| /* |
| * linux/arch/cris/kernel/irq.c |
| * |
| * Copyright (c) 2000-2002 Axis Communications AB |
| * |
| * Authors: Bjorn Wesen (bjornw@axis.com) |
| * |
| * This file contains the interrupt vectors and some |
| * helper functions |
| * |
| */ |
| |
| #include <asm/irq.h> |
| #include <asm/current.h> |
| #include <linux/irq.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| |
| #define mask_irq(irq_nr) (*R_VECT_MASK_CLR = 1 << (irq_nr)); |
| #define unmask_irq(irq_nr) (*R_VECT_MASK_SET = 1 << (irq_nr)); |
| |
| /* don't use set_int_vector, it bypasses the linux interrupt handlers. it is |
| * global just so that the kernel gdb can use it. |
| */ |
| |
| void |
| set_int_vector(int n, irqvectptr addr) |
| { |
| etrax_irv->v[n + 0x20] = (irqvectptr)addr; |
| } |
| |
| /* the breakpoint vector is obviously not made just like the normal irq handlers |
| * but needs to contain _code_ to jump to addr. |
| * |
| * the BREAK n instruction jumps to IBR + n * 8 |
| */ |
| |
| void |
| set_break_vector(int n, irqvectptr addr) |
| { |
| unsigned short *jinstr = (unsigned short *)&etrax_irv->v[n*2]; |
| unsigned long *jaddr = (unsigned long *)(jinstr + 1); |
| |
| /* if you don't know what this does, do not touch it! */ |
| |
| *jinstr = 0x0d3f; |
| *jaddr = (unsigned long)addr; |
| |
| /* 00000026 <clrlop+1a> 3f0d82000000 jump 0x82 */ |
| } |
| |
| /* |
| * This builds up the IRQ handler stubs using some ugly macros in irq.h |
| * |
| * These macros create the low-level assembly IRQ routines that do all |
| * the operations that are needed. They are also written to be fast - and to |
| * disable interrupts as little as humanly possible. |
| * |
| */ |
| |
| /* IRQ0 and 1 are special traps */ |
| void hwbreakpoint(void); |
| void IRQ1_interrupt(void); |
| BUILD_TIMER_IRQ(2, 0x04) /* the timer interrupt is somewhat special */ |
| BUILD_IRQ(3, 0x08) |
| BUILD_IRQ(4, 0x10) |
| BUILD_IRQ(5, 0x20) |
| BUILD_IRQ(6, 0x40) |
| BUILD_IRQ(7, 0x80) |
| BUILD_IRQ(8, 0x100) |
| BUILD_IRQ(9, 0x200) |
| BUILD_IRQ(10, 0x400) |
| BUILD_IRQ(11, 0x800) |
| BUILD_IRQ(12, 0x1000) |
| BUILD_IRQ(13, 0x2000) |
| void mmu_bus_fault(void); /* IRQ 14 is the bus fault interrupt */ |
| void multiple_interrupt(void); /* IRQ 15 is the multiple IRQ interrupt */ |
| BUILD_IRQ(16, 0x10000 | 0x20000) /* ethernet tx interrupt needs to block rx */ |
| BUILD_IRQ(17, 0x20000 | 0x10000) /* ...and vice versa */ |
| BUILD_IRQ(18, 0x40000) |
| BUILD_IRQ(19, 0x80000) |
| BUILD_IRQ(20, 0x100000) |
| BUILD_IRQ(21, 0x200000) |
| BUILD_IRQ(22, 0x400000) |
| BUILD_IRQ(23, 0x800000) |
| BUILD_IRQ(24, 0x1000000) |
| BUILD_IRQ(25, 0x2000000) |
| /* IRQ 26-30 are reserved */ |
| BUILD_IRQ(31, 0x80000000) |
| |
| /* |
| * Pointers to the low-level handlers |
| */ |
| |
| static void (*interrupt[NR_IRQS])(void) = { |
| NULL, NULL, IRQ2_interrupt, IRQ3_interrupt, |
| IRQ4_interrupt, IRQ5_interrupt, IRQ6_interrupt, IRQ7_interrupt, |
| IRQ8_interrupt, IRQ9_interrupt, IRQ10_interrupt, IRQ11_interrupt, |
| IRQ12_interrupt, IRQ13_interrupt, NULL, NULL, |
| IRQ16_interrupt, IRQ17_interrupt, IRQ18_interrupt, IRQ19_interrupt, |
| IRQ20_interrupt, IRQ21_interrupt, IRQ22_interrupt, IRQ23_interrupt, |
| IRQ24_interrupt, IRQ25_interrupt, NULL, NULL, NULL, NULL, NULL, |
| IRQ31_interrupt |
| }; |
| |
| static void enable_crisv10_irq(unsigned int irq); |
| |
| static unsigned int startup_crisv10_irq(unsigned int irq) |
| { |
| enable_crisv10_irq(irq); |
| return 0; |
| } |
| |
| #define shutdown_crisv10_irq disable_crisv10_irq |
| |
| static void enable_crisv10_irq(unsigned int irq) |
| { |
| unmask_irq(irq); |
| } |
| |
| static void disable_crisv10_irq(unsigned int irq) |
| { |
| mask_irq(irq); |
| } |
| |
| static void ack_crisv10_irq(unsigned int irq) |
| { |
| } |
| |
| static void end_crisv10_irq(unsigned int irq) |
| { |
| } |
| |
| static struct irq_chip crisv10_irq_type = { |
| .name = "CRISv10", |
| .startup = startup_crisv10_irq, |
| .shutdown = shutdown_crisv10_irq, |
| .enable = enable_crisv10_irq, |
| .disable = disable_crisv10_irq, |
| .ack = ack_crisv10_irq, |
| .end = end_crisv10_irq, |
| .set_affinity = NULL |
| }; |
| |
| void weird_irq(void); |
| void system_call(void); /* from entry.S */ |
| void do_sigtrap(void); /* from entry.S */ |
| void gdb_handle_breakpoint(void); /* from entry.S */ |
| |
| extern void do_IRQ(int irq, struct pt_regs * regs); |
| |
| /* Handle multiple IRQs */ |
| void do_multiple_IRQ(struct pt_regs* regs) |
| { |
| int bit; |
| unsigned masked; |
| unsigned mask; |
| unsigned ethmask = 0; |
| |
| /* Get interrupts to mask and handle */ |
| mask = masked = *R_VECT_MASK_RD; |
| |
| /* Never mask timer IRQ */ |
| mask &= ~(IO_MASK(R_VECT_MASK_RD, timer0)); |
| |
| /* |
| * If either ethernet interrupt (rx or tx) is active then block |
| * the other one too. Unblock afterwards also. |
| */ |
| if (mask & |
| (IO_STATE(R_VECT_MASK_RD, dma0, active) | |
| IO_STATE(R_VECT_MASK_RD, dma1, active))) { |
| ethmask = (IO_MASK(R_VECT_MASK_RD, dma0) | |
| IO_MASK(R_VECT_MASK_RD, dma1)); |
| } |
| |
| /* Block them */ |
| *R_VECT_MASK_CLR = (mask | ethmask); |
| |
| /* An extra irq_enter here to prevent softIRQs to run after |
| * each do_IRQ. This will decrease the interrupt latency. |
| */ |
| irq_enter(); |
| |
| /* Handle all IRQs */ |
| for (bit = 2; bit < 32; bit++) { |
| if (masked & (1 << bit)) { |
| do_IRQ(bit, regs); |
| } |
| } |
| |
| /* This irq_exit() will trigger the soft IRQs. */ |
| irq_exit(); |
| |
| /* Unblock the IRQs again */ |
| *R_VECT_MASK_SET = (masked | ethmask); |
| } |
| |
| /* init_IRQ() is called by start_kernel and is responsible for fixing IRQ masks and |
| setting the irq vector table. |
| */ |
| |
| void __init |
| init_IRQ(void) |
| { |
| int i; |
| |
| /* clear all interrupt masks */ |
| |
| #ifndef CONFIG_SVINTO_SIM |
| *R_IRQ_MASK0_CLR = 0xffffffff; |
| *R_IRQ_MASK1_CLR = 0xffffffff; |
| *R_IRQ_MASK2_CLR = 0xffffffff; |
| #endif |
| |
| *R_VECT_MASK_CLR = 0xffffffff; |
| |
| for (i = 0; i < 256; i++) |
| etrax_irv->v[i] = weird_irq; |
| |
| /* Initialize IRQ handler descriptors. */ |
| for(i = 2; i < NR_IRQS; i++) { |
| irq_desc[i].chip = &crisv10_irq_type; |
| set_int_vector(i, interrupt[i]); |
| } |
| |
| /* the entries in the break vector contain actual code to be |
| executed by the associated break handler, rather than just a jump |
| address. therefore we need to setup a default breakpoint handler |
| for all breakpoints */ |
| |
| for (i = 0; i < 16; i++) |
| set_break_vector(i, do_sigtrap); |
| |
| /* except IRQ 15 which is the multiple-IRQ handler on Etrax100 */ |
| |
| set_int_vector(15, multiple_interrupt); |
| |
| /* 0 and 1 which are special breakpoint/NMI traps */ |
| |
| set_int_vector(0, hwbreakpoint); |
| set_int_vector(1, IRQ1_interrupt); |
| |
| /* and irq 14 which is the mmu bus fault handler */ |
| |
| set_int_vector(14, mmu_bus_fault); |
| |
| /* setup the system-call trap, which is reached by BREAK 13 */ |
| |
| set_break_vector(13, system_call); |
| |
| /* setup a breakpoint handler for debugging used for both user and |
| kernel mode debugging (which is why it is not inside an ifdef |
| CONFIG_ETRAX_KGDB) */ |
| set_break_vector(8, gdb_handle_breakpoint); |
| |
| #ifdef CONFIG_ETRAX_KGDB |
| /* setup kgdb if its enabled, and break into the debugger */ |
| kgdb_init(); |
| breakpoint(); |
| #endif |
| } |