| /* |
| * Copyright (C) 2000, 2001 Broadcom Corporation |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| * These are routines to set up and handle interrupts from the |
| * sb1250 general purpose timer 0. We're using the timer as a |
| * system clock, so we set it up to run at 100 Hz. On every |
| * interrupt, we update our idea of what the time of day is, |
| * then call do_timer() in the architecture-independent kernel |
| * code to do general bookkeeping (e.g. update jiffies, run |
| * bottom halves, etc.) |
| */ |
| #include <linux/config.h> |
| #include <linux/interrupt.h> |
| #include <linux/sched.h> |
| #include <linux/spinlock.h> |
| #include <linux/kernel_stat.h> |
| |
| #include <asm/irq.h> |
| #include <asm/ptrace.h> |
| #include <asm/addrspace.h> |
| #include <asm/time.h> |
| #include <asm/io.h> |
| |
| #include <asm/sibyte/sb1250.h> |
| #include <asm/sibyte/sb1250_regs.h> |
| #include <asm/sibyte/sb1250_int.h> |
| #include <asm/sibyte/sb1250_scd.h> |
| |
| |
| #define IMR_IP2_VAL K_INT_MAP_I0 |
| #define IMR_IP3_VAL K_INT_MAP_I1 |
| #define IMR_IP4_VAL K_INT_MAP_I2 |
| |
| #define SB1250_HPT_NUM 3 |
| #define SB1250_HPT_VALUE M_SCD_TIMER_CNT /* max value */ |
| #define SB1250_HPT_SHIFT ((sizeof(unsigned int)*8)-V_SCD_TIMER_WIDTH) |
| |
| |
| extern int sb1250_steal_irq(int irq); |
| |
| static unsigned int sb1250_hpt_read(void); |
| static void sb1250_hpt_init(unsigned int); |
| |
| static unsigned int hpt_offset; |
| |
| void __init sb1250_hpt_setup(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| if (!cpu) { |
| /* Setup hpt using timer #3 but do not enable irq for it */ |
| __raw_writeq(0, IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM, R_SCD_TIMER_CFG))); |
| __raw_writeq(SB1250_HPT_VALUE, |
| IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM, R_SCD_TIMER_INIT))); |
| __raw_writeq(M_SCD_TIMER_ENABLE | M_SCD_TIMER_MODE_CONTINUOUS, |
| IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM, R_SCD_TIMER_CFG))); |
| |
| /* |
| * we need to fill 32 bits, so just use the upper 23 bits and pretend |
| * the timer is going 512Mhz instead of 1Mhz |
| */ |
| mips_hpt_frequency = V_SCD_TIMER_FREQ << SB1250_HPT_SHIFT; |
| mips_hpt_init = sb1250_hpt_init; |
| mips_hpt_read = sb1250_hpt_read; |
| } |
| } |
| |
| |
| void sb1250_time_init(void) |
| { |
| int cpu = smp_processor_id(); |
| int irq = K_INT_TIMER_0+cpu; |
| |
| /* Only have 4 general purpose timers, and we use last one as hpt */ |
| if (cpu > 2) { |
| BUG(); |
| } |
| |
| sb1250_mask_irq(cpu, irq); |
| |
| /* Map the timer interrupt to ip[4] of this cpu */ |
| __raw_writeq(IMR_IP4_VAL, |
| IOADDR(A_IMR_REGISTER(cpu, R_IMR_INTERRUPT_MAP_BASE) + |
| (irq << 3))); |
| |
| /* the general purpose timer ticks at 1 Mhz independent if the rest of the system */ |
| /* Disable the timer and set up the count */ |
| __raw_writeq(0, IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG))); |
| #ifdef CONFIG_SIMULATION |
| __raw_writeq((50000 / HZ) - 1, |
| IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_INIT))); |
| #else |
| __raw_writeq((V_SCD_TIMER_FREQ / HZ) - 1, |
| IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_INIT))); |
| #endif |
| |
| /* Set the timer running */ |
| __raw_writeq(M_SCD_TIMER_ENABLE | M_SCD_TIMER_MODE_CONTINUOUS, |
| IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG))); |
| |
| sb1250_unmask_irq(cpu, irq); |
| sb1250_steal_irq(irq); |
| /* |
| * This interrupt is "special" in that it doesn't use the request_irq |
| * way to hook the irq line. The timer interrupt is initialized early |
| * enough to make this a major pain, and it's also firing enough to |
| * warrant a bit of special case code. sb1250_timer_interrupt is |
| * called directly from irq_handler.S when IP[4] is set during an |
| * interrupt |
| */ |
| } |
| |
| void sb1250_timer_interrupt(struct pt_regs *regs) |
| { |
| int cpu = smp_processor_id(); |
| int irq = K_INT_TIMER_0 + cpu; |
| |
| /* ACK interrupt */ |
| ____raw_writeq(M_SCD_TIMER_ENABLE | M_SCD_TIMER_MODE_CONTINUOUS, |
| IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG))); |
| |
| if (cpu == 0) { |
| /* |
| * CPU 0 handles the global timer interrupt job |
| */ |
| ll_timer_interrupt(irq, regs); |
| } |
| else { |
| /* |
| * other CPUs should just do profiling and process accounting |
| */ |
| ll_local_timer_interrupt(irq, regs); |
| } |
| } |
| |
| /* |
| * The HPT is free running from SB1250_HPT_VALUE down to 0 then starts over |
| * again. There's no easy way to set to a specific value so store init value |
| * in hpt_offset and subtract each time. |
| * |
| * Note: Timer isn't full 32bits so shift it into the upper part making |
| * it appear to run at a higher frequency. |
| */ |
| static unsigned int sb1250_hpt_read(void) |
| { |
| unsigned int count; |
| |
| count = G_SCD_TIMER_CNT(__raw_readq(IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM, R_SCD_TIMER_CNT)))); |
| |
| count = (SB1250_HPT_VALUE - count) << SB1250_HPT_SHIFT; |
| |
| return count - hpt_offset; |
| } |
| |
| static void sb1250_hpt_init(unsigned int count) |
| { |
| hpt_offset = count; |
| return; |
| } |