| /******************************************************************************* |
| * |
| * Intel Ethernet Controller XL710 Family Linux Driver |
| * Copyright(c) 2013 - 2014 Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * The full GNU General Public License is included in this distribution in |
| * the file called "COPYING". |
| * |
| * Contact Information: |
| * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| ******************************************************************************/ |
| |
| #include "i40e.h" |
| #include <linux/export.h> |
| #include <linux/ptp_classify.h> |
| |
| /* The XL710 timesync is very much like Intel's 82599 design when it comes to |
| * the fundamental clock design. However, the clock operations are much simpler |
| * in the XL710 because the device supports a full 64 bits of nanoseconds. |
| * Because the field is so wide, we can forgo the cycle counter and just |
| * operate with the nanosecond field directly without fear of overflow. |
| * |
| * Much like the 82599, the update period is dependent upon the link speed: |
| * At 40Gb link or no link, the period is 1.6ns. |
| * At 10Gb link, the period is multiplied by 2. (3.2ns) |
| * At 1Gb link, the period is multiplied by 20. (32ns) |
| * 1588 functionality is not supported at 100Mbps. |
| */ |
| #define I40E_PTP_40GB_INCVAL 0x0199999999ULL |
| #define I40E_PTP_10GB_INCVAL 0x0333333333ULL |
| #define I40E_PTP_1GB_INCVAL 0x2000000000ULL |
| |
| #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 (0x1 << \ |
| I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) |
| #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (0x2 << \ |
| I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) |
| #define I40E_PTP_TX_TIMEOUT (HZ * 15) |
| |
| /** |
| * i40e_ptp_read - Read the PHC time from the device |
| * @pf: Board private structure |
| * @ts: timespec structure to hold the current time value |
| * |
| * This function reads the PRTTSYN_TIME registers and stores them in a |
| * timespec. However, since the registers are 64 bits of nanoseconds, we must |
| * convert the result to a timespec before we can return. |
| **/ |
| static void i40e_ptp_read(struct i40e_pf *pf, struct timespec *ts) |
| { |
| struct i40e_hw *hw = &pf->hw; |
| u32 hi, lo; |
| u64 ns; |
| |
| /* The timer latches on the lowest register read. */ |
| lo = rd32(hw, I40E_PRTTSYN_TIME_L); |
| hi = rd32(hw, I40E_PRTTSYN_TIME_H); |
| |
| ns = (((u64)hi) << 32) | lo; |
| |
| *ts = ns_to_timespec(ns); |
| } |
| |
| /** |
| * i40e_ptp_write - Write the PHC time to the device |
| * @pf: Board private structure |
| * @ts: timespec structure that holds the new time value |
| * |
| * This function writes the PRTTSYN_TIME registers with the user value. Since |
| * we receive a timespec from the stack, we must convert that timespec into |
| * nanoseconds before programming the registers. |
| **/ |
| static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec *ts) |
| { |
| struct i40e_hw *hw = &pf->hw; |
| u64 ns = timespec_to_ns(ts); |
| |
| /* The timer will not update until the high register is written, so |
| * write the low register first. |
| */ |
| wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF); |
| wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32); |
| } |
| |
| /** |
| * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time |
| * @hwtstamps: Timestamp structure to update |
| * @timestamp: Timestamp from the hardware |
| * |
| * We need to convert the NIC clock value into a hwtstamp which can be used by |
| * the upper level timestamping functions. Since the timestamp is simply a 64- |
| * bit nanosecond value, we can call ns_to_ktime directly to handle this. |
| **/ |
| static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps, |
| u64 timestamp) |
| { |
| memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| |
| hwtstamps->hwtstamp = ns_to_ktime(timestamp); |
| } |
| |
| /** |
| * i40e_ptp_adjfreq - Adjust the PHC frequency |
| * @ptp: The PTP clock structure |
| * @ppb: Parts per billion adjustment from the base |
| * |
| * Adjust the frequency of the PHC by the indicated parts per billion from the |
| * base frequency. |
| **/ |
| static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) |
| { |
| struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); |
| struct i40e_hw *hw = &pf->hw; |
| u64 adj, freq, diff; |
| int neg_adj = 0; |
| |
| if (ppb < 0) { |
| neg_adj = 1; |
| ppb = -ppb; |
| } |
| |
| smp_mb(); /* Force any pending update before accessing. */ |
| adj = ACCESS_ONCE(pf->ptp_base_adj); |
| |
| freq = adj; |
| freq *= ppb; |
| diff = div_u64(freq, 1000000000ULL); |
| |
| if (neg_adj) |
| adj -= diff; |
| else |
| adj += diff; |
| |
| wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF); |
| wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32); |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_ptp_adjtime - Adjust the PHC time |
| * @ptp: The PTP clock structure |
| * @delta: Offset in nanoseconds to adjust the PHC time by |
| * |
| * Adjust the frequency of the PHC by the indicated parts per billion from the |
| * base frequency. |
| **/ |
| static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) |
| { |
| struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); |
| struct timespec now, then = ns_to_timespec(delta); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pf->tmreg_lock, flags); |
| |
| i40e_ptp_read(pf, &now); |
| now = timespec_add(now, then); |
| i40e_ptp_write(pf, (const struct timespec *)&now); |
| |
| spin_unlock_irqrestore(&pf->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_ptp_gettime - Get the time of the PHC |
| * @ptp: The PTP clock structure |
| * @ts: timespec structure to hold the current time value |
| * |
| * Read the device clock and return the correct value on ns, after converting it |
| * into a timespec struct. |
| **/ |
| static int i40e_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts) |
| { |
| struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pf->tmreg_lock, flags); |
| i40e_ptp_read(pf, ts); |
| spin_unlock_irqrestore(&pf->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_ptp_settime - Set the time of the PHC |
| * @ptp: The PTP clock structure |
| * @ts: timespec structure that holds the new time value |
| * |
| * Set the device clock to the user input value. The conversion from timespec |
| * to ns happens in the write function. |
| **/ |
| static int i40e_ptp_settime(struct ptp_clock_info *ptp, |
| const struct timespec *ts) |
| { |
| struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pf->tmreg_lock, flags); |
| i40e_ptp_write(pf, ts); |
| spin_unlock_irqrestore(&pf->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_ptp_tx_work |
| * @work: pointer to work struct |
| * |
| * This work function polls the PRTTSYN_STAT_0.TXTIME bit to determine when a |
| * Tx timestamp event has occurred, in order to pass the Tx timestamp value up |
| * the stack in the skb. |
| */ |
| static void i40e_ptp_tx_work(struct work_struct *work) |
| { |
| struct i40e_pf *pf = container_of(work, struct i40e_pf, |
| ptp_tx_work); |
| struct i40e_hw *hw = &pf->hw; |
| u32 prttsyn_stat_0; |
| |
| if (!pf->ptp_tx_skb) |
| return; |
| |
| if (time_is_before_jiffies(pf->ptp_tx_start + |
| I40E_PTP_TX_TIMEOUT)) { |
| dev_kfree_skb_any(pf->ptp_tx_skb); |
| pf->ptp_tx_skb = NULL; |
| pf->tx_hwtstamp_timeouts++; |
| dev_warn(&pf->pdev->dev, "clearing Tx timestamp hang\n"); |
| return; |
| } |
| |
| prttsyn_stat_0 = rd32(hw, I40E_PRTTSYN_STAT_0); |
| if (prttsyn_stat_0 & I40E_PRTTSYN_STAT_0_TXTIME_MASK) |
| i40e_ptp_tx_hwtstamp(pf); |
| else |
| schedule_work(&pf->ptp_tx_work); |
| } |
| |
| /** |
| * i40e_ptp_enable - Enable/disable ancillary features of the PHC subsystem |
| * @ptp: The PTP clock structure |
| * @rq: The requested feature to change |
| * @on: Enable/disable flag |
| * |
| * The XL710 does not support any of the ancillary features of the PHC |
| * subsystem, so this function may just return. |
| **/ |
| static int i40e_ptp_enable(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *rq, int on) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| /** |
| * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung |
| * @vsi: The VSI with the rings relevant to 1588 |
| * |
| * This watchdog task is scheduled to detect error case where hardware has |
| * dropped an Rx packet that was timestamped when the ring is full. The |
| * particular error is rare but leaves the device in a state unable to timestamp |
| * any future packets. |
| **/ |
| void i40e_ptp_rx_hang(struct i40e_vsi *vsi) |
| { |
| struct i40e_pf *pf = vsi->back; |
| struct i40e_hw *hw = &pf->hw; |
| struct i40e_ring *rx_ring; |
| unsigned long rx_event; |
| u32 prttsyn_stat; |
| int n; |
| |
| if (pf->flags & I40E_FLAG_PTP) |
| return; |
| |
| prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1); |
| |
| /* Unless all four receive timestamp registers are latched, we are not |
| * concerned about a possible PTP Rx hang, so just update the timeout |
| * counter and exit. |
| */ |
| if (!(prttsyn_stat & ((I40E_PRTTSYN_STAT_1_RXT0_MASK << |
| I40E_PRTTSYN_STAT_1_RXT0_SHIFT) | |
| (I40E_PRTTSYN_STAT_1_RXT1_MASK << |
| I40E_PRTTSYN_STAT_1_RXT1_SHIFT) | |
| (I40E_PRTTSYN_STAT_1_RXT2_MASK << |
| I40E_PRTTSYN_STAT_1_RXT2_SHIFT) | |
| (I40E_PRTTSYN_STAT_1_RXT3_MASK << |
| I40E_PRTTSYN_STAT_1_RXT3_SHIFT)))) { |
| pf->last_rx_ptp_check = jiffies; |
| return; |
| } |
| |
| /* Determine the most recent watchdog or rx_timestamp event. */ |
| rx_event = pf->last_rx_ptp_check; |
| for (n = 0; n < vsi->num_queue_pairs; n++) { |
| rx_ring = vsi->rx_rings[n]; |
| if (time_after(rx_ring->last_rx_timestamp, rx_event)) |
| rx_event = rx_ring->last_rx_timestamp; |
| } |
| |
| /* Only need to read the high RXSTMP register to clear the lock */ |
| if (time_is_before_jiffies(rx_event + 5 * HZ)) { |
| rd32(hw, I40E_PRTTSYN_RXTIME_H(0)); |
| rd32(hw, I40E_PRTTSYN_RXTIME_H(1)); |
| rd32(hw, I40E_PRTTSYN_RXTIME_H(2)); |
| rd32(hw, I40E_PRTTSYN_RXTIME_H(3)); |
| pf->last_rx_ptp_check = jiffies; |
| pf->rx_hwtstamp_cleared++; |
| dev_warn(&vsi->back->pdev->dev, |
| "%s: clearing Rx timestamp hang\n", |
| __func__); |
| } |
| } |
| |
| /** |
| * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp |
| * @pf: Board private structure |
| * |
| * Read the value of the Tx timestamp from the registers, convert it into a |
| * value consumable by the stack, and store that result into the shhwtstamps |
| * struct before returning it up the stack. |
| **/ |
| void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf) |
| { |
| struct skb_shared_hwtstamps shhwtstamps; |
| struct i40e_hw *hw = &pf->hw; |
| u32 hi, lo; |
| u64 ns; |
| |
| lo = rd32(hw, I40E_PRTTSYN_TXTIME_L); |
| hi = rd32(hw, I40E_PRTTSYN_TXTIME_H); |
| |
| ns = (((u64)hi) << 32) | lo; |
| |
| i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns); |
| skb_tstamp_tx(pf->ptp_tx_skb, &shhwtstamps); |
| dev_kfree_skb_any(pf->ptp_tx_skb); |
| pf->ptp_tx_skb = NULL; |
| } |
| |
| /** |
| * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp |
| * @pf: Board private structure |
| * @skb: Particular skb to send timestamp with |
| * @index: Index into the receive timestamp registers for the timestamp |
| * |
| * The XL710 receives a notification in the receive descriptor with an offset |
| * into the set of RXTIME registers where the timestamp is for that skb. This |
| * function goes and fetches the receive timestamp from that offset, if a valid |
| * one exists. The RXTIME registers are in ns, so we must convert the result |
| * first. |
| **/ |
| void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index) |
| { |
| u32 prttsyn_stat, hi, lo; |
| struct i40e_hw *hw; |
| u64 ns; |
| |
| /* Since we cannot turn off the Rx timestamp logic if the device is |
| * doing Tx timestamping, check if Rx timestamping is configured. |
| */ |
| if (!pf->ptp_rx) |
| return; |
| |
| hw = &pf->hw; |
| |
| prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1); |
| |
| if (!(prttsyn_stat & (1 << index))) |
| return; |
| |
| lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index)); |
| hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index)); |
| |
| ns = (((u64)hi) << 32) | lo; |
| |
| i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns); |
| } |
| |
| /** |
| * i40e_ptp_set_increment - Utility function to update clock increment rate |
| * @pf: Board private structure |
| * |
| * During a link change, the DMA frequency that drives the 1588 logic will |
| * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds, |
| * we must update the increment value per clock tick. |
| **/ |
| void i40e_ptp_set_increment(struct i40e_pf *pf) |
| { |
| struct i40e_link_status *hw_link_info; |
| struct i40e_hw *hw = &pf->hw; |
| u64 incval; |
| |
| hw_link_info = &hw->phy.link_info; |
| |
| i40e_aq_get_link_info(&pf->hw, true, NULL, NULL); |
| |
| switch (hw_link_info->link_speed) { |
| case I40E_LINK_SPEED_10GB: |
| incval = I40E_PTP_10GB_INCVAL; |
| break; |
| case I40E_LINK_SPEED_1GB: |
| incval = I40E_PTP_1GB_INCVAL; |
| break; |
| case I40E_LINK_SPEED_100MB: |
| dev_warn(&pf->pdev->dev, |
| "%s: 1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n", |
| __func__); |
| incval = 0; |
| break; |
| case I40E_LINK_SPEED_40GB: |
| default: |
| incval = I40E_PTP_40GB_INCVAL; |
| break; |
| } |
| |
| /* Write the new increment value into the increment register. The |
| * hardware will not update the clock until both registers have been |
| * written. |
| */ |
| wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF); |
| wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32); |
| |
| /* Update the base adjustement value. */ |
| ACCESS_ONCE(pf->ptp_base_adj) = incval; |
| smp_mb(); /* Force the above update. */ |
| } |
| |
| /** |
| * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping |
| * @pf: Board private structure |
| * @ifreq: ioctl data |
| * |
| * Obtain the current hardware timestamping settigs as requested. To do this, |
| * keep a shadow copy of the timestamp settings rather than attempting to |
| * deconstruct it from the registers. |
| **/ |
| int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr) |
| { |
| struct hwtstamp_config *config = &pf->tstamp_config; |
| |
| return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping |
| * @pf: Board private structure |
| * @ifreq: ioctl data |
| * |
| * Respond to the user filter requests and make the appropriate hardware |
| * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping |
| * logic, so keep track in software of whether to indicate these timestamps |
| * or not. |
| * |
| * It is permissible to "upgrade" the user request to a broader filter, as long |
| * as the user receives the timestamps they care about and the user is notified |
| * the filter has been broadened. |
| **/ |
| int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr) |
| { |
| struct i40e_hw *hw = &pf->hw; |
| struct hwtstamp_config *config = &pf->tstamp_config; |
| u32 pf_id, tsyntype, regval; |
| |
| if (copy_from_user(config, ifr->ifr_data, sizeof(*config))) |
| return -EFAULT; |
| |
| /* Reserved for future extensions. */ |
| if (config->flags) |
| return -EINVAL; |
| |
| /* Confirm that 1588 is supported on this PF. */ |
| pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >> |
| I40E_PRTTSYN_CTL0_PF_ID_SHIFT; |
| if (hw->pf_id != pf_id) |
| return -EINVAL; |
| |
| switch (config->tx_type) { |
| case HWTSTAMP_TX_OFF: |
| pf->ptp_tx = false; |
| break; |
| case HWTSTAMP_TX_ON: |
| pf->ptp_tx = true; |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (config->rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| pf->ptp_rx = false; |
| tsyntype = 0; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| pf->ptp_rx = true; |
| tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK | |
| I40E_PRTTSYN_CTL1_TSYNTYPE_V1 | |
| I40E_PRTTSYN_CTL1_UDP_ENA_MASK; |
| config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| pf->ptp_rx = true; |
| tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK | |
| I40E_PRTTSYN_CTL1_TSYNTYPE_V2 | |
| I40E_PRTTSYN_CTL1_UDP_ENA_MASK; |
| config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; |
| break; |
| case HWTSTAMP_FILTER_ALL: |
| default: |
| return -ERANGE; |
| } |
| |
| /* Clear out all 1588-related registers to clear and unlatch them. */ |
| rd32(hw, I40E_PRTTSYN_STAT_0); |
| rd32(hw, I40E_PRTTSYN_TXTIME_H); |
| rd32(hw, I40E_PRTTSYN_RXTIME_H(0)); |
| rd32(hw, I40E_PRTTSYN_RXTIME_H(1)); |
| rd32(hw, I40E_PRTTSYN_RXTIME_H(2)); |
| rd32(hw, I40E_PRTTSYN_RXTIME_H(3)); |
| |
| /* Enable/disable the Tx timestamp interrupt based on user input. */ |
| regval = rd32(hw, I40E_PRTTSYN_CTL0); |
| if (pf->ptp_tx) |
| regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; |
| else |
| regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; |
| wr32(hw, I40E_PRTTSYN_CTL0, regval); |
| |
| regval = rd32(hw, I40E_PFINT_ICR0_ENA); |
| if (pf->ptp_tx) |
| regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; |
| else |
| regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; |
| wr32(hw, I40E_PFINT_ICR0_ENA, regval); |
| |
| /* There is no simple on/off switch for Rx. To "disable" Rx support, |
| * ignore any received timestamps, rather than turn off the clock. |
| */ |
| if (pf->ptp_rx) { |
| regval = rd32(hw, I40E_PRTTSYN_CTL1); |
| /* clear everything but the enable bit */ |
| regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK; |
| /* now enable bits for desired Rx timestamps */ |
| regval |= tsyntype; |
| wr32(hw, I40E_PRTTSYN_CTL1, regval); |
| } |
| |
| return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * i40e_ptp_init - Initialize the 1588 support and register the PHC |
| * @pf: Board private structure |
| * |
| * This function registers the device clock as a PHC. If it is successful, it |
| * starts the clock in the hardware. |
| **/ |
| void i40e_ptp_init(struct i40e_pf *pf) |
| { |
| struct i40e_hw *hw = &pf->hw; |
| struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev; |
| |
| strncpy(pf->ptp_caps.name, "i40e", sizeof(pf->ptp_caps.name)); |
| pf->ptp_caps.owner = THIS_MODULE; |
| pf->ptp_caps.max_adj = 999999999; |
| pf->ptp_caps.n_ext_ts = 0; |
| pf->ptp_caps.pps = 0; |
| pf->ptp_caps.adjfreq = i40e_ptp_adjfreq; |
| pf->ptp_caps.adjtime = i40e_ptp_adjtime; |
| pf->ptp_caps.gettime = i40e_ptp_gettime; |
| pf->ptp_caps.settime = i40e_ptp_settime; |
| pf->ptp_caps.enable = i40e_ptp_enable; |
| |
| /* Attempt to register the clock before enabling the hardware. */ |
| pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev); |
| if (IS_ERR(pf->ptp_clock)) { |
| pf->ptp_clock = NULL; |
| dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n", |
| __func__); |
| } else { |
| struct timespec ts; |
| u32 regval; |
| |
| spin_lock_init(&pf->tmreg_lock); |
| INIT_WORK(&pf->ptp_tx_work, i40e_ptp_tx_work); |
| |
| dev_info(&pf->pdev->dev, "%s: added PHC on %s\n", __func__, |
| netdev->name); |
| pf->flags |= I40E_FLAG_PTP; |
| |
| /* Ensure the clocks are running. */ |
| regval = rd32(hw, I40E_PRTTSYN_CTL0); |
| regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK; |
| wr32(hw, I40E_PRTTSYN_CTL0, regval); |
| regval = rd32(hw, I40E_PRTTSYN_CTL1); |
| regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK; |
| wr32(hw, I40E_PRTTSYN_CTL1, regval); |
| |
| /* Set the increment value per clock tick. */ |
| i40e_ptp_set_increment(pf); |
| |
| /* reset the tstamp_config */ |
| memset(&pf->tstamp_config, 0, sizeof(pf->tstamp_config)); |
| |
| /* Set the clock value. */ |
| ts = ktime_to_timespec(ktime_get_real()); |
| i40e_ptp_settime(&pf->ptp_caps, &ts); |
| } |
| } |
| |
| /** |
| * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC |
| * @pf: Board private structure |
| * |
| * This function handles the cleanup work required from the initialization by |
| * clearing out the important information and unregistering the PHC. |
| **/ |
| void i40e_ptp_stop(struct i40e_pf *pf) |
| { |
| pf->flags &= ~I40E_FLAG_PTP; |
| pf->ptp_tx = false; |
| pf->ptp_rx = false; |
| |
| cancel_work_sync(&pf->ptp_tx_work); |
| if (pf->ptp_tx_skb) { |
| dev_kfree_skb_any(pf->ptp_tx_skb); |
| pf->ptp_tx_skb = NULL; |
| } |
| |
| if (pf->ptp_clock) { |
| ptp_clock_unregister(pf->ptp_clock); |
| pf->ptp_clock = NULL; |
| dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__, |
| pf->vsi[pf->lan_vsi]->netdev->name); |
| } |
| } |