ensure that any fence register is cleared.
*/
if (!i915_gem_object_fence_offset_ok(obj, args->tiling_mode))
ret = i915_gem_object_unbind(obj);
else
ret = i915_gem_object_put_fence_reg(obj);
if (ret != 0) {
WARN(ret != -ERESTARTSYS,
"failed to reset object for tiling switch");
args->tiling_mode = obj_priv->tiling_mode;
args->stride = obj_priv->stride;
goto err;
}
/* If we've changed tiling, GTT-mappings of the object
* need to re-fault to ensure that the correct fence register
* setup is in place.
*/
i915_gem_release_mmap(obj);
obj_priv->tiling_mode = args->tiling_mode;
obj_priv->stride = args->stride;
}
err:
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Returns the current tiling mode and required bit 6 swizzling for the object.
*/
int
i915_gem_get_tiling(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_get_tiling *args = data;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL)
return -EINVAL;
obj_priv = obj->driver_private;
mutex_lock(&dev->struct_mutex);
args->tiling_mode = obj_priv->tiling_mode;
switch (obj_priv->tiling_mode) {
case I915_TILING_X:
args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
break;
case I915_TILING_Y:
args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
break;
case I915_TILING_NONE:
args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
break;
default:
DRM_ERROR("unknown tiling mode\n");
}
/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
return 0;
}
/**
* Swap every 64 bytes of this page around, to account for it having a new
* bit 17 of its physical address and therefore being interpreted differently
* by the GPU.
*/
static int
i915_gem_swizzle_page(struct page *page)
{
char *vaddr;
int i;
char temp[64];
vaddr = kmap(page);
if (vaddr == NULL)
return -ENOMEM;
for (i = 0; i < PAGE_SIZE; i += 128) {
memcpy(temp, &vaddr[i], 64);
memcpy(&vaddr[i], &vaddr[i + 64], 64);
memcpy(&vaddr[i + 64], temp, 64);
}
kunmap(page);
return 0;
}
void
i915_gem_object_do_bit_17_swizzle(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int page_count = obj->size >> PAGE_SHIFT;
int i;
if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
return;
if (obj_priv->bit_17 == NULL)
return;
for (i = 0; i < page_count; i++) {
char new_bit_17 = page_to_phys(obj_priv->pages[i]) >> 17;
if ((new_bit_17 & 0x1) !=
(test_bit(i, obj_priv->bit_17) != 0)) {
int ret = i915_gem_swizzle_page(obj_priv->pages[i]);
if (ret != 0) {
DRM_ERROR("Failed to swizzle page\n");
return;
}
set_page_dirty(obj_priv->pages[i]);
}
}
}
void
i915_gem_object_save_bit_17_swizzle(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int page_count = obj->size >> PAGE_SHIFT;
int i;
if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
return;
if (obj_priv->bit_17 == NULL) {
obj_priv->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
sizeof(long), GFP_KERNEL);
if (obj_priv->bit_17 == NULL) {
DRM_ERROR("Failed to allocate memory for bit 17 "
"record\n");
return;
}
}
for (i = 0; i < page_count; i++) {
if (page_to_phys(obj_priv->pages[i]) & (1 << 17))
__set_bit(i, obj_priv->bit_17);
else
__clear_bit(i, obj_priv->bit_17);
}
}