| /* zd_chip.c |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| /* This file implements all the hardware specific functions for the ZD1211 |
| * and ZD1211B chips. Support for the ZD1211B was possible after Timothy |
| * Legge sent me a ZD1211B device. Thank you Tim. -- Uli |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| |
| #include "zd_def.h" |
| #include "zd_chip.h" |
| #include "zd_ieee80211.h" |
| #include "zd_mac.h" |
| #include "zd_rf.h" |
| #include "zd_util.h" |
| |
| void zd_chip_init(struct zd_chip *chip, |
| struct net_device *netdev, |
| struct usb_interface *intf) |
| { |
| memset(chip, 0, sizeof(*chip)); |
| mutex_init(&chip->mutex); |
| zd_usb_init(&chip->usb, netdev, intf); |
| zd_rf_init(&chip->rf); |
| } |
| |
| void zd_chip_clear(struct zd_chip *chip) |
| { |
| ZD_ASSERT(!mutex_is_locked(&chip->mutex)); |
| zd_usb_clear(&chip->usb); |
| zd_rf_clear(&chip->rf); |
| mutex_destroy(&chip->mutex); |
| ZD_MEMCLEAR(chip, sizeof(*chip)); |
| } |
| |
| static int scnprint_mac_oui(const u8 *addr, char *buffer, size_t size) |
| { |
| return scnprintf(buffer, size, "%02x-%02x-%02x", |
| addr[0], addr[1], addr[2]); |
| } |
| |
| /* Prints an identifier line, which will support debugging. */ |
| static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size) |
| { |
| int i = 0; |
| |
| i = scnprintf(buffer, size, "zd1211%s chip ", |
| chip->is_zd1211b ? "b" : ""); |
| i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i); |
| i += scnprintf(buffer+i, size-i, " "); |
| i += scnprint_mac_oui(chip->e2p_mac, buffer+i, size-i); |
| i += scnprintf(buffer+i, size-i, " "); |
| i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i); |
| i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type, |
| chip->patch_cck_gain ? 'g' : '-', |
| chip->patch_cr157 ? '7' : '-', |
| chip->patch_6m_band_edge ? '6' : '-', |
| chip->new_phy_layout ? 'N' : '-', |
| chip->al2230s_bit ? 'S' : '-'); |
| return i; |
| } |
| |
| static void print_id(struct zd_chip *chip) |
| { |
| char buffer[80]; |
| |
| scnprint_id(chip, buffer, sizeof(buffer)); |
| buffer[sizeof(buffer)-1] = 0; |
| dev_info(zd_chip_dev(chip), "%s\n", buffer); |
| } |
| |
| static zd_addr_t inc_addr(zd_addr_t addr) |
| { |
| u16 a = (u16)addr; |
| /* Control registers use byte addressing, but everything else uses word |
| * addressing. */ |
| if ((a & 0xf000) == CR_START) |
| a += 2; |
| else |
| a += 1; |
| return (zd_addr_t)a; |
| } |
| |
| /* Read a variable number of 32-bit values. Parameter count is not allowed to |
| * exceed USB_MAX_IOREAD32_COUNT. |
| */ |
| int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr, |
| unsigned int count) |
| { |
| int r; |
| int i; |
| zd_addr_t *a16 = (zd_addr_t *)NULL; |
| u16 *v16; |
| unsigned int count16; |
| |
| if (count > USB_MAX_IOREAD32_COUNT) |
| return -EINVAL; |
| |
| /* Allocate a single memory block for values and addresses. */ |
| count16 = 2*count; |
| a16 = (zd_addr_t *) kmalloc(count16 * (sizeof(zd_addr_t) + sizeof(u16)), |
| GFP_KERNEL); |
| if (!a16) { |
| dev_dbg_f(zd_chip_dev(chip), |
| "error ENOMEM in allocation of a16\n"); |
| r = -ENOMEM; |
| goto out; |
| } |
| v16 = (u16 *)(a16 + count16); |
| |
| for (i = 0; i < count; i++) { |
| int j = 2*i; |
| /* We read the high word always first. */ |
| a16[j] = inc_addr(addr[i]); |
| a16[j+1] = addr[i]; |
| } |
| |
| r = zd_ioread16v_locked(chip, v16, a16, count16); |
| if (r) { |
| dev_dbg_f(zd_chip_dev(chip), |
| "error: zd_ioread16v_locked. Error number %d\n", r); |
| goto out; |
| } |
| |
| for (i = 0; i < count; i++) { |
| int j = 2*i; |
| values[i] = (v16[j] << 16) | v16[j+1]; |
| } |
| |
| out: |
| kfree((void *)a16); |
| return r; |
| } |
| |
| int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs, |
| unsigned int count) |
| { |
| int i, j, r; |
| struct zd_ioreq16 *ioreqs16; |
| unsigned int count16; |
| |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| |
| if (count == 0) |
| return 0; |
| if (count > USB_MAX_IOWRITE32_COUNT) |
| return -EINVAL; |
| |
| /* Allocate a single memory block for values and addresses. */ |
| count16 = 2*count; |
| ioreqs16 = kmalloc(count16 * sizeof(struct zd_ioreq16), GFP_KERNEL); |
| if (!ioreqs16) { |
| r = -ENOMEM; |
| dev_dbg_f(zd_chip_dev(chip), |
| "error %d in ioreqs16 allocation\n", r); |
| goto out; |
| } |
| |
| for (i = 0; i < count; i++) { |
| j = 2*i; |
| /* We write the high word always first. */ |
| ioreqs16[j].value = ioreqs[i].value >> 16; |
| ioreqs16[j].addr = inc_addr(ioreqs[i].addr); |
| ioreqs16[j+1].value = ioreqs[i].value; |
| ioreqs16[j+1].addr = ioreqs[i].addr; |
| } |
| |
| r = zd_usb_iowrite16v(&chip->usb, ioreqs16, count16); |
| #ifdef DEBUG |
| if (r) { |
| dev_dbg_f(zd_chip_dev(chip), |
| "error %d in zd_usb_write16v\n", r); |
| } |
| #endif /* DEBUG */ |
| out: |
| kfree(ioreqs16); |
| return r; |
| } |
| |
| int zd_iowrite16a_locked(struct zd_chip *chip, |
| const struct zd_ioreq16 *ioreqs, unsigned int count) |
| { |
| int r; |
| unsigned int i, j, t, max; |
| |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| for (i = 0; i < count; i += j + t) { |
| t = 0; |
| max = count-i; |
| if (max > USB_MAX_IOWRITE16_COUNT) |
| max = USB_MAX_IOWRITE16_COUNT; |
| for (j = 0; j < max; j++) { |
| if (!ioreqs[i+j].addr) { |
| t = 1; |
| break; |
| } |
| } |
| |
| r = zd_usb_iowrite16v(&chip->usb, &ioreqs[i], j); |
| if (r) { |
| dev_dbg_f(zd_chip_dev(chip), |
| "error zd_usb_iowrite16v. Error number %d\n", |
| r); |
| return r; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Writes a variable number of 32 bit registers. The functions will split |
| * that in several USB requests. A split can be forced by inserting an IO |
| * request with an zero address field. |
| */ |
| int zd_iowrite32a_locked(struct zd_chip *chip, |
| const struct zd_ioreq32 *ioreqs, unsigned int count) |
| { |
| int r; |
| unsigned int i, j, t, max; |
| |
| for (i = 0; i < count; i += j + t) { |
| t = 0; |
| max = count-i; |
| if (max > USB_MAX_IOWRITE32_COUNT) |
| max = USB_MAX_IOWRITE32_COUNT; |
| for (j = 0; j < max; j++) { |
| if (!ioreqs[i+j].addr) { |
| t = 1; |
| break; |
| } |
| } |
| |
| r = _zd_iowrite32v_locked(chip, &ioreqs[i], j); |
| if (r) { |
| dev_dbg_f(zd_chip_dev(chip), |
| "error _zd_iowrite32v_locked." |
| " Error number %d\n", r); |
| return r; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value) |
| { |
| int r; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_ioread16_locked(chip, value, addr); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value) |
| { |
| int r; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_ioread32_locked(chip, value, addr); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value) |
| { |
| int r; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_iowrite16_locked(chip, value, addr); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value) |
| { |
| int r; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_iowrite32_locked(chip, value, addr); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses, |
| u32 *values, unsigned int count) |
| { |
| int r; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_ioread32v_locked(chip, values, addresses, count); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs, |
| unsigned int count) |
| { |
| int r; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_iowrite32a_locked(chip, ioreqs, count); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| static int read_pod(struct zd_chip *chip, u8 *rf_type) |
| { |
| int r; |
| u32 value; |
| |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| r = zd_ioread32_locked(chip, &value, E2P_POD); |
| if (r) |
| goto error; |
| dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value); |
| |
| /* FIXME: AL2230 handling (Bit 7 in POD) */ |
| *rf_type = value & 0x0f; |
| chip->pa_type = (value >> 16) & 0x0f; |
| chip->patch_cck_gain = (value >> 8) & 0x1; |
| chip->patch_cr157 = (value >> 13) & 0x1; |
| chip->patch_6m_band_edge = (value >> 21) & 0x1; |
| chip->new_phy_layout = (value >> 31) & 0x1; |
| chip->al2230s_bit = (value >> 7) & 0x1; |
| chip->link_led = ((value >> 4) & 1) ? LED1 : LED2; |
| chip->supports_tx_led = 1; |
| if (value & (1 << 24)) { /* LED scenario */ |
| if (value & (1 << 29)) |
| chip->supports_tx_led = 0; |
| } |
| |
| dev_dbg_f(zd_chip_dev(chip), |
| "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d " |
| "patch 6M %d new PHY %d link LED%d tx led %d\n", |
| zd_rf_name(*rf_type), *rf_type, |
| chip->pa_type, chip->patch_cck_gain, |
| chip->patch_cr157, chip->patch_6m_band_edge, |
| chip->new_phy_layout, |
| chip->link_led == LED1 ? 1 : 2, |
| chip->supports_tx_led); |
| return 0; |
| error: |
| *rf_type = 0; |
| chip->pa_type = 0; |
| chip->patch_cck_gain = 0; |
| chip->patch_cr157 = 0; |
| chip->patch_6m_band_edge = 0; |
| chip->new_phy_layout = 0; |
| return r; |
| } |
| |
| static int _read_mac_addr(struct zd_chip *chip, u8 *mac_addr, |
| const zd_addr_t *addr) |
| { |
| int r; |
| u32 parts[2]; |
| |
| r = zd_ioread32v_locked(chip, parts, (const zd_addr_t *)addr, 2); |
| if (r) { |
| dev_dbg_f(zd_chip_dev(chip), |
| "error: couldn't read e2p macs. Error number %d\n", r); |
| return r; |
| } |
| |
| mac_addr[0] = parts[0]; |
| mac_addr[1] = parts[0] >> 8; |
| mac_addr[2] = parts[0] >> 16; |
| mac_addr[3] = parts[0] >> 24; |
| mac_addr[4] = parts[1]; |
| mac_addr[5] = parts[1] >> 8; |
| |
| return 0; |
| } |
| |
| static int read_e2p_mac_addr(struct zd_chip *chip) |
| { |
| static const zd_addr_t addr[2] = { E2P_MAC_ADDR_P1, E2P_MAC_ADDR_P2 }; |
| |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| return _read_mac_addr(chip, chip->e2p_mac, (const zd_addr_t *)addr); |
| } |
| |
| /* MAC address: if custom mac addresses are to to be used CR_MAC_ADDR_P1 and |
| * CR_MAC_ADDR_P2 must be overwritten |
| */ |
| void zd_get_e2p_mac_addr(struct zd_chip *chip, u8 *mac_addr) |
| { |
| mutex_lock(&chip->mutex); |
| memcpy(mac_addr, chip->e2p_mac, ETH_ALEN); |
| mutex_unlock(&chip->mutex); |
| } |
| |
| static int read_mac_addr(struct zd_chip *chip, u8 *mac_addr) |
| { |
| static const zd_addr_t addr[2] = { CR_MAC_ADDR_P1, CR_MAC_ADDR_P2 }; |
| return _read_mac_addr(chip, mac_addr, (const zd_addr_t *)addr); |
| } |
| |
| int zd_read_mac_addr(struct zd_chip *chip, u8 *mac_addr) |
| { |
| int r; |
| |
| dev_dbg_f(zd_chip_dev(chip), "\n"); |
| mutex_lock(&chip->mutex); |
| r = read_mac_addr(chip, mac_addr); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr) |
| { |
| int r; |
| struct zd_ioreq32 reqs[2] = { |
| [0] = { .addr = CR_MAC_ADDR_P1 }, |
| [1] = { .addr = CR_MAC_ADDR_P2 }, |
| }; |
| |
| reqs[0].value = (mac_addr[3] << 24) |
| | (mac_addr[2] << 16) |
| | (mac_addr[1] << 8) |
| | mac_addr[0]; |
| reqs[1].value = (mac_addr[5] << 8) |
| | mac_addr[4]; |
| |
| dev_dbg_f(zd_chip_dev(chip), |
| "mac addr " MAC_FMT "\n", MAC_ARG(mac_addr)); |
| |
| mutex_lock(&chip->mutex); |
| r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs)); |
| #ifdef DEBUG |
| { |
| u8 tmp[ETH_ALEN]; |
| read_mac_addr(chip, tmp); |
| } |
| #endif /* DEBUG */ |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain) |
| { |
| int r; |
| u32 value; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_ioread32_locked(chip, &value, E2P_SUBID); |
| mutex_unlock(&chip->mutex); |
| if (r) |
| return r; |
| |
| *regdomain = value >> 16; |
| dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain); |
| |
| return 0; |
| } |
| |
| static int read_values(struct zd_chip *chip, u8 *values, size_t count, |
| zd_addr_t e2p_addr, u32 guard) |
| { |
| int r; |
| int i; |
| u32 v; |
| |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| for (i = 0;;) { |
| r = zd_ioread32_locked(chip, &v, |
| (zd_addr_t)((u16)e2p_addr+i/2)); |
| if (r) |
| return r; |
| v -= guard; |
| if (i+4 < count) { |
| values[i++] = v; |
| values[i++] = v >> 8; |
| values[i++] = v >> 16; |
| values[i++] = v >> 24; |
| continue; |
| } |
| for (;i < count; i++) |
| values[i] = v >> (8*(i%3)); |
| return 0; |
| } |
| } |
| |
| static int read_pwr_cal_values(struct zd_chip *chip) |
| { |
| return read_values(chip, chip->pwr_cal_values, |
| E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1, |
| 0); |
| } |
| |
| static int read_pwr_int_values(struct zd_chip *chip) |
| { |
| return read_values(chip, chip->pwr_int_values, |
| E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1, |
| E2P_PWR_INT_GUARD); |
| } |
| |
| static int read_ofdm_cal_values(struct zd_chip *chip) |
| { |
| int r; |
| int i; |
| static const zd_addr_t addresses[] = { |
| E2P_36M_CAL_VALUE1, |
| E2P_48M_CAL_VALUE1, |
| E2P_54M_CAL_VALUE1, |
| }; |
| |
| for (i = 0; i < 3; i++) { |
| r = read_values(chip, chip->ofdm_cal_values[i], |
| E2P_CHANNEL_COUNT, addresses[i], 0); |
| if (r) |
| return r; |
| } |
| return 0; |
| } |
| |
| static int read_cal_int_tables(struct zd_chip *chip) |
| { |
| int r; |
| |
| r = read_pwr_cal_values(chip); |
| if (r) |
| return r; |
| r = read_pwr_int_values(chip); |
| if (r) |
| return r; |
| r = read_ofdm_cal_values(chip); |
| if (r) |
| return r; |
| return 0; |
| } |
| |
| /* phy means physical registers */ |
| int zd_chip_lock_phy_regs(struct zd_chip *chip) |
| { |
| int r; |
| u32 tmp; |
| |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| r = zd_ioread32_locked(chip, &tmp, CR_REG1); |
| if (r) { |
| dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r); |
| return r; |
| } |
| |
| dev_dbg_f(zd_chip_dev(chip), |
| "CR_REG1: 0x%02x -> 0x%02x\n", tmp, tmp & ~UNLOCK_PHY_REGS); |
| tmp &= ~UNLOCK_PHY_REGS; |
| |
| r = zd_iowrite32_locked(chip, tmp, CR_REG1); |
| if (r) |
| dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r); |
| return r; |
| } |
| |
| int zd_chip_unlock_phy_regs(struct zd_chip *chip) |
| { |
| int r; |
| u32 tmp; |
| |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| r = zd_ioread32_locked(chip, &tmp, CR_REG1); |
| if (r) { |
| dev_err(zd_chip_dev(chip), |
| "error ioread32(CR_REG1): %d\n", r); |
| return r; |
| } |
| |
| dev_dbg_f(zd_chip_dev(chip), |
| "CR_REG1: 0x%02x -> 0x%02x\n", tmp, tmp | UNLOCK_PHY_REGS); |
| tmp |= UNLOCK_PHY_REGS; |
| |
| r = zd_iowrite32_locked(chip, tmp, CR_REG1); |
| if (r) |
| dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r); |
| return r; |
| } |
| |
| /* CR157 can be optionally patched by the EEPROM for original ZD1211 */ |
| static int patch_cr157(struct zd_chip *chip) |
| { |
| int r; |
| u16 value; |
| |
| if (!chip->patch_cr157) |
| return 0; |
| |
| r = zd_ioread16_locked(chip, &value, E2P_PHY_REG); |
| if (r) |
| return r; |
| |
| dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8); |
| return zd_iowrite32_locked(chip, value >> 8, CR157); |
| } |
| |
| /* |
| * 6M band edge can be optionally overwritten for certain RF's |
| * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge |
| * bit (for AL2230, AL2230S) |
| */ |
| static int patch_6m_band_edge(struct zd_chip *chip, u8 channel) |
| { |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| if (!chip->patch_6m_band_edge) |
| return 0; |
| |
| return zd_rf_patch_6m_band_edge(&chip->rf, channel); |
| } |
| |
| /* Generic implementation of 6M band edge patching, used by most RFs via |
| * zd_rf_generic_patch_6m() */ |
| int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel) |
| { |
| struct zd_ioreq16 ioreqs[] = { |
| { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 }, |
| { CR47, 0x1e }, |
| }; |
| |
| /* FIXME: Channel 11 is not the edge for all regulatory domains. */ |
| if (channel == 1 || channel == 11) |
| ioreqs[0].value = 0x12; |
| |
| dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel); |
| return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| } |
| |
| static int zd1211_hw_reset_phy(struct zd_chip *chip) |
| { |
| static const struct zd_ioreq16 ioreqs[] = { |
| { CR0, 0x0a }, { CR1, 0x06 }, { CR2, 0x26 }, |
| { CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xa0 }, |
| { CR10, 0x81 }, { CR11, 0x00 }, { CR12, 0x7f }, |
| { CR13, 0x8c }, { CR14, 0x80 }, { CR15, 0x3d }, |
| { CR16, 0x20 }, { CR17, 0x1e }, { CR18, 0x0a }, |
| { CR19, 0x48 }, { CR20, 0x0c }, { CR21, 0x0c }, |
| { CR22, 0x23 }, { CR23, 0x90 }, { CR24, 0x14 }, |
| { CR25, 0x40 }, { CR26, 0x10 }, { CR27, 0x19 }, |
| { CR28, 0x7f }, { CR29, 0x80 }, { CR30, 0x4b }, |
| { CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 }, |
| { CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 }, |
| { CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c }, |
| { CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 }, |
| { CR43, 0x10 }, { CR44, 0x12 }, { CR46, 0xff }, |
| { CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b }, |
| { CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 }, |
| { CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 }, |
| { CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff }, |
| { CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 }, |
| { CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 }, |
| { CR79, 0x68 }, { CR80, 0x64 }, { CR81, 0x64 }, |
| { CR82, 0x00 }, { CR83, 0x00 }, { CR84, 0x00 }, |
| { CR85, 0x02 }, { CR86, 0x00 }, { CR87, 0x00 }, |
| { CR88, 0xff }, { CR89, 0xfc }, { CR90, 0x00 }, |
| { CR91, 0x00 }, { CR92, 0x00 }, { CR93, 0x08 }, |
| { CR94, 0x00 }, { CR95, 0x00 }, { CR96, 0xff }, |
| { CR97, 0xe7 }, { CR98, 0x00 }, { CR99, 0x00 }, |
| { CR100, 0x00 }, { CR101, 0xae }, { CR102, 0x02 }, |
| { CR103, 0x00 }, { CR104, 0x03 }, { CR105, 0x65 }, |
| { CR106, 0x04 }, { CR107, 0x00 }, { CR108, 0x0a }, |
| { CR109, 0xaa }, { CR110, 0xaa }, { CR111, 0x25 }, |
| { CR112, 0x25 }, { CR113, 0x00 }, { CR119, 0x1e }, |
| { CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 }, |
| { }, |
| { CR5, 0x00 }, { CR6, 0x00 }, { CR7, 0x00 }, |
| { CR8, 0x00 }, { CR9, 0x20 }, { CR12, 0xf0 }, |
| { CR20, 0x0e }, { CR21, 0x0e }, { CR27, 0x10 }, |
| { CR44, 0x33 }, { CR47, 0x1E }, { CR83, 0x24 }, |
| { CR84, 0x04 }, { CR85, 0x00 }, { CR86, 0x0C }, |
| { CR87, 0x12 }, { CR88, 0x0C }, { CR89, 0x00 }, |
| { CR90, 0x10 }, { CR91, 0x08 }, { CR93, 0x00 }, |
| { CR94, 0x01 }, { CR95, 0x00 }, { CR96, 0x50 }, |
| { CR97, 0x37 }, { CR98, 0x35 }, { CR101, 0x13 }, |
| { CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 }, |
| { CR105, 0x12 }, { CR109, 0x27 }, { CR110, 0x27 }, |
| { CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 }, |
| { CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 }, |
| { CR117, 0xfc }, { CR118, 0xfa }, { CR120, 0x4f }, |
| { CR125, 0xaa }, { CR127, 0x03 }, { CR128, 0x14 }, |
| { CR129, 0x12 }, { CR130, 0x10 }, { CR131, 0x0C }, |
| { CR136, 0xdf }, { CR137, 0x40 }, { CR138, 0xa0 }, |
| { CR139, 0xb0 }, { CR140, 0x99 }, { CR141, 0x82 }, |
| { CR142, 0x54 }, { CR143, 0x1c }, { CR144, 0x6c }, |
| { CR147, 0x07 }, { CR148, 0x4c }, { CR149, 0x50 }, |
| { CR150, 0x0e }, { CR151, 0x18 }, { CR160, 0xfe }, |
| { CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa }, |
| { CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe }, |
| { CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba }, |
| { CR170, 0xba }, { CR171, 0xba }, |
| /* Note: CR204 must lead the CR203 */ |
| { CR204, 0x7d }, |
| { }, |
| { CR203, 0x30 }, |
| }; |
| |
| int r, t; |
| |
| dev_dbg_f(zd_chip_dev(chip), "\n"); |
| |
| r = zd_chip_lock_phy_regs(chip); |
| if (r) |
| goto out; |
| |
| r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| if (r) |
| goto unlock; |
| |
| r = patch_cr157(chip); |
| unlock: |
| t = zd_chip_unlock_phy_regs(chip); |
| if (t && !r) |
| r = t; |
| out: |
| return r; |
| } |
| |
| static int zd1211b_hw_reset_phy(struct zd_chip *chip) |
| { |
| static const struct zd_ioreq16 ioreqs[] = { |
| { CR0, 0x14 }, { CR1, 0x06 }, { CR2, 0x26 }, |
| { CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xe0 }, |
| { CR10, 0x81 }, |
| /* power control { { CR11, 1 << 6 }, */ |
| { CR11, 0x00 }, |
| { CR12, 0xf0 }, { CR13, 0x8c }, { CR14, 0x80 }, |
| { CR15, 0x3d }, { CR16, 0x20 }, { CR17, 0x1e }, |
| { CR18, 0x0a }, { CR19, 0x48 }, |
| { CR20, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */ |
| { CR21, 0x0e }, { CR22, 0x23 }, { CR23, 0x90 }, |
| { CR24, 0x14 }, { CR25, 0x40 }, { CR26, 0x10 }, |
| { CR27, 0x10 }, { CR28, 0x7f }, { CR29, 0x80 }, |
| { CR30, 0x4b }, /* ASIC/FWT, no jointly decoder */ |
| { CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 }, |
| { CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 }, |
| { CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c }, |
| { CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 }, |
| { CR43, 0x10 }, { CR44, 0x33 }, { CR46, 0xff }, |
| { CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b }, |
| { CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 }, |
| { CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 }, |
| { CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff }, |
| { CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 }, |
| { CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 }, |
| { CR79, 0xf0 }, { CR80, 0x64 }, { CR81, 0x64 }, |
| { CR82, 0x00 }, { CR83, 0x24 }, { CR84, 0x04 }, |
| { CR85, 0x00 }, { CR86, 0x0c }, { CR87, 0x12 }, |
| { CR88, 0x0c }, { CR89, 0x00 }, { CR90, 0x58 }, |
| { CR91, 0x04 }, { CR92, 0x00 }, { CR93, 0x00 }, |
| { CR94, 0x01 }, |
| { CR95, 0x20 }, /* ZD1211B */ |
| { CR96, 0x50 }, { CR97, 0x37 }, { CR98, 0x35 }, |
| { CR99, 0x00 }, { CR100, 0x01 }, { CR101, 0x13 }, |
| { CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 }, |
| { CR105, 0x12 }, { CR106, 0x04 }, { CR107, 0x00 }, |
| { CR108, 0x0a }, { CR109, 0x27 }, { CR110, 0x27 }, |
| { CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 }, |
| { CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 }, |
| { CR117, 0xfc }, { CR118, 0xfa }, { CR119, 0x1e }, |
| { CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 }, |
| { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 }, |
| { CR131, 0x0c }, { CR136, 0xdf }, { CR137, 0xa0 }, |
| { CR138, 0xa8 }, { CR139, 0xb4 }, { CR140, 0x98 }, |
| { CR141, 0x82 }, { CR142, 0x53 }, { CR143, 0x1c }, |
| { CR144, 0x6c }, { CR147, 0x07 }, { CR148, 0x40 }, |
| { CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */ |
| { CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */ |
| { CR151, 0x18 }, { CR159, 0x70 }, { CR160, 0xfe }, |
| { CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa }, |
| { CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe }, |
| { CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba }, |
| { CR170, 0xba }, { CR171, 0xba }, |
| /* Note: CR204 must lead the CR203 */ |
| { CR204, 0x7d }, |
| {}, |
| { CR203, 0x30 }, |
| }; |
| |
| int r, t; |
| |
| dev_dbg_f(zd_chip_dev(chip), "\n"); |
| |
| r = zd_chip_lock_phy_regs(chip); |
| if (r) |
| goto out; |
| |
| r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| t = zd_chip_unlock_phy_regs(chip); |
| if (t && !r) |
| r = t; |
| out: |
| return r; |
| } |
| |
| static int hw_reset_phy(struct zd_chip *chip) |
| { |
| return chip->is_zd1211b ? zd1211b_hw_reset_phy(chip) : |
| zd1211_hw_reset_phy(chip); |
| } |
| |
| static int zd1211_hw_init_hmac(struct zd_chip *chip) |
| { |
| static const struct zd_ioreq32 ioreqs[] = { |
| { CR_ZD1211_RETRY_MAX, 0x2 }, |
| { CR_RX_THRESHOLD, 0x000c0640 }, |
| }; |
| |
| dev_dbg_f(zd_chip_dev(chip), "\n"); |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| } |
| |
| static int zd1211b_hw_init_hmac(struct zd_chip *chip) |
| { |
| static const struct zd_ioreq32 ioreqs[] = { |
| { CR_ZD1211B_RETRY_MAX, 0x02020202 }, |
| { CR_ZD1211B_TX_PWR_CTL4, 0x007f003f }, |
| { CR_ZD1211B_TX_PWR_CTL3, 0x007f003f }, |
| { CR_ZD1211B_TX_PWR_CTL2, 0x003f001f }, |
| { CR_ZD1211B_TX_PWR_CTL1, 0x001f000f }, |
| { CR_ZD1211B_AIFS_CTL1, 0x00280028 }, |
| { CR_ZD1211B_AIFS_CTL2, 0x008C003C }, |
| { CR_ZD1211B_TXOP, 0x01800824 }, |
| { CR_RX_THRESHOLD, 0x000c0eff, }, |
| }; |
| |
| dev_dbg_f(zd_chip_dev(chip), "\n"); |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| } |
| |
| static int hw_init_hmac(struct zd_chip *chip) |
| { |
| int r; |
| static const struct zd_ioreq32 ioreqs[] = { |
| { CR_ACK_TIMEOUT_EXT, 0x20 }, |
| { CR_ADDA_MBIAS_WARMTIME, 0x30000808 }, |
| { CR_SNIFFER_ON, 0 }, |
| { CR_RX_FILTER, STA_RX_FILTER }, |
| { CR_GROUP_HASH_P1, 0x00 }, |
| { CR_GROUP_HASH_P2, 0x80000000 }, |
| { CR_REG1, 0xa4 }, |
| { CR_ADDA_PWR_DWN, 0x7f }, |
| { CR_BCN_PLCP_CFG, 0x00f00401 }, |
| { CR_PHY_DELAY, 0x00 }, |
| { CR_ACK_TIMEOUT_EXT, 0x80 }, |
| { CR_ADDA_PWR_DWN, 0x00 }, |
| { CR_ACK_TIME_80211, 0x100 }, |
| { CR_RX_PE_DELAY, 0x70 }, |
| { CR_PS_CTRL, 0x10000000 }, |
| { CR_RTS_CTS_RATE, 0x02030203 }, |
| { CR_AFTER_PNP, 0x1 }, |
| { CR_WEP_PROTECT, 0x114 }, |
| { CR_IFS_VALUE, IFS_VALUE_DEFAULT }, |
| }; |
| |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| if (r) |
| return r; |
| |
| return chip->is_zd1211b ? |
| zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip); |
| } |
| |
| struct aw_pt_bi { |
| u32 atim_wnd_period; |
| u32 pre_tbtt; |
| u32 beacon_interval; |
| }; |
| |
| static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s) |
| { |
| int r; |
| static const zd_addr_t aw_pt_bi_addr[] = |
| { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL }; |
| u32 values[3]; |
| |
| r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr, |
| ARRAY_SIZE(aw_pt_bi_addr)); |
| if (r) { |
| memset(s, 0, sizeof(*s)); |
| return r; |
| } |
| |
| s->atim_wnd_period = values[0]; |
| s->pre_tbtt = values[1]; |
| s->beacon_interval = values[2]; |
| dev_dbg_f(zd_chip_dev(chip), "aw %u pt %u bi %u\n", |
| s->atim_wnd_period, s->pre_tbtt, s->beacon_interval); |
| return 0; |
| } |
| |
| static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s) |
| { |
| struct zd_ioreq32 reqs[3]; |
| |
| if (s->beacon_interval <= 5) |
| s->beacon_interval = 5; |
| if (s->pre_tbtt < 4 || s->pre_tbtt >= s->beacon_interval) |
| s->pre_tbtt = s->beacon_interval - 1; |
| if (s->atim_wnd_period >= s->pre_tbtt) |
| s->atim_wnd_period = s->pre_tbtt - 1; |
| |
| reqs[0].addr = CR_ATIM_WND_PERIOD; |
| reqs[0].value = s->atim_wnd_period; |
| reqs[1].addr = CR_PRE_TBTT; |
| reqs[1].value = s->pre_tbtt; |
| reqs[2].addr = CR_BCN_INTERVAL; |
| reqs[2].value = s->beacon_interval; |
| |
| dev_dbg_f(zd_chip_dev(chip), |
| "aw %u pt %u bi %u\n", s->atim_wnd_period, s->pre_tbtt, |
| s->beacon_interval); |
| return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs)); |
| } |
| |
| |
| static int set_beacon_interval(struct zd_chip *chip, u32 interval) |
| { |
| int r; |
| struct aw_pt_bi s; |
| |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| r = get_aw_pt_bi(chip, &s); |
| if (r) |
| return r; |
| s.beacon_interval = interval; |
| return set_aw_pt_bi(chip, &s); |
| } |
| |
| int zd_set_beacon_interval(struct zd_chip *chip, u32 interval) |
| { |
| int r; |
| |
| mutex_lock(&chip->mutex); |
| r = set_beacon_interval(chip, interval); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| static int hw_init(struct zd_chip *chip) |
| { |
| int r; |
| |
| dev_dbg_f(zd_chip_dev(chip), "\n"); |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| r = hw_reset_phy(chip); |
| if (r) |
| return r; |
| |
| r = hw_init_hmac(chip); |
| if (r) |
| return r; |
| |
| return set_beacon_interval(chip, 100); |
| } |
| |
| static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset) |
| { |
| return (zd_addr_t)((u16)chip->fw_regs_base + offset); |
| } |
| |
| #ifdef DEBUG |
| static int dump_cr(struct zd_chip *chip, const zd_addr_t addr, |
| const char *addr_string) |
| { |
| int r; |
| u32 value; |
| |
| r = zd_ioread32_locked(chip, &value, addr); |
| if (r) { |
| dev_dbg_f(zd_chip_dev(chip), |
| "error reading %s. Error number %d\n", addr_string, r); |
| return r; |
| } |
| |
| dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n", |
| addr_string, (unsigned int)value); |
| return 0; |
| } |
| |
| static int test_init(struct zd_chip *chip) |
| { |
| int r; |
| |
| r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP"); |
| if (r) |
| return r; |
| r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN"); |
| if (r) |
| return r; |
| return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT"); |
| } |
| |
| static void dump_fw_registers(struct zd_chip *chip) |
| { |
| const zd_addr_t addr[4] = { |
| fw_reg_addr(chip, FW_REG_FIRMWARE_VER), |
| fw_reg_addr(chip, FW_REG_USB_SPEED), |
| fw_reg_addr(chip, FW_REG_FIX_TX_RATE), |
| fw_reg_addr(chip, FW_REG_LED_LINK_STATUS), |
| }; |
| |
| int r; |
| u16 values[4]; |
| |
| r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr, |
| ARRAY_SIZE(addr)); |
| if (r) { |
| dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n", |
| r); |
| return; |
| } |
| |
| dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]); |
| dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]); |
| dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]); |
| dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]); |
| } |
| #endif /* DEBUG */ |
| |
| static int print_fw_version(struct zd_chip *chip) |
| { |
| int r; |
| u16 version; |
| |
| r = zd_ioread16_locked(chip, &version, |
| fw_reg_addr(chip, FW_REG_FIRMWARE_VER)); |
| if (r) |
| return r; |
| |
| dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version); |
| return 0; |
| } |
| |
| static int set_mandatory_rates(struct zd_chip *chip, enum ieee80211_std std) |
| { |
| u32 rates; |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| /* This sets the mandatory rates, which only depend from the standard |
| * that the device is supporting. Until further notice we should try |
| * to support 802.11g also for full speed USB. |
| */ |
| switch (std) { |
| case IEEE80211B: |
| rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M; |
| break; |
| case IEEE80211G: |
| rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M| |
| CR_RATE_6M|CR_RATE_12M|CR_RATE_24M; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL); |
| } |
| |
| int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip, |
| u8 rts_rate, int preamble) |
| { |
| int rts_mod = ZD_RX_CCK; |
| u32 value = 0; |
| |
| /* Modulation bit */ |
| if (ZD_CS_TYPE(rts_rate) == ZD_CS_OFDM) |
| rts_mod = ZD_RX_OFDM; |
| |
| dev_dbg_f(zd_chip_dev(chip), "rts_rate=%x preamble=%x\n", |
| rts_rate, preamble); |
| |
| value |= rts_rate << RTSCTS_SH_RTS_RATE; |
| value |= rts_mod << RTSCTS_SH_RTS_MOD_TYPE; |
| value |= preamble << RTSCTS_SH_RTS_PMB_TYPE; |
| value |= preamble << RTSCTS_SH_CTS_PMB_TYPE; |
| |
| /* We always send 11M self-CTS messages, like the vendor driver. */ |
| value |= ZD_CCK_RATE_11M << RTSCTS_SH_CTS_RATE; |
| value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE; |
| |
| return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE); |
| } |
| |
| int zd_chip_enable_hwint(struct zd_chip *chip) |
| { |
| int r; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| static int disable_hwint(struct zd_chip *chip) |
| { |
| return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT); |
| } |
| |
| int zd_chip_disable_hwint(struct zd_chip *chip) |
| { |
| int r; |
| |
| mutex_lock(&chip->mutex); |
| r = disable_hwint(chip); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| static int read_fw_regs_offset(struct zd_chip *chip) |
| { |
| int r; |
| |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base, |
| FWRAW_REGS_ADDR); |
| if (r) |
| return r; |
| dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n", |
| (u16)chip->fw_regs_base); |
| |
| return 0; |
| } |
| |
| |
| int zd_chip_init_hw(struct zd_chip *chip, u8 device_type) |
| { |
| int r; |
| u8 rf_type; |
| |
| dev_dbg_f(zd_chip_dev(chip), "\n"); |
| |
| mutex_lock(&chip->mutex); |
| chip->is_zd1211b = (device_type == DEVICE_ZD1211B) != 0; |
| |
| #ifdef DEBUG |
| r = test_init(chip); |
| if (r) |
| goto out; |
| #endif |
| r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP); |
| if (r) |
| goto out; |
| |
| r = read_fw_regs_offset(chip); |
| if (r) |
| goto out; |
| |
| /* GPI is always disabled, also in the other driver. |
| */ |
| r = zd_iowrite32_locked(chip, 0, CR_GPI_EN); |
| if (r) |
| goto out; |
| r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX); |
| if (r) |
| goto out; |
| /* Currently we support IEEE 802.11g for full and high speed USB. |
| * It might be discussed, whether we should suppport pure b mode for |
| * full speed USB. |
| */ |
| r = set_mandatory_rates(chip, IEEE80211G); |
| if (r) |
| goto out; |
| /* Disabling interrupts is certainly a smart thing here. |
| */ |
| r = disable_hwint(chip); |
| if (r) |
| goto out; |
| r = read_pod(chip, &rf_type); |
| if (r) |
| goto out; |
| r = hw_init(chip); |
| if (r) |
| goto out; |
| r = zd_rf_init_hw(&chip->rf, rf_type); |
| if (r) |
| goto out; |
| |
| r = print_fw_version(chip); |
| if (r) |
| goto out; |
| |
| #ifdef DEBUG |
| dump_fw_registers(chip); |
| r = test_init(chip); |
| if (r) |
| goto out; |
| #endif /* DEBUG */ |
| |
| r = read_e2p_mac_addr(chip); |
| if (r) |
| goto out; |
| |
| r = read_cal_int_tables(chip); |
| if (r) |
| goto out; |
| |
| print_id(chip); |
| out: |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| static int update_pwr_int(struct zd_chip *chip, u8 channel) |
| { |
| u8 value = chip->pwr_int_values[channel - 1]; |
| dev_dbg_f(zd_chip_dev(chip), "channel %d pwr_int %#04x\n", |
| channel, value); |
| return zd_iowrite16_locked(chip, value, CR31); |
| } |
| |
| static int update_pwr_cal(struct zd_chip *chip, u8 channel) |
| { |
| u8 value = chip->pwr_cal_values[channel-1]; |
| dev_dbg_f(zd_chip_dev(chip), "channel %d pwr_cal %#04x\n", |
| channel, value); |
| return zd_iowrite16_locked(chip, value, CR68); |
| } |
| |
| static int update_ofdm_cal(struct zd_chip *chip, u8 channel) |
| { |
| struct zd_ioreq16 ioreqs[3]; |
| |
| ioreqs[0].addr = CR67; |
| ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1]; |
| ioreqs[1].addr = CR66; |
| ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1]; |
| ioreqs[2].addr = CR65; |
| ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1]; |
| |
| dev_dbg_f(zd_chip_dev(chip), |
| "channel %d ofdm_cal 36M %#04x 48M %#04x 54M %#04x\n", |
| channel, ioreqs[0].value, ioreqs[1].value, ioreqs[2].value); |
| return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| } |
| |
| static int update_channel_integration_and_calibration(struct zd_chip *chip, |
| u8 channel) |
| { |
| int r; |
| |
| if (!zd_rf_should_update_pwr_int(&chip->rf)) |
| return 0; |
| |
| r = update_pwr_int(chip, channel); |
| if (r) |
| return r; |
| if (chip->is_zd1211b) { |
| static const struct zd_ioreq16 ioreqs[] = { |
| { CR69, 0x28 }, |
| {}, |
| { CR69, 0x2a }, |
| }; |
| |
| r = update_ofdm_cal(chip, channel); |
| if (r) |
| return r; |
| r = update_pwr_cal(chip, channel); |
| if (r) |
| return r; |
| r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| if (r) |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| /* The CCK baseband gain can be optionally patched by the EEPROM */ |
| static int patch_cck_gain(struct zd_chip *chip) |
| { |
| int r; |
| u32 value; |
| |
| if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf)) |
| return 0; |
| |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| r = zd_ioread32_locked(chip, &value, E2P_PHY_REG); |
| if (r) |
| return r; |
| dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff); |
| return zd_iowrite16_locked(chip, value & 0xff, CR47); |
| } |
| |
| int zd_chip_set_channel(struct zd_chip *chip, u8 channel) |
| { |
| int r, t; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_chip_lock_phy_regs(chip); |
| if (r) |
| goto out; |
| r = zd_rf_set_channel(&chip->rf, channel); |
| if (r) |
| goto unlock; |
| r = update_channel_integration_and_calibration(chip, channel); |
| if (r) |
| goto unlock; |
| r = patch_cck_gain(chip); |
| if (r) |
| goto unlock; |
| r = patch_6m_band_edge(chip, channel); |
| if (r) |
| goto unlock; |
| r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS); |
| unlock: |
| t = zd_chip_unlock_phy_regs(chip); |
| if (t && !r) |
| r = t; |
| out: |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| u8 zd_chip_get_channel(struct zd_chip *chip) |
| { |
| u8 channel; |
| |
| mutex_lock(&chip->mutex); |
| channel = chip->rf.channel; |
| mutex_unlock(&chip->mutex); |
| return channel; |
| } |
| |
| int zd_chip_control_leds(struct zd_chip *chip, enum led_status status) |
| { |
| const zd_addr_t a[] = { |
| fw_reg_addr(chip, FW_REG_LED_LINK_STATUS), |
| CR_LED, |
| }; |
| |
| int r; |
| u16 v[ARRAY_SIZE(a)]; |
| struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = { |
| [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) }, |
| [1] = { CR_LED }, |
| }; |
| u16 other_led; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a)); |
| if (r) |
| goto out; |
| |
| other_led = chip->link_led == LED1 ? LED2 : LED1; |
| |
| switch (status) { |
| case LED_OFF: |
| ioreqs[0].value = FW_LINK_OFF; |
| ioreqs[1].value = v[1] & ~(LED1|LED2); |
| break; |
| case LED_SCANNING: |
| ioreqs[0].value = FW_LINK_OFF; |
| ioreqs[1].value = v[1] & ~other_led; |
| if (get_seconds() % 3 == 0) { |
| ioreqs[1].value &= ~chip->link_led; |
| } else { |
| ioreqs[1].value |= chip->link_led; |
| } |
| break; |
| case LED_ASSOCIATED: |
| ioreqs[0].value = FW_LINK_TX; |
| ioreqs[1].value = v[1] & ~other_led; |
| ioreqs[1].value |= chip->link_led; |
| break; |
| default: |
| r = -EINVAL; |
| goto out; |
| } |
| |
| if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) { |
| r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| if (r) |
| goto out; |
| } |
| r = 0; |
| out: |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| int zd_chip_set_basic_rates_locked(struct zd_chip *chip, u16 cr_rates) |
| { |
| ZD_ASSERT((cr_rates & ~(CR_RATES_80211B | CR_RATES_80211G)) == 0); |
| dev_dbg_f(zd_chip_dev(chip), "%x\n", cr_rates); |
| |
| return zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL); |
| } |
| |
| static int ofdm_qual_db(u8 status_quality, u8 rate, unsigned int size) |
| { |
| static const u16 constants[] = { |
| 715, 655, 585, 540, 470, 410, 360, 315, |
| 270, 235, 205, 175, 150, 125, 105, 85, |
| 65, 50, 40, 25, 15 |
| }; |
| |
| int i; |
| u32 x; |
| |
| /* It seems that their quality parameter is somehow per signal |
| * and is now transferred per bit. |
| */ |
| switch (rate) { |
| case ZD_OFDM_RATE_6M: |
| case ZD_OFDM_RATE_12M: |
| case ZD_OFDM_RATE_24M: |
| size *= 2; |
| break; |
| case ZD_OFDM_RATE_9M: |
| case ZD_OFDM_RATE_18M: |
| case ZD_OFDM_RATE_36M: |
| case ZD_OFDM_RATE_54M: |
| size *= 4; |
| size /= 3; |
| break; |
| case ZD_OFDM_RATE_48M: |
| size *= 3; |
| size /= 2; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| x = (10000 * status_quality)/size; |
| for (i = 0; i < ARRAY_SIZE(constants); i++) { |
| if (x > constants[i]) |
| break; |
| } |
| |
| switch (rate) { |
| case ZD_OFDM_RATE_6M: |
| case ZD_OFDM_RATE_9M: |
| i += 3; |
| break; |
| case ZD_OFDM_RATE_12M: |
| case ZD_OFDM_RATE_18M: |
| i += 5; |
| break; |
| case ZD_OFDM_RATE_24M: |
| case ZD_OFDM_RATE_36M: |
| i += 9; |
| break; |
| case ZD_OFDM_RATE_48M: |
| case ZD_OFDM_RATE_54M: |
| i += 15; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return i; |
| } |
| |
| static int ofdm_qual_percent(u8 status_quality, u8 rate, unsigned int size) |
| { |
| int r; |
| |
| r = ofdm_qual_db(status_quality, rate, size); |
| ZD_ASSERT(r >= 0); |
| if (r < 0) |
| r = 0; |
| |
| r = (r * 100)/29; |
| return r <= 100 ? r : 100; |
| } |
| |
| static unsigned int log10times100(unsigned int x) |
| { |
| static const u8 log10[] = { |
| 0, |
| 0, 30, 47, 60, 69, 77, 84, 90, 95, 100, |
| 104, 107, 111, 114, 117, 120, 123, 125, 127, 130, |
| 132, 134, 136, 138, 139, 141, 143, 144, 146, 147, |
| 149, 150, 151, 153, 154, 155, 156, 157, 159, 160, |
| 161, 162, 163, 164, 165, 166, 167, 168, 169, 169, |
| 170, 171, 172, 173, 174, 174, 175, 176, 177, 177, |
| 178, 179, 179, 180, 181, 181, 182, 183, 183, 184, |
| 185, 185, 186, 186, 187, 188, 188, 189, 189, 190, |
| 190, 191, 191, 192, 192, 193, 193, 194, 194, 195, |
| 195, 196, 196, 197, 197, 198, 198, 199, 199, 200, |
| 200, 200, 201, 201, 202, 202, 202, 203, 203, 204, |
| 204, 204, 205, 205, 206, 206, 206, 207, 207, 207, |
| 208, 208, 208, 209, 209, 210, 210, 210, 211, 211, |
| 211, 212, 212, 212, 213, 213, 213, 213, 214, 214, |
| 214, 215, 215, 215, 216, 216, 216, 217, 217, 217, |
| 217, 218, 218, 218, 219, 219, 219, 219, 220, 220, |
| 220, 220, 221, 221, 221, 222, 222, 222, 222, 223, |
| 223, 223, 223, 224, 224, 224, 224, |
| }; |
| |
| return x < ARRAY_SIZE(log10) ? log10[x] : 225; |
| } |
| |
| enum { |
| MAX_CCK_EVM_DB = 45, |
| }; |
| |
| static int cck_evm_db(u8 status_quality) |
| { |
| return (20 * log10times100(status_quality)) / 100; |
| } |
| |
| static int cck_snr_db(u8 status_quality) |
| { |
| int r = MAX_CCK_EVM_DB - cck_evm_db(status_quality); |
| ZD_ASSERT(r >= 0); |
| return r; |
| } |
| |
| static int cck_qual_percent(u8 status_quality) |
| { |
| int r; |
| |
| r = cck_snr_db(status_quality); |
| r = (100*r)/17; |
| return r <= 100 ? r : 100; |
| } |
| |
| u8 zd_rx_qual_percent(const void *rx_frame, unsigned int size, |
| const struct rx_status *status) |
| { |
| return (status->frame_status&ZD_RX_OFDM) ? |
| ofdm_qual_percent(status->signal_quality_ofdm, |
| zd_ofdm_plcp_header_rate(rx_frame), |
| size) : |
| cck_qual_percent(status->signal_quality_cck); |
| } |
| |
| u8 zd_rx_strength_percent(u8 rssi) |
| { |
| int r = (rssi*100) / 41; |
| if (r > 100) |
| r = 100; |
| return (u8) r; |
| } |
| |
| u16 zd_rx_rate(const void *rx_frame, const struct rx_status *status) |
| { |
| static const u16 ofdm_rates[] = { |
| [ZD_OFDM_RATE_6M] = 60, |
| [ZD_OFDM_RATE_9M] = 90, |
| [ZD_OFDM_RATE_12M] = 120, |
| [ZD_OFDM_RATE_18M] = 180, |
| [ZD_OFDM_RATE_24M] = 240, |
| [ZD_OFDM_RATE_36M] = 360, |
| [ZD_OFDM_RATE_48M] = 480, |
| [ZD_OFDM_RATE_54M] = 540, |
| }; |
| u16 rate; |
| if (status->frame_status & ZD_RX_OFDM) { |
| u8 ofdm_rate = zd_ofdm_plcp_header_rate(rx_frame); |
| rate = ofdm_rates[ofdm_rate & 0xf]; |
| } else { |
| u8 cck_rate = zd_cck_plcp_header_rate(rx_frame); |
| switch (cck_rate) { |
| case ZD_CCK_SIGNAL_1M: |
| rate = 10; |
| break; |
| case ZD_CCK_SIGNAL_2M: |
| rate = 20; |
| break; |
| case ZD_CCK_SIGNAL_5M5: |
| rate = 55; |
| break; |
| case ZD_CCK_SIGNAL_11M: |
| rate = 110; |
| break; |
| default: |
| rate = 0; |
| } |
| } |
| |
| return rate; |
| } |
| |
| int zd_chip_switch_radio_on(struct zd_chip *chip) |
| { |
| int r; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_switch_radio_on(&chip->rf); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| int zd_chip_switch_radio_off(struct zd_chip *chip) |
| { |
| int r; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_switch_radio_off(&chip->rf); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| int zd_chip_enable_int(struct zd_chip *chip) |
| { |
| int r; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_usb_enable_int(&chip->usb); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| void zd_chip_disable_int(struct zd_chip *chip) |
| { |
| mutex_lock(&chip->mutex); |
| zd_usb_disable_int(&chip->usb); |
| mutex_unlock(&chip->mutex); |
| } |
| |
| int zd_chip_enable_rx(struct zd_chip *chip) |
| { |
| int r; |
| |
| mutex_lock(&chip->mutex); |
| r = zd_usb_enable_rx(&chip->usb); |
| mutex_unlock(&chip->mutex); |
| return r; |
| } |
| |
| void zd_chip_disable_rx(struct zd_chip *chip) |
| { |
| mutex_lock(&chip->mutex); |
| zd_usb_disable_rx(&chip->usb); |
| mutex_unlock(&chip->mutex); |
| } |
| |
| int zd_rfwritev_locked(struct zd_chip *chip, |
| const u32* values, unsigned int count, u8 bits) |
| { |
| int r; |
| unsigned int i; |
| |
| for (i = 0; i < count; i++) { |
| r = zd_rfwrite_locked(chip, values[i], bits); |
| if (r) |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * We can optionally program the RF directly through CR regs, if supported by |
| * the hardware. This is much faster than the older method. |
| */ |
| int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value) |
| { |
| struct zd_ioreq16 ioreqs[] = { |
| { CR244, (value >> 16) & 0xff }, |
| { CR243, (value >> 8) & 0xff }, |
| { CR242, value & 0xff }, |
| }; |
| ZD_ASSERT(mutex_is_locked(&chip->mutex)); |
| return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| } |
| |
| int zd_rfwritev_cr_locked(struct zd_chip *chip, |
| const u32 *values, unsigned int count) |
| { |
| int r; |
| unsigned int i; |
| |
| for (i = 0; i < count; i++) { |
| r = zd_rfwrite_cr_locked(chip, values[i]); |
| if (r) |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| int zd_chip_set_multicast_hash(struct zd_chip *chip, |
| struct zd_mc_hash *hash) |
| { |
| struct zd_ioreq32 ioreqs[] = { |
| { CR_GROUP_HASH_P1, hash->low }, |
| { CR_GROUP_HASH_P2, hash->high }, |
| }; |
| |
| dev_dbg_f(zd_chip_dev(chip), "hash l 0x%08x h 0x%08x\n", |
| ioreqs[0].value, ioreqs[1].value); |
| return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs)); |
| } |