blob: 0c6d5cef4cf121770c63fcb559bf6cc187640292 [file] [log] [blame]
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Christian König.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Christian König
* Rafał Miłecki
*/
#include <linux/hdmi.h>
#include <drm/drmP.h>
#include <drm/radeon_drm.h>
#include "radeon.h"
#include "radeon_asic.h"
#include "evergreend.h"
#include "atom.h"
extern void dce6_afmt_write_speaker_allocation(struct drm_encoder *encoder);
extern void dce6_afmt_write_sad_regs(struct drm_encoder *encoder);
extern void dce6_afmt_select_pin(struct drm_encoder *encoder);
extern void dce6_afmt_write_latency_fields(struct drm_encoder *encoder,
struct drm_display_mode *mode);
/*
* update the N and CTS parameters for a given pixel clock rate
*/
static void evergreen_hdmi_update_ACR(struct drm_encoder *encoder, uint32_t clock)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_hdmi_acr acr = r600_hdmi_acr(clock);
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
struct radeon_encoder_atom_dig *dig = radeon_encoder->enc_priv;
uint32_t offset = dig->afmt->offset;
WREG32(HDMI_ACR_32_0 + offset, HDMI_ACR_CTS_32(acr.cts_32khz));
WREG32(HDMI_ACR_32_1 + offset, acr.n_32khz);
WREG32(HDMI_ACR_44_0 + offset, HDMI_ACR_CTS_44(acr.cts_44_1khz));
WREG32(HDMI_ACR_44_1 + offset, acr.n_44_1khz);
WREG32(HDMI_ACR_48_0 + offset, HDMI_ACR_CTS_48(acr.cts_48khz));
WREG32(HDMI_ACR_48_1 + offset, acr.n_48khz);
}
static void dce4_afmt_write_latency_fields(struct drm_encoder *encoder,
struct drm_display_mode *mode)
{
struct radeon_device *rdev = encoder->dev->dev_private;
struct drm_connector *connector;
struct radeon_connector *radeon_connector = NULL;
u32 tmp = 0;
list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) {
if (connector->encoder == encoder) {
radeon_connector = to_radeon_connector(connector);
break;
}
}
if (!radeon_connector) {
DRM_ERROR("Couldn't find encoder's connector\n");
return;
}
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
if (connector->latency_present[1])
tmp = VIDEO_LIPSYNC(connector->video_latency[1]) |
AUDIO_LIPSYNC(connector->audio_latency[1]);
else
tmp = VIDEO_LIPSYNC(255) | AUDIO_LIPSYNC(255);
} else {
if (connector->latency_present[0])
tmp = VIDEO_LIPSYNC(connector->video_latency[0]) |
AUDIO_LIPSYNC(connector->audio_latency[0]);
else
tmp = VIDEO_LIPSYNC(255) | AUDIO_LIPSYNC(255);
}
WREG32(AZ_F0_CODEC_PIN0_CONTROL_RESPONSE_LIPSYNC, tmp);
}
static void dce4_afmt_write_speaker_allocation(struct drm_encoder *encoder)
{
struct radeon_device *rdev = encoder->dev->dev_private;
struct drm_connector *connector;
struct radeon_connector *radeon_connector = NULL;
u32 tmp;
u8 *sadb;
int sad_count;
list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) {
if (connector->encoder == encoder) {
radeon_connector = to_radeon_connector(connector);
break;
}
}
if (!radeon_connector) {
DRM_ERROR("Couldn't find encoder's connector\n");
return;
}
sad_count = drm_edid_to_speaker_allocation(radeon_connector->edid, &sadb);
if (sad_count <= 0) {
DRM_ERROR("Couldn't read Speaker Allocation Data Block: %d\n", sad_count);
return;
}
/* program the speaker allocation */
tmp = RREG32(AZ_F0_CODEC_PIN0_CONTROL_CHANNEL_SPEAKER);
tmp &= ~(DP_CONNECTION | SPEAKER_ALLOCATION_MASK);
/* set HDMI mode */
tmp |= HDMI_CONNECTION;
if (sad_count)
tmp |= SPEAKER_ALLOCATION(sadb[0]);
else
tmp |= SPEAKER_ALLOCATION(5); /* stereo */
WREG32(AZ_F0_CODEC_PIN0_CONTROL_CHANNEL_SPEAKER, tmp);
kfree(sadb);
}
static void evergreen_hdmi_write_sad_regs(struct drm_encoder *encoder)
{
struct radeon_device *rdev = encoder->dev->dev_private;
struct drm_connector *connector;
struct radeon_connector *radeon_connector = NULL;
struct cea_sad *sads;
int i, sad_count;
static const u16 eld_reg_to_type[][2] = {
{ AZ_F0_CODEC_PIN0_CONTROL_AUDIO_DESCRIPTOR0, HDMI_AUDIO_CODING_TYPE_PCM },
{ AZ_F0_CODEC_PIN0_CONTROL_AUDIO_DESCRIPTOR1, HDMI_AUDIO_CODING_TYPE_AC3 },
{ AZ_F0_CODEC_PIN0_CONTROL_AUDIO_DESCRIPTOR2, HDMI_AUDIO_CODING_TYPE_MPEG1 },
{ AZ_F0_CODEC_PIN0_CONTROL_AUDIO_DESCRIPTOR3, HDMI_AUDIO_CODING_TYPE_MP3 },
{ AZ_F0_CODEC_PIN0_CONTROL_AUDIO_DESCRIPTOR4, HDMI_AUDIO_CODING_TYPE_MPEG2 },
{ AZ_F0_CODEC_PIN0_CONTROL_AUDIO_DESCRIPTOR5, HDMI_AUDIO_CODING_TYPE_AAC_LC },
{ AZ_F0_CODEC_PIN0_CONTROL_AUDIO_DESCRIPTOR6, HDMI_AUDIO_CODING_TYPE_DTS },
{ AZ_F0_CODEC_PIN0_CONTROL_AUDIO_DESCRIPTOR7, HDMI_AUDIO_CODING_TYPE_ATRAC },
{ AZ_F0_CODEC_PIN0_CONTROL_AUDIO_DESCRIPTOR9, HDMI_AUDIO_CODING_TYPE_EAC3 },
{ AZ_F0_CODEC_PIN0_CONTROL_AUDIO_DESCRIPTOR10, HDMI_AUDIO_CODING_TYPE_DTS_HD },
{ AZ_F0_CODEC_PIN0_CONTROL_AUDIO_DESCRIPTOR11, HDMI_AUDIO_CODING_TYPE_MLP },
{ AZ_F0_CODEC_PIN0_CONTROL_AUDIO_DESCRIPTOR13, HDMI_AUDIO_CODING_TYPE_WMA_PRO },
};
list_for_each_entry(connector, &encoder->dev->mode_config.connector_list, head) {
if (connector->encoder == encoder) {
radeon_connector = to_radeon_connector(connector);
break;
}
}
if (!radeon_connector) {
DRM_ERROR("Couldn't find encoder's connector\n");
return;
}
sad_count = drm_edid_to_sad(radeon_connector->edid, &sads);
if (sad_count <= 0) {
DRM_ERROR("Couldn't read SADs: %d\n", sad_count);
return;
}
BUG_ON(!sads);
for (i = 0; i < ARRAY_SIZE(eld_reg_to_type); i++) {
u32 value = 0;
u8 stereo_freqs = 0;
int max_channels = -1;
int j;
for (j = 0; j < sad_count; j++) {
struct cea_sad *sad = &sads[j];
if (sad->format == eld_reg_to_type[i][1]) {
if (sad->channels > max_channels) {
value = MAX_CHANNELS(sad->channels) |
DESCRIPTOR_BYTE_2(sad->byte2) |
SUPPORTED_FREQUENCIES(sad->freq);
max_channels = sad->channels;
}
if (sad->format == HDMI_AUDIO_CODING_TYPE_PCM)
stereo_freqs |= sad->freq;
else
break;
}
}
value |= SUPPORTED_FREQUENCIES_STEREO(stereo_freqs);
WREG32(eld_reg_to_type[i][0], value);
}
kfree(sads);
}
/*
* build a HDMI Video Info Frame
*/
static void evergreen_hdmi_update_avi_infoframe(struct drm_encoder *encoder,
void *buffer, size_t size)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
struct radeon_encoder_atom_dig *dig = radeon_encoder->enc_priv;
uint32_t offset = dig->afmt->offset;
uint8_t *frame = buffer + 3;
uint8_t *header = buffer;
WREG32(AFMT_AVI_INFO0 + offset,
frame[0x0] | (frame[0x1] << 8) | (frame[0x2] << 16) | (frame[0x3] << 24));
WREG32(AFMT_AVI_INFO1 + offset,
frame[0x4] | (frame[0x5] << 8) | (frame[0x6] << 16) | (frame[0x7] << 24));
WREG32(AFMT_AVI_INFO2 + offset,
frame[0x8] | (frame[0x9] << 8) | (frame[0xA] << 16) | (frame[0xB] << 24));
WREG32(AFMT_AVI_INFO3 + offset,
frame[0xC] | (frame[0xD] << 8) | (header[1] << 24));
}
static void evergreen_audio_set_dto(struct drm_encoder *encoder, u32 clock)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
struct radeon_encoder_atom_dig *dig = radeon_encoder->enc_priv;
struct radeon_crtc *radeon_crtc = to_radeon_crtc(encoder->crtc);
u32 base_rate = 24000;
u32 max_ratio = clock / base_rate;
u32 dto_phase;
u32 dto_modulo = clock;
u32 wallclock_ratio;
u32 dto_cntl;
if (!dig || !dig->afmt)
return;
if (ASIC_IS_DCE6(rdev)) {
dto_phase = 24 * 1000;
} else {
if (max_ratio >= 8) {
dto_phase = 192 * 1000;
wallclock_ratio = 3;
} else if (max_ratio >= 4) {
dto_phase = 96 * 1000;
wallclock_ratio = 2;
} else if (max_ratio >= 2) {
dto_phase = 48 * 1000;
wallclock_ratio = 1;
} else {
dto_phase = 24 * 1000;
wallclock_ratio = 0;
}
dto_cntl = RREG32(DCCG_AUDIO_DTO0_CNTL) & ~DCCG_AUDIO_DTO_WALLCLOCK_RATIO_MASK;
dto_cntl |= DCCG_AUDIO_DTO_WALLCLOCK_RATIO(wallclock_ratio);
WREG32(DCCG_AUDIO_DTO0_CNTL, dto_cntl);
}
/* XXX two dtos; generally use dto0 for hdmi */
/* Express [24MHz / target pixel clock] as an exact rational
* number (coefficient of two integer numbers. DCCG_AUDIO_DTOx_PHASE
* is the numerator, DCCG_AUDIO_DTOx_MODULE is the denominator
*/
WREG32(DCCG_AUDIO_DTO_SOURCE, DCCG_AUDIO_DTO0_SOURCE_SEL(radeon_crtc->crtc_id));
WREG32(DCCG_AUDIO_DTO0_PHASE, dto_phase);
WREG32(DCCG_AUDIO_DTO0_MODULE, dto_modulo);
}
/*
* update the info frames with the data from the current display mode
*/
void evergreen_hdmi_setmode(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
struct radeon_encoder_atom_dig *dig = radeon_encoder->enc_priv;
u8 buffer[HDMI_INFOFRAME_HEADER_SIZE + HDMI_AVI_INFOFRAME_SIZE];
struct hdmi_avi_infoframe frame;
uint32_t offset;
ssize_t err;
if (!dig || !dig->afmt)
return;
/* Silent, r600_hdmi_enable will raise WARN for us */
if (!dig->afmt->enabled)
return;
offset = dig->afmt->offset;
evergreen_audio_set_dto(encoder, mode->clock);
WREG32(HDMI_VBI_PACKET_CONTROL + offset,
HDMI_NULL_SEND); /* send null packets when required */
WREG32(AFMT_AUDIO_CRC_CONTROL + offset, 0x1000);
WREG32(HDMI_VBI_PACKET_CONTROL + offset,
HDMI_NULL_SEND | /* send null packets when required */
HDMI_GC_SEND | /* send general control packets */
HDMI_GC_CONT); /* send general control packets every frame */
WREG32(HDMI_INFOFRAME_CONTROL0 + offset,
HDMI_AUDIO_INFO_SEND | /* enable audio info frames (frames won't be set until audio is enabled) */
HDMI_AUDIO_INFO_CONT); /* required for audio info values to be updated */
WREG32(AFMT_INFOFRAME_CONTROL0 + offset,
AFMT_AUDIO_INFO_UPDATE); /* required for audio info values to be updated */
WREG32(HDMI_INFOFRAME_CONTROL1 + offset,
HDMI_AUDIO_INFO_LINE(2)); /* anything other than 0 */
WREG32(HDMI_GC + offset, 0); /* unset HDMI_GC_AVMUTE */
WREG32(HDMI_AUDIO_PACKET_CONTROL + offset,
HDMI_AUDIO_DELAY_EN(1) | /* set the default audio delay */
HDMI_AUDIO_PACKETS_PER_LINE(3)); /* should be suffient for all audio modes and small enough for all hblanks */
WREG32(AFMT_AUDIO_PACKET_CONTROL + offset,
AFMT_60958_CS_UPDATE); /* allow 60958 channel status fields to be updated */
/* fglrx clears sth in AFMT_AUDIO_PACKET_CONTROL2 here */
WREG32(HDMI_ACR_PACKET_CONTROL + offset,
HDMI_ACR_SOURCE | /* select SW CTS value */
HDMI_ACR_AUTO_SEND); /* allow hw to sent ACR packets when required */
evergreen_hdmi_update_ACR(encoder, mode->clock);
WREG32(AFMT_60958_0 + offset,
AFMT_60958_CS_CHANNEL_NUMBER_L(1));
WREG32(AFMT_60958_1 + offset,
AFMT_60958_CS_CHANNEL_NUMBER_R(2));
WREG32(AFMT_60958_2 + offset,
AFMT_60958_CS_CHANNEL_NUMBER_2(3) |
AFMT_60958_CS_CHANNEL_NUMBER_3(4) |
AFMT_60958_CS_CHANNEL_NUMBER_4(5) |
AFMT_60958_CS_CHANNEL_NUMBER_5(6) |
AFMT_60958_CS_CHANNEL_NUMBER_6(7) |
AFMT_60958_CS_CHANNEL_NUMBER_7(8));
if (ASIC_IS_DCE6(rdev)) {
dce6_afmt_write_speaker_allocation(encoder);
} else {
dce4_afmt_write_speaker_allocation(encoder);
}
WREG32(AFMT_AUDIO_PACKET_CONTROL2 + offset,
AFMT_AUDIO_CHANNEL_ENABLE(0xff));
/* fglrx sets 0x40 in 0x5f80 here */
if (ASIC_IS_DCE6(rdev)) {
dce6_afmt_select_pin(encoder);
dce6_afmt_write_sad_regs(encoder);
dce6_afmt_write_latency_fields(encoder, mode);
} else {
evergreen_hdmi_write_sad_regs(encoder);
dce4_afmt_write_latency_fields(encoder, mode);
}
err = drm_hdmi_avi_infoframe_from_display_mode(&frame, mode);
if (err < 0) {
DRM_ERROR("failed to setup AVI infoframe: %zd\n", err);
return;
}
err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
if (err < 0) {
DRM_ERROR("failed to pack AVI infoframe: %zd\n", err);
return;
}
evergreen_hdmi_update_avi_infoframe(encoder, buffer, sizeof(buffer));
WREG32_OR(HDMI_INFOFRAME_CONTROL0 + offset,
HDMI_AVI_INFO_SEND | /* enable AVI info frames */
HDMI_AVI_INFO_CONT); /* required for audio info values to be updated */
WREG32_P(HDMI_INFOFRAME_CONTROL1 + offset,
HDMI_AVI_INFO_LINE(2), /* anything other than 0 */
~HDMI_AVI_INFO_LINE_MASK);
WREG32_OR(AFMT_AUDIO_PACKET_CONTROL + offset,
AFMT_AUDIO_SAMPLE_SEND); /* send audio packets */
/* it's unknown what these bits do excatly, but it's indeed quite useful for debugging */
WREG32(AFMT_RAMP_CONTROL0 + offset, 0x00FFFFFF);
WREG32(AFMT_RAMP_CONTROL1 + offset, 0x007FFFFF);
WREG32(AFMT_RAMP_CONTROL2 + offset, 0x00000001);
WREG32(AFMT_RAMP_CONTROL3 + offset, 0x00000001);
}
void evergreen_hdmi_enable(struct drm_encoder *encoder, bool enable)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
struct radeon_encoder_atom_dig *dig = radeon_encoder->enc_priv;
if (!dig || !dig->afmt)
return;
/* Silent, r600_hdmi_enable will raise WARN for us */
if (enable && dig->afmt->enabled)
return;
if (!enable && !dig->afmt->enabled)
return;
if (enable) {
if (ASIC_IS_DCE6(rdev))
dig->afmt->pin = dce6_audio_get_pin(rdev);
else
dig->afmt->pin = r600_audio_get_pin(rdev);
} else {
dig->afmt->pin = NULL;
}
dig->afmt->enabled = enable;
DRM_DEBUG("%sabling HDMI interface @ 0x%04X for encoder 0x%x\n",
enable ? "En" : "Dis", dig->afmt->offset, radeon_encoder->encoder_id);
}