| /* |
| * Copyright (C) 2001 Allan Trautman, IBM Corporation |
| * |
| * iSeries specific routines for PCI. |
| * |
| * Based on code from pci.c and iSeries_pci.c 32bit |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/ide.h> |
| #include <linux/pci.h> |
| |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/prom.h> |
| #include <asm/machdep.h> |
| #include <asm/pci-bridge.h> |
| #include <asm/iommu.h> |
| #include <asm/abs_addr.h> |
| |
| #include <asm/iseries/hv_call_xm.h> |
| #include <asm/iseries/mf.h> |
| |
| #include <asm/ppc-pci.h> |
| |
| #include "irq.h" |
| #include "pci.h" |
| #include "call_pci.h" |
| #include "iommu.h" |
| |
| extern unsigned long io_page_mask; |
| |
| /* |
| * Forward declares of prototypes. |
| */ |
| static struct device_node *find_Device_Node(int bus, int devfn); |
| static void scan_PHB_slots(struct pci_controller *Phb); |
| static void scan_EADS_bridge(HvBusNumber Bus, HvSubBusNumber SubBus, int IdSel); |
| static int scan_bridge_slot(HvBusNumber Bus, struct HvCallPci_BridgeInfo *Info); |
| |
| LIST_HEAD(iSeries_Global_Device_List); |
| |
| static int DeviceCount; |
| |
| /* Counters and control flags. */ |
| static long Pci_Io_Read_Count; |
| static long Pci_Io_Write_Count; |
| #if 0 |
| static long Pci_Cfg_Read_Count; |
| static long Pci_Cfg_Write_Count; |
| #endif |
| static long Pci_Error_Count; |
| |
| static int Pci_Retry_Max = 3; /* Only retry 3 times */ |
| static int Pci_Error_Flag = 1; /* Set Retry Error on. */ |
| |
| static struct pci_ops iSeries_pci_ops; |
| |
| /* |
| * Table defines |
| * Each Entry size is 4 MB * 1024 Entries = 4GB I/O address space. |
| */ |
| #define IOMM_TABLE_MAX_ENTRIES 1024 |
| #define IOMM_TABLE_ENTRY_SIZE 0x0000000000400000UL |
| #define BASE_IO_MEMORY 0xE000000000000000UL |
| |
| static unsigned long max_io_memory = 0xE000000000000000UL; |
| static long current_iomm_table_entry; |
| |
| /* |
| * Lookup Tables. |
| */ |
| static struct device_node **iomm_table; |
| static u8 *iobar_table; |
| |
| /* |
| * Static and Global variables |
| */ |
| static char *pci_io_text = "iSeries PCI I/O"; |
| static DEFINE_SPINLOCK(iomm_table_lock); |
| |
| /* |
| * iomm_table_initialize |
| * |
| * Allocates and initalizes the Address Translation Table and Bar |
| * Tables to get them ready for use. Must be called before any |
| * I/O space is handed out to the device BARs. |
| */ |
| static void iomm_table_initialize(void) |
| { |
| spin_lock(&iomm_table_lock); |
| iomm_table = kmalloc(sizeof(*iomm_table) * IOMM_TABLE_MAX_ENTRIES, |
| GFP_KERNEL); |
| iobar_table = kmalloc(sizeof(*iobar_table) * IOMM_TABLE_MAX_ENTRIES, |
| GFP_KERNEL); |
| spin_unlock(&iomm_table_lock); |
| if ((iomm_table == NULL) || (iobar_table == NULL)) |
| panic("PCI: I/O tables allocation failed.\n"); |
| } |
| |
| /* |
| * iomm_table_allocate_entry |
| * |
| * Adds pci_dev entry in address translation table |
| * |
| * - Allocates the number of entries required in table base on BAR |
| * size. |
| * - Allocates starting at BASE_IO_MEMORY and increases. |
| * - The size is round up to be a multiple of entry size. |
| * - CurrentIndex is incremented to keep track of the last entry. |
| * - Builds the resource entry for allocated BARs. |
| */ |
| static void iomm_table_allocate_entry(struct pci_dev *dev, int bar_num) |
| { |
| struct resource *bar_res = &dev->resource[bar_num]; |
| long bar_size = pci_resource_len(dev, bar_num); |
| |
| /* |
| * No space to allocate, quick exit, skip Allocation. |
| */ |
| if (bar_size == 0) |
| return; |
| /* |
| * Set Resource values. |
| */ |
| spin_lock(&iomm_table_lock); |
| bar_res->name = pci_io_text; |
| bar_res->start = |
| IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry; |
| bar_res->start += BASE_IO_MEMORY; |
| bar_res->end = bar_res->start + bar_size - 1; |
| /* |
| * Allocate the number of table entries needed for BAR. |
| */ |
| while (bar_size > 0 ) { |
| iomm_table[current_iomm_table_entry] = dev->sysdata; |
| iobar_table[current_iomm_table_entry] = bar_num; |
| bar_size -= IOMM_TABLE_ENTRY_SIZE; |
| ++current_iomm_table_entry; |
| } |
| max_io_memory = BASE_IO_MEMORY + |
| (IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry); |
| spin_unlock(&iomm_table_lock); |
| } |
| |
| /* |
| * allocate_device_bars |
| * |
| * - Allocates ALL pci_dev BAR's and updates the resources with the |
| * BAR value. BARS with zero length will have the resources |
| * The HvCallPci_getBarParms is used to get the size of the BAR |
| * space. It calls iomm_table_allocate_entry to allocate |
| * each entry. |
| * - Loops through The Bar resources(0 - 5) including the ROM |
| * is resource(6). |
| */ |
| static void allocate_device_bars(struct pci_dev *dev) |
| { |
| struct resource *bar_res; |
| int bar_num; |
| |
| for (bar_num = 0; bar_num <= PCI_ROM_RESOURCE; ++bar_num) { |
| bar_res = &dev->resource[bar_num]; |
| iomm_table_allocate_entry(dev, bar_num); |
| } |
| } |
| |
| /* |
| * Log error information to system console. |
| * Filter out the device not there errors. |
| * PCI: EADs Connect Failed 0x18.58.10 Rc: 0x00xx |
| * PCI: Read Vendor Failed 0x18.58.10 Rc: 0x00xx |
| * PCI: Connect Bus Unit Failed 0x18.58.10 Rc: 0x00xx |
| */ |
| static void pci_Log_Error(char *Error_Text, int Bus, int SubBus, |
| int AgentId, int HvRc) |
| { |
| if (HvRc == 0x0302) |
| return; |
| printk(KERN_ERR "PCI: %s Failed: 0x%02X.%02X.%02X Rc: 0x%04X", |
| Error_Text, Bus, SubBus, AgentId, HvRc); |
| } |
| |
| /* |
| * build_device_node(u16 Bus, int SubBus, u8 DevFn) |
| */ |
| static struct device_node *build_device_node(HvBusNumber Bus, |
| HvSubBusNumber SubBus, int AgentId, int Function) |
| { |
| struct device_node *node; |
| struct pci_dn *pdn; |
| |
| node = kmalloc(sizeof(struct device_node), GFP_KERNEL); |
| if (node == NULL) |
| return NULL; |
| memset(node, 0, sizeof(struct device_node)); |
| pdn = kzalloc(sizeof(*pdn), GFP_KERNEL); |
| if (pdn == NULL) { |
| kfree(node); |
| return NULL; |
| } |
| node->data = pdn; |
| pdn->node = node; |
| list_add_tail(&pdn->Device_List, &iSeries_Global_Device_List); |
| pdn->busno = Bus; |
| pdn->bussubno = SubBus; |
| pdn->devfn = PCI_DEVFN(ISERIES_ENCODE_DEVICE(AgentId), Function); |
| return node; |
| } |
| |
| /* |
| * unsigned long __init find_and_init_phbs(void) |
| * |
| * Description: |
| * This function checks for all possible system PCI host bridges that connect |
| * PCI buses. The system hypervisor is queried as to the guest partition |
| * ownership status. A pci_controller is built for any bus which is partially |
| * owned or fully owned by this guest partition. |
| */ |
| unsigned long __init find_and_init_phbs(void) |
| { |
| struct pci_controller *phb; |
| HvBusNumber bus; |
| |
| /* Check all possible buses. */ |
| for (bus = 0; bus < 256; bus++) { |
| int ret = HvCallXm_testBus(bus); |
| if (ret == 0) { |
| printk("bus %d appears to exist\n", bus); |
| |
| phb = pcibios_alloc_controller(NULL); |
| if (phb == NULL) |
| return -ENOMEM; |
| |
| phb->pci_mem_offset = phb->local_number = bus; |
| phb->first_busno = bus; |
| phb->last_busno = bus; |
| phb->ops = &iSeries_pci_ops; |
| |
| /* Find and connect the devices. */ |
| scan_PHB_slots(phb); |
| } |
| /* |
| * Check for Unexpected Return code, a clue that something |
| * has gone wrong. |
| */ |
| else if (ret != 0x0301) |
| printk(KERN_ERR "Unexpected Return on Probe(0x%04X): 0x%04X", |
| bus, ret); |
| } |
| return 0; |
| } |
| |
| /* |
| * iSeries_pcibios_init |
| * |
| * Chance to initialize and structures or variable before PCI Bus walk. |
| */ |
| void iSeries_pcibios_init(void) |
| { |
| iomm_table_initialize(); |
| find_and_init_phbs(); |
| io_page_mask = -1; |
| } |
| |
| /* |
| * iSeries_pci_final_fixup(void) |
| */ |
| void __init iSeries_pci_final_fixup(void) |
| { |
| struct pci_dev *pdev = NULL; |
| struct device_node *node; |
| int DeviceCount = 0; |
| |
| /* Fix up at the device node and pci_dev relationship */ |
| mf_display_src(0xC9000100); |
| |
| printk("pcibios_final_fixup\n"); |
| for_each_pci_dev(pdev) { |
| node = find_Device_Node(pdev->bus->number, pdev->devfn); |
| printk("pci dev %p (%x.%x), node %p\n", pdev, |
| pdev->bus->number, pdev->devfn, node); |
| |
| if (node != NULL) { |
| ++DeviceCount; |
| pdev->sysdata = (void *)node; |
| PCI_DN(node)->pcidev = pdev; |
| allocate_device_bars(pdev); |
| iSeries_Device_Information(pdev, DeviceCount); |
| iommu_devnode_init_iSeries(node); |
| } else |
| printk("PCI: Device Tree not found for 0x%016lX\n", |
| (unsigned long)pdev); |
| pdev->irq = PCI_DN(node)->Irq; |
| } |
| iSeries_activate_IRQs(); |
| mf_display_src(0xC9000200); |
| } |
| |
| void pcibios_fixup_bus(struct pci_bus *PciBus) |
| { |
| } |
| |
| void pcibios_fixup_resources(struct pci_dev *pdev) |
| { |
| } |
| |
| /* |
| * Loop through each node function to find usable EADs bridges. |
| */ |
| static void scan_PHB_slots(struct pci_controller *Phb) |
| { |
| struct HvCallPci_DeviceInfo *DevInfo; |
| HvBusNumber bus = Phb->local_number; /* System Bus */ |
| const HvSubBusNumber SubBus = 0; /* EADs is always 0. */ |
| int HvRc = 0; |
| int IdSel; |
| const int MaxAgents = 8; |
| |
| DevInfo = (struct HvCallPci_DeviceInfo*) |
| kmalloc(sizeof(struct HvCallPci_DeviceInfo), GFP_KERNEL); |
| if (DevInfo == NULL) |
| return; |
| |
| /* |
| * Probe for EADs Bridges |
| */ |
| for (IdSel = 1; IdSel < MaxAgents; ++IdSel) { |
| HvRc = HvCallPci_getDeviceInfo(bus, SubBus, IdSel, |
| iseries_hv_addr(DevInfo), |
| sizeof(struct HvCallPci_DeviceInfo)); |
| if (HvRc == 0) { |
| if (DevInfo->deviceType == HvCallPci_NodeDevice) |
| scan_EADS_bridge(bus, SubBus, IdSel); |
| else |
| printk("PCI: Invalid System Configuration(0x%02X)" |
| " for bus 0x%02x id 0x%02x.\n", |
| DevInfo->deviceType, bus, IdSel); |
| } |
| else |
| pci_Log_Error("getDeviceInfo", bus, SubBus, IdSel, HvRc); |
| } |
| kfree(DevInfo); |
| } |
| |
| static void scan_EADS_bridge(HvBusNumber bus, HvSubBusNumber SubBus, |
| int IdSel) |
| { |
| struct HvCallPci_BridgeInfo *BridgeInfo; |
| HvAgentId AgentId; |
| int Function; |
| int HvRc; |
| |
| BridgeInfo = (struct HvCallPci_BridgeInfo *) |
| kmalloc(sizeof(struct HvCallPci_BridgeInfo), GFP_KERNEL); |
| if (BridgeInfo == NULL) |
| return; |
| |
| /* Note: hvSubBus and irq is always be 0 at this level! */ |
| for (Function = 0; Function < 8; ++Function) { |
| AgentId = ISERIES_PCI_AGENTID(IdSel, Function); |
| HvRc = HvCallXm_connectBusUnit(bus, SubBus, AgentId, 0); |
| if (HvRc == 0) { |
| printk("found device at bus %d idsel %d func %d (AgentId %x)\n", |
| bus, IdSel, Function, AgentId); |
| /* Connect EADs: 0x18.00.12 = 0x00 */ |
| HvRc = HvCallPci_getBusUnitInfo(bus, SubBus, AgentId, |
| iseries_hv_addr(BridgeInfo), |
| sizeof(struct HvCallPci_BridgeInfo)); |
| if (HvRc == 0) { |
| printk("bridge info: type %x subbus %x maxAgents %x maxsubbus %x logslot %x\n", |
| BridgeInfo->busUnitInfo.deviceType, |
| BridgeInfo->subBusNumber, |
| BridgeInfo->maxAgents, |
| BridgeInfo->maxSubBusNumber, |
| BridgeInfo->logicalSlotNumber); |
| if (BridgeInfo->busUnitInfo.deviceType == |
| HvCallPci_BridgeDevice) { |
| /* Scan_Bridge_Slot...: 0x18.00.12 */ |
| scan_bridge_slot(bus, BridgeInfo); |
| } else |
| printk("PCI: Invalid Bridge Configuration(0x%02X)", |
| BridgeInfo->busUnitInfo.deviceType); |
| } |
| } else if (HvRc != 0x000B) |
| pci_Log_Error("EADs Connect", |
| bus, SubBus, AgentId, HvRc); |
| } |
| kfree(BridgeInfo); |
| } |
| |
| /* |
| * This assumes that the node slot is always on the primary bus! |
| */ |
| static int scan_bridge_slot(HvBusNumber Bus, |
| struct HvCallPci_BridgeInfo *BridgeInfo) |
| { |
| struct device_node *node; |
| HvSubBusNumber SubBus = BridgeInfo->subBusNumber; |
| u16 VendorId = 0; |
| int HvRc = 0; |
| u8 Irq = 0; |
| int IdSel = ISERIES_GET_DEVICE_FROM_SUBBUS(SubBus); |
| int Function = ISERIES_GET_FUNCTION_FROM_SUBBUS(SubBus); |
| HvAgentId EADsIdSel = ISERIES_PCI_AGENTID(IdSel, Function); |
| |
| /* iSeries_allocate_IRQ.: 0x18.00.12(0xA3) */ |
| Irq = iSeries_allocate_IRQ(Bus, 0, EADsIdSel); |
| |
| /* |
| * Connect all functions of any device found. |
| */ |
| for (IdSel = 1; IdSel <= BridgeInfo->maxAgents; ++IdSel) { |
| for (Function = 0; Function < 8; ++Function) { |
| HvAgentId AgentId = ISERIES_PCI_AGENTID(IdSel, Function); |
| HvRc = HvCallXm_connectBusUnit(Bus, SubBus, |
| AgentId, Irq); |
| if (HvRc != 0) { |
| pci_Log_Error("Connect Bus Unit", |
| Bus, SubBus, AgentId, HvRc); |
| continue; |
| } |
| |
| HvRc = HvCallPci_configLoad16(Bus, SubBus, AgentId, |
| PCI_VENDOR_ID, &VendorId); |
| if (HvRc != 0) { |
| pci_Log_Error("Read Vendor", |
| Bus, SubBus, AgentId, HvRc); |
| continue; |
| } |
| printk("read vendor ID: %x\n", VendorId); |
| |
| /* FoundDevice: 0x18.28.10 = 0x12AE */ |
| HvRc = HvCallPci_configStore8(Bus, SubBus, AgentId, |
| PCI_INTERRUPT_LINE, Irq); |
| if (HvRc != 0) |
| pci_Log_Error("PciCfgStore Irq Failed!", |
| Bus, SubBus, AgentId, HvRc); |
| |
| ++DeviceCount; |
| node = build_device_node(Bus, SubBus, EADsIdSel, Function); |
| PCI_DN(node)->Irq = Irq; |
| PCI_DN(node)->LogicalSlot = BridgeInfo->logicalSlotNumber; |
| |
| } /* for (Function = 0; Function < 8; ++Function) */ |
| } /* for (IdSel = 1; IdSel <= MaxAgents; ++IdSel) */ |
| return HvRc; |
| } |
| |
| /* |
| * I/0 Memory copy MUST use mmio commands on iSeries |
| * To do; For performance, include the hv call directly |
| */ |
| void iSeries_memset_io(volatile void __iomem *dest, char c, size_t Count) |
| { |
| u8 ByteValue = c; |
| long NumberOfBytes = Count; |
| |
| while (NumberOfBytes > 0) { |
| iSeries_Write_Byte(ByteValue, dest++); |
| -- NumberOfBytes; |
| } |
| } |
| EXPORT_SYMBOL(iSeries_memset_io); |
| |
| void iSeries_memcpy_toio(volatile void __iomem *dest, void *source, size_t count) |
| { |
| char *src = source; |
| long NumberOfBytes = count; |
| |
| while (NumberOfBytes > 0) { |
| iSeries_Write_Byte(*src++, dest++); |
| -- NumberOfBytes; |
| } |
| } |
| EXPORT_SYMBOL(iSeries_memcpy_toio); |
| |
| void iSeries_memcpy_fromio(void *dest, const volatile void __iomem *src, size_t count) |
| { |
| char *dst = dest; |
| long NumberOfBytes = count; |
| |
| while (NumberOfBytes > 0) { |
| *dst++ = iSeries_Read_Byte(src++); |
| -- NumberOfBytes; |
| } |
| } |
| EXPORT_SYMBOL(iSeries_memcpy_fromio); |
| |
| /* |
| * Look down the chain to find the matching Device Device |
| */ |
| static struct device_node *find_Device_Node(int bus, int devfn) |
| { |
| struct pci_dn *pdn; |
| |
| list_for_each_entry(pdn, &iSeries_Global_Device_List, Device_List) { |
| if ((bus == pdn->busno) && (devfn == pdn->devfn)) |
| return pdn->node; |
| } |
| return NULL; |
| } |
| |
| #if 0 |
| /* |
| * Returns the device node for the passed pci_dev |
| * Sanity Check Node PciDev to passed pci_dev |
| * If none is found, returns a NULL which the client must handle. |
| */ |
| static struct device_node *get_Device_Node(struct pci_dev *pdev) |
| { |
| struct device_node *node; |
| |
| node = pdev->sysdata; |
| if (node == NULL || PCI_DN(node)->pcidev != pdev) |
| node = find_Device_Node(pdev->bus->number, pdev->devfn); |
| return node; |
| } |
| #endif |
| |
| /* |
| * Config space read and write functions. |
| * For now at least, we look for the device node for the bus and devfn |
| * that we are asked to access. It may be possible to translate the devfn |
| * to a subbus and deviceid more directly. |
| */ |
| static u64 hv_cfg_read_func[4] = { |
| HvCallPciConfigLoad8, HvCallPciConfigLoad16, |
| HvCallPciConfigLoad32, HvCallPciConfigLoad32 |
| }; |
| |
| static u64 hv_cfg_write_func[4] = { |
| HvCallPciConfigStore8, HvCallPciConfigStore16, |
| HvCallPciConfigStore32, HvCallPciConfigStore32 |
| }; |
| |
| /* |
| * Read PCI config space |
| */ |
| static int iSeries_pci_read_config(struct pci_bus *bus, unsigned int devfn, |
| int offset, int size, u32 *val) |
| { |
| struct device_node *node = find_Device_Node(bus->number, devfn); |
| u64 fn; |
| struct HvCallPci_LoadReturn ret; |
| |
| if (node == NULL) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| if (offset > 255) { |
| *val = ~0; |
| return PCIBIOS_BAD_REGISTER_NUMBER; |
| } |
| |
| fn = hv_cfg_read_func[(size - 1) & 3]; |
| HvCall3Ret16(fn, &ret, iseries_ds_addr(node), offset, 0); |
| |
| if (ret.rc != 0) { |
| *val = ~0; |
| return PCIBIOS_DEVICE_NOT_FOUND; /* or something */ |
| } |
| |
| *val = ret.value; |
| return 0; |
| } |
| |
| /* |
| * Write PCI config space |
| */ |
| |
| static int iSeries_pci_write_config(struct pci_bus *bus, unsigned int devfn, |
| int offset, int size, u32 val) |
| { |
| struct device_node *node = find_Device_Node(bus->number, devfn); |
| u64 fn; |
| u64 ret; |
| |
| if (node == NULL) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| if (offset > 255) |
| return PCIBIOS_BAD_REGISTER_NUMBER; |
| |
| fn = hv_cfg_write_func[(size - 1) & 3]; |
| ret = HvCall4(fn, iseries_ds_addr(node), offset, val, 0); |
| |
| if (ret != 0) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| return 0; |
| } |
| |
| static struct pci_ops iSeries_pci_ops = { |
| .read = iSeries_pci_read_config, |
| .write = iSeries_pci_write_config |
| }; |
| |
| /* |
| * Check Return Code |
| * -> On Failure, print and log information. |
| * Increment Retry Count, if exceeds max, panic partition. |
| * |
| * PCI: Device 23.90 ReadL I/O Error( 0): 0x1234 |
| * PCI: Device 23.90 ReadL Retry( 1) |
| * PCI: Device 23.90 ReadL Retry Successful(1) |
| */ |
| static int CheckReturnCode(char *TextHdr, struct device_node *DevNode, |
| int *retry, u64 ret) |
| { |
| if (ret != 0) { |
| struct pci_dn *pdn = PCI_DN(DevNode); |
| |
| ++Pci_Error_Count; |
| (*retry)++; |
| printk("PCI: %s: Device 0x%04X:%02X I/O Error(%2d): 0x%04X\n", |
| TextHdr, pdn->busno, pdn->devfn, |
| *retry, (int)ret); |
| /* |
| * Bump the retry and check for retry count exceeded. |
| * If, Exceeded, panic the system. |
| */ |
| if (((*retry) > Pci_Retry_Max) && |
| (Pci_Error_Flag > 0)) { |
| mf_display_src(0xB6000103); |
| panic_timeout = 0; |
| panic("PCI: Hardware I/O Error, SRC B6000103, " |
| "Automatic Reboot Disabled.\n"); |
| } |
| return -1; /* Retry Try */ |
| } |
| return 0; |
| } |
| |
| /* |
| * Translate the I/O Address into a device node, bar, and bar offset. |
| * Note: Make sure the passed variable end up on the stack to avoid |
| * the exposure of being device global. |
| */ |
| static inline struct device_node *xlate_iomm_address( |
| const volatile void __iomem *IoAddress, |
| u64 *dsaptr, u64 *BarOffsetPtr) |
| { |
| unsigned long OrigIoAddr; |
| unsigned long BaseIoAddr; |
| unsigned long TableIndex; |
| struct device_node *DevNode; |
| |
| OrigIoAddr = (unsigned long __force)IoAddress; |
| if ((OrigIoAddr < BASE_IO_MEMORY) || (OrigIoAddr >= max_io_memory)) |
| return NULL; |
| BaseIoAddr = OrigIoAddr - BASE_IO_MEMORY; |
| TableIndex = BaseIoAddr / IOMM_TABLE_ENTRY_SIZE; |
| DevNode = iomm_table[TableIndex]; |
| |
| if (DevNode != NULL) { |
| int barnum = iobar_table[TableIndex]; |
| *dsaptr = iseries_ds_addr(DevNode) | (barnum << 24); |
| *BarOffsetPtr = BaseIoAddr % IOMM_TABLE_ENTRY_SIZE; |
| } else |
| panic("PCI: Invalid PCI IoAddress detected!\n"); |
| return DevNode; |
| } |
| |
| /* |
| * Read MM I/O Instructions for the iSeries |
| * On MM I/O error, all ones are returned and iSeries_pci_IoError is cal |
| * else, data is returned in big Endian format. |
| * |
| * iSeries_Read_Byte = Read Byte ( 8 bit) |
| * iSeries_Read_Word = Read Word (16 bit) |
| * iSeries_Read_Long = Read Long (32 bit) |
| */ |
| u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress) |
| { |
| u64 BarOffset; |
| u64 dsa; |
| int retry = 0; |
| struct HvCallPci_LoadReturn ret; |
| struct device_node *DevNode = |
| xlate_iomm_address(IoAddress, &dsa, &BarOffset); |
| |
| if (DevNode == NULL) { |
| static unsigned long last_jiffies; |
| static int num_printed; |
| |
| if ((jiffies - last_jiffies) > 60 * HZ) { |
| last_jiffies = jiffies; |
| num_printed = 0; |
| } |
| if (num_printed++ < 10) |
| printk(KERN_ERR "iSeries_Read_Byte: invalid access at IO address %p\n", IoAddress); |
| return 0xff; |
| } |
| do { |
| ++Pci_Io_Read_Count; |
| HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, BarOffset, 0); |
| } while (CheckReturnCode("RDB", DevNode, &retry, ret.rc) != 0); |
| |
| return (u8)ret.value; |
| } |
| EXPORT_SYMBOL(iSeries_Read_Byte); |
| |
| u16 iSeries_Read_Word(const volatile void __iomem *IoAddress) |
| { |
| u64 BarOffset; |
| u64 dsa; |
| int retry = 0; |
| struct HvCallPci_LoadReturn ret; |
| struct device_node *DevNode = |
| xlate_iomm_address(IoAddress, &dsa, &BarOffset); |
| |
| if (DevNode == NULL) { |
| static unsigned long last_jiffies; |
| static int num_printed; |
| |
| if ((jiffies - last_jiffies) > 60 * HZ) { |
| last_jiffies = jiffies; |
| num_printed = 0; |
| } |
| if (num_printed++ < 10) |
| printk(KERN_ERR "iSeries_Read_Word: invalid access at IO address %p\n", IoAddress); |
| return 0xffff; |
| } |
| do { |
| ++Pci_Io_Read_Count; |
| HvCall3Ret16(HvCallPciBarLoad16, &ret, dsa, |
| BarOffset, 0); |
| } while (CheckReturnCode("RDW", DevNode, &retry, ret.rc) != 0); |
| |
| return swab16((u16)ret.value); |
| } |
| EXPORT_SYMBOL(iSeries_Read_Word); |
| |
| u32 iSeries_Read_Long(const volatile void __iomem *IoAddress) |
| { |
| u64 BarOffset; |
| u64 dsa; |
| int retry = 0; |
| struct HvCallPci_LoadReturn ret; |
| struct device_node *DevNode = |
| xlate_iomm_address(IoAddress, &dsa, &BarOffset); |
| |
| if (DevNode == NULL) { |
| static unsigned long last_jiffies; |
| static int num_printed; |
| |
| if ((jiffies - last_jiffies) > 60 * HZ) { |
| last_jiffies = jiffies; |
| num_printed = 0; |
| } |
| if (num_printed++ < 10) |
| printk(KERN_ERR "iSeries_Read_Long: invalid access at IO address %p\n", IoAddress); |
| return 0xffffffff; |
| } |
| do { |
| ++Pci_Io_Read_Count; |
| HvCall3Ret16(HvCallPciBarLoad32, &ret, dsa, |
| BarOffset, 0); |
| } while (CheckReturnCode("RDL", DevNode, &retry, ret.rc) != 0); |
| |
| return swab32((u32)ret.value); |
| } |
| EXPORT_SYMBOL(iSeries_Read_Long); |
| |
| /* |
| * Write MM I/O Instructions for the iSeries |
| * |
| * iSeries_Write_Byte = Write Byte (8 bit) |
| * iSeries_Write_Word = Write Word(16 bit) |
| * iSeries_Write_Long = Write Long(32 bit) |
| */ |
| void iSeries_Write_Byte(u8 data, volatile void __iomem *IoAddress) |
| { |
| u64 BarOffset; |
| u64 dsa; |
| int retry = 0; |
| u64 rc; |
| struct device_node *DevNode = |
| xlate_iomm_address(IoAddress, &dsa, &BarOffset); |
| |
| if (DevNode == NULL) { |
| static unsigned long last_jiffies; |
| static int num_printed; |
| |
| if ((jiffies - last_jiffies) > 60 * HZ) { |
| last_jiffies = jiffies; |
| num_printed = 0; |
| } |
| if (num_printed++ < 10) |
| printk(KERN_ERR "iSeries_Write_Byte: invalid access at IO address %p\n", IoAddress); |
| return; |
| } |
| do { |
| ++Pci_Io_Write_Count; |
| rc = HvCall4(HvCallPciBarStore8, dsa, BarOffset, data, 0); |
| } while (CheckReturnCode("WWB", DevNode, &retry, rc) != 0); |
| } |
| EXPORT_SYMBOL(iSeries_Write_Byte); |
| |
| void iSeries_Write_Word(u16 data, volatile void __iomem *IoAddress) |
| { |
| u64 BarOffset; |
| u64 dsa; |
| int retry = 0; |
| u64 rc; |
| struct device_node *DevNode = |
| xlate_iomm_address(IoAddress, &dsa, &BarOffset); |
| |
| if (DevNode == NULL) { |
| static unsigned long last_jiffies; |
| static int num_printed; |
| |
| if ((jiffies - last_jiffies) > 60 * HZ) { |
| last_jiffies = jiffies; |
| num_printed = 0; |
| } |
| if (num_printed++ < 10) |
| printk(KERN_ERR "iSeries_Write_Word: invalid access at IO address %p\n", IoAddress); |
| return; |
| } |
| do { |
| ++Pci_Io_Write_Count; |
| rc = HvCall4(HvCallPciBarStore16, dsa, BarOffset, swab16(data), 0); |
| } while (CheckReturnCode("WWW", DevNode, &retry, rc) != 0); |
| } |
| EXPORT_SYMBOL(iSeries_Write_Word); |
| |
| void iSeries_Write_Long(u32 data, volatile void __iomem *IoAddress) |
| { |
| u64 BarOffset; |
| u64 dsa; |
| int retry = 0; |
| u64 rc; |
| struct device_node *DevNode = |
| xlate_iomm_address(IoAddress, &dsa, &BarOffset); |
| |
| if (DevNode == NULL) { |
| static unsigned long last_jiffies; |
| static int num_printed; |
| |
| if ((jiffies - last_jiffies) > 60 * HZ) { |
| last_jiffies = jiffies; |
| num_printed = 0; |
| } |
| if (num_printed++ < 10) |
| printk(KERN_ERR "iSeries_Write_Long: invalid access at IO address %p\n", IoAddress); |
| return; |
| } |
| do { |
| ++Pci_Io_Write_Count; |
| rc = HvCall4(HvCallPciBarStore32, dsa, BarOffset, swab32(data), 0); |
| } while (CheckReturnCode("WWL", DevNode, &retry, rc) != 0); |
| } |
| EXPORT_SYMBOL(iSeries_Write_Long); |