| /* |
| * Procedures for creating, accessing and interpreting the device tree. |
| * |
| * Paul Mackerras August 1996. |
| * Copyright (C) 1996-2005 Paul Mackerras. |
| * |
| * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. |
| * {engebret|bergner}@us.ibm.com |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <stdarg.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/threads.h> |
| #include <linux/spinlock.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/stringify.h> |
| #include <linux/delay.h> |
| #include <linux/initrd.h> |
| #include <linux/bitops.h> |
| #include <linux/module.h> |
| #include <linux/kexec.h> |
| #include <linux/debugfs.h> |
| #include <linux/irq.h> |
| #include <linux/lmb.h> |
| |
| #include <asm/prom.h> |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| #include <asm/irq.h> |
| #include <linux/io.h> |
| #include <asm/system.h> |
| #include <asm/mmu.h> |
| #include <asm/pgtable.h> |
| #include <asm/sections.h> |
| #include <asm/pci-bridge.h> |
| |
| static int __initdata dt_root_addr_cells; |
| static int __initdata dt_root_size_cells; |
| |
| typedef u32 cell_t; |
| |
| static struct boot_param_header *initial_boot_params; |
| |
| /* export that to outside world */ |
| struct device_node *of_chosen; |
| |
| static inline char *find_flat_dt_string(u32 offset) |
| { |
| return ((char *)initial_boot_params) + |
| initial_boot_params->off_dt_strings + offset; |
| } |
| |
| /** |
| * This function is used to scan the flattened device-tree, it is |
| * used to extract the memory informations at boot before we can |
| * unflatten the tree |
| */ |
| int __init of_scan_flat_dt(int (*it)(unsigned long node, |
| const char *uname, int depth, |
| void *data), |
| void *data) |
| { |
| unsigned long p = ((unsigned long)initial_boot_params) + |
| initial_boot_params->off_dt_struct; |
| int rc = 0; |
| int depth = -1; |
| |
| do { |
| u32 tag = *((u32 *)p); |
| char *pathp; |
| |
| p += 4; |
| if (tag == OF_DT_END_NODE) { |
| depth--; |
| continue; |
| } |
| if (tag == OF_DT_NOP) |
| continue; |
| if (tag == OF_DT_END) |
| break; |
| if (tag == OF_DT_PROP) { |
| u32 sz = *((u32 *)p); |
| p += 8; |
| if (initial_boot_params->version < 0x10) |
| p = _ALIGN(p, sz >= 8 ? 8 : 4); |
| p += sz; |
| p = _ALIGN(p, 4); |
| continue; |
| } |
| if (tag != OF_DT_BEGIN_NODE) { |
| printk(KERN_WARNING "Invalid tag %x scanning flattened" |
| " device tree !\n", tag); |
| return -EINVAL; |
| } |
| depth++; |
| pathp = (char *)p; |
| p = _ALIGN(p + strlen(pathp) + 1, 4); |
| if ((*pathp) == '/') { |
| char *lp, *np; |
| for (lp = NULL, np = pathp; *np; np++) |
| if ((*np) == '/') |
| lp = np+1; |
| if (lp != NULL) |
| pathp = lp; |
| } |
| rc = it(p, pathp, depth, data); |
| if (rc != 0) |
| break; |
| } while (1); |
| |
| return rc; |
| } |
| |
| unsigned long __init of_get_flat_dt_root(void) |
| { |
| unsigned long p = ((unsigned long)initial_boot_params) + |
| initial_boot_params->off_dt_struct; |
| |
| while (*((u32 *)p) == OF_DT_NOP) |
| p += 4; |
| BUG_ON(*((u32 *)p) != OF_DT_BEGIN_NODE); |
| p += 4; |
| return _ALIGN(p + strlen((char *)p) + 1, 4); |
| } |
| |
| /** |
| * This function can be used within scan_flattened_dt callback to get |
| * access to properties |
| */ |
| void *__init of_get_flat_dt_prop(unsigned long node, const char *name, |
| unsigned long *size) |
| { |
| unsigned long p = node; |
| |
| do { |
| u32 tag = *((u32 *)p); |
| u32 sz, noff; |
| const char *nstr; |
| |
| p += 4; |
| if (tag == OF_DT_NOP) |
| continue; |
| if (tag != OF_DT_PROP) |
| return NULL; |
| |
| sz = *((u32 *)p); |
| noff = *((u32 *)(p + 4)); |
| p += 8; |
| if (initial_boot_params->version < 0x10) |
| p = _ALIGN(p, sz >= 8 ? 8 : 4); |
| |
| nstr = find_flat_dt_string(noff); |
| if (nstr == NULL) { |
| printk(KERN_WARNING "Can't find property index" |
| " name !\n"); |
| return NULL; |
| } |
| if (strcmp(name, nstr) == 0) { |
| if (size) |
| *size = sz; |
| return (void *)p; |
| } |
| p += sz; |
| p = _ALIGN(p, 4); |
| } while (1); |
| } |
| |
| int __init of_flat_dt_is_compatible(unsigned long node, const char *compat) |
| { |
| const char *cp; |
| unsigned long cplen, l; |
| |
| cp = of_get_flat_dt_prop(node, "compatible", &cplen); |
| if (cp == NULL) |
| return 0; |
| while (cplen > 0) { |
| if (strncasecmp(cp, compat, strlen(compat)) == 0) |
| return 1; |
| l = strlen(cp) + 1; |
| cp += l; |
| cplen -= l; |
| } |
| |
| return 0; |
| } |
| |
| static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size, |
| unsigned long align) |
| { |
| void *res; |
| |
| *mem = _ALIGN(*mem, align); |
| res = (void *)*mem; |
| *mem += size; |
| |
| return res; |
| } |
| |
| static unsigned long __init unflatten_dt_node(unsigned long mem, |
| unsigned long *p, |
| struct device_node *dad, |
| struct device_node ***allnextpp, |
| unsigned long fpsize) |
| { |
| struct device_node *np; |
| struct property *pp, **prev_pp = NULL; |
| char *pathp; |
| u32 tag; |
| unsigned int l, allocl; |
| int has_name = 0; |
| int new_format = 0; |
| |
| tag = *((u32 *)(*p)); |
| if (tag != OF_DT_BEGIN_NODE) { |
| printk("Weird tag at start of node: %x\n", tag); |
| return mem; |
| } |
| *p += 4; |
| pathp = (char *)*p; |
| l = allocl = strlen(pathp) + 1; |
| *p = _ALIGN(*p + l, 4); |
| |
| /* version 0x10 has a more compact unit name here instead of the full |
| * path. we accumulate the full path size using "fpsize", we'll rebuild |
| * it later. We detect this because the first character of the name is |
| * not '/'. |
| */ |
| if ((*pathp) != '/') { |
| new_format = 1; |
| if (fpsize == 0) { |
| /* root node: special case. fpsize accounts for path |
| * plus terminating zero. root node only has '/', so |
| * fpsize should be 2, but we want to avoid the first |
| * level nodes to have two '/' so we use fpsize 1 here |
| */ |
| fpsize = 1; |
| allocl = 2; |
| } else { |
| /* account for '/' and path size minus terminal 0 |
| * already in 'l' |
| */ |
| fpsize += l; |
| allocl = fpsize; |
| } |
| } |
| |
| np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl, |
| __alignof__(struct device_node)); |
| if (allnextpp) { |
| memset(np, 0, sizeof(*np)); |
| np->full_name = ((char *)np) + sizeof(struct device_node); |
| if (new_format) { |
| char *p2 = np->full_name; |
| /* rebuild full path for new format */ |
| if (dad && dad->parent) { |
| strcpy(p2, dad->full_name); |
| #ifdef DEBUG |
| if ((strlen(p2) + l + 1) != allocl) { |
| pr_debug("%s: p: %d, l: %d, a: %d\n", |
| pathp, (int)strlen(p2), |
| l, allocl); |
| } |
| #endif |
| p2 += strlen(p2); |
| } |
| *(p2++) = '/'; |
| memcpy(p2, pathp, l); |
| } else |
| memcpy(np->full_name, pathp, l); |
| prev_pp = &np->properties; |
| **allnextpp = np; |
| *allnextpp = &np->allnext; |
| if (dad != NULL) { |
| np->parent = dad; |
| /* we temporarily use the next field as `last_child'*/ |
| if (dad->next == NULL) |
| dad->child = np; |
| else |
| dad->next->sibling = np; |
| dad->next = np; |
| } |
| kref_init(&np->kref); |
| } |
| while (1) { |
| u32 sz, noff; |
| char *pname; |
| |
| tag = *((u32 *)(*p)); |
| if (tag == OF_DT_NOP) { |
| *p += 4; |
| continue; |
| } |
| if (tag != OF_DT_PROP) |
| break; |
| *p += 4; |
| sz = *((u32 *)(*p)); |
| noff = *((u32 *)((*p) + 4)); |
| *p += 8; |
| if (initial_boot_params->version < 0x10) |
| *p = _ALIGN(*p, sz >= 8 ? 8 : 4); |
| |
| pname = find_flat_dt_string(noff); |
| if (pname == NULL) { |
| printk(KERN_INFO |
| "Can't find property name in list !\n"); |
| break; |
| } |
| if (strcmp(pname, "name") == 0) |
| has_name = 1; |
| l = strlen(pname) + 1; |
| pp = unflatten_dt_alloc(&mem, sizeof(struct property), |
| __alignof__(struct property)); |
| if (allnextpp) { |
| if (strcmp(pname, "linux,phandle") == 0) { |
| np->node = *((u32 *)*p); |
| if (np->linux_phandle == 0) |
| np->linux_phandle = np->node; |
| } |
| if (strcmp(pname, "ibm,phandle") == 0) |
| np->linux_phandle = *((u32 *)*p); |
| pp->name = pname; |
| pp->length = sz; |
| pp->value = (void *)*p; |
| *prev_pp = pp; |
| prev_pp = &pp->next; |
| } |
| *p = _ALIGN((*p) + sz, 4); |
| } |
| /* with version 0x10 we may not have the name property, recreate |
| * it here from the unit name if absent |
| */ |
| if (!has_name) { |
| char *p1 = pathp, *ps = pathp, *pa = NULL; |
| int sz; |
| |
| while (*p1) { |
| if ((*p1) == '@') |
| pa = p1; |
| if ((*p1) == '/') |
| ps = p1 + 1; |
| p1++; |
| } |
| if (pa < ps) |
| pa = p1; |
| sz = (pa - ps) + 1; |
| pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz, |
| __alignof__(struct property)); |
| if (allnextpp) { |
| pp->name = "name"; |
| pp->length = sz; |
| pp->value = pp + 1; |
| *prev_pp = pp; |
| prev_pp = &pp->next; |
| memcpy(pp->value, ps, sz - 1); |
| ((char *)pp->value)[sz - 1] = 0; |
| pr_debug("fixed up name for %s -> %s\n", pathp, |
| (char *)pp->value); |
| } |
| } |
| if (allnextpp) { |
| *prev_pp = NULL; |
| np->name = of_get_property(np, "name", NULL); |
| np->type = of_get_property(np, "device_type", NULL); |
| |
| if (!np->name) |
| np->name = "<NULL>"; |
| if (!np->type) |
| np->type = "<NULL>"; |
| } |
| while (tag == OF_DT_BEGIN_NODE) { |
| mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize); |
| tag = *((u32 *)(*p)); |
| } |
| if (tag != OF_DT_END_NODE) { |
| printk(KERN_INFO "Weird tag at end of node: %x\n", tag); |
| return mem; |
| } |
| *p += 4; |
| return mem; |
| } |
| |
| /** |
| * unflattens the device-tree passed by the firmware, creating the |
| * tree of struct device_node. It also fills the "name" and "type" |
| * pointers of the nodes so the normal device-tree walking functions |
| * can be used (this used to be done by finish_device_tree) |
| */ |
| void __init unflatten_device_tree(void) |
| { |
| unsigned long start, mem, size; |
| struct device_node **allnextp = &allnodes; |
| |
| pr_debug(" -> unflatten_device_tree()\n"); |
| |
| /* First pass, scan for size */ |
| start = ((unsigned long)initial_boot_params) + |
| initial_boot_params->off_dt_struct; |
| size = unflatten_dt_node(0, &start, NULL, NULL, 0); |
| size = (size | 3) + 1; |
| |
| pr_debug(" size is %lx, allocating...\n", size); |
| |
| /* Allocate memory for the expanded device tree */ |
| mem = lmb_alloc(size + 4, __alignof__(struct device_node)); |
| mem = (unsigned long) __va(mem); |
| |
| ((u32 *)mem)[size / 4] = 0xdeadbeef; |
| |
| pr_debug(" unflattening %lx...\n", mem); |
| |
| /* Second pass, do actual unflattening */ |
| start = ((unsigned long)initial_boot_params) + |
| initial_boot_params->off_dt_struct; |
| unflatten_dt_node(mem, &start, NULL, &allnextp, 0); |
| if (*((u32 *)start) != OF_DT_END) |
| printk(KERN_WARNING "Weird tag at end of tree: %08x\n", |
| *((u32 *)start)); |
| if (((u32 *)mem)[size / 4] != 0xdeadbeef) |
| printk(KERN_WARNING "End of tree marker overwritten: %08x\n", |
| ((u32 *)mem)[size / 4]); |
| *allnextp = NULL; |
| |
| /* Get pointer to OF "/chosen" node for use everywhere */ |
| of_chosen = of_find_node_by_path("/chosen"); |
| if (of_chosen == NULL) |
| of_chosen = of_find_node_by_path("/chosen@0"); |
| |
| pr_debug(" <- unflatten_device_tree()\n"); |
| } |
| |
| #define early_init_dt_scan_drconf_memory(node) 0 |
| |
| static int __init early_init_dt_scan_cpus(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| static int logical_cpuid; |
| char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| const u32 *intserv; |
| int i, nthreads; |
| int found = 0; |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| /* Get physical cpuid */ |
| intserv = of_get_flat_dt_prop(node, "reg", NULL); |
| nthreads = 1; |
| |
| /* |
| * Now see if any of these threads match our boot cpu. |
| * NOTE: This must match the parsing done in smp_setup_cpu_maps. |
| */ |
| for (i = 0; i < nthreads; i++) { |
| /* |
| * version 2 of the kexec param format adds the phys cpuid of |
| * booted proc. |
| */ |
| if (initial_boot_params && initial_boot_params->version >= 2) { |
| if (intserv[i] == |
| initial_boot_params->boot_cpuid_phys) { |
| found = 1; |
| break; |
| } |
| } else { |
| /* |
| * Check if it's the boot-cpu, set it's hw index now, |
| * unfortunately this format did not support booting |
| * off secondary threads. |
| */ |
| if (of_get_flat_dt_prop(node, |
| "linux,boot-cpu", NULL) != NULL) { |
| found = 1; |
| break; |
| } |
| } |
| |
| #ifdef CONFIG_SMP |
| /* logical cpu id is always 0 on UP kernels */ |
| logical_cpuid++; |
| #endif |
| } |
| |
| if (found) { |
| pr_debug("boot cpu: logical %d physical %d\n", logical_cpuid, |
| intserv[i]); |
| boot_cpuid = logical_cpuid; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| static void __init early_init_dt_check_for_initrd(unsigned long node) |
| { |
| unsigned long l; |
| u32 *prop; |
| |
| pr_debug("Looking for initrd properties... "); |
| |
| prop = of_get_flat_dt_prop(node, "linux,initrd-start", &l); |
| if (prop) { |
| initrd_start = (unsigned long) |
| __va((u32)of_read_ulong(prop, l/4)); |
| |
| prop = of_get_flat_dt_prop(node, "linux,initrd-end", &l); |
| if (prop) { |
| initrd_end = (unsigned long) |
| __va((u32)of_read_ulong(prop, 1/4)); |
| initrd_below_start_ok = 1; |
| } else { |
| initrd_start = 0; |
| } |
| } |
| |
| pr_debug("initrd_start=0x%lx initrd_end=0x%lx\n", |
| initrd_start, initrd_end); |
| } |
| #else |
| static inline void early_init_dt_check_for_initrd(unsigned long node) |
| { |
| } |
| #endif /* CONFIG_BLK_DEV_INITRD */ |
| |
| static int __init early_init_dt_scan_chosen(unsigned long node, |
| const char *uname, int depth, void *data) |
| { |
| unsigned long l; |
| char *p; |
| |
| pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname); |
| |
| if (depth != 1 || |
| (strcmp(uname, "chosen") != 0 && |
| strcmp(uname, "chosen@0") != 0)) |
| return 0; |
| |
| #ifdef CONFIG_KEXEC |
| lprop = (u64 *)of_get_flat_dt_prop(node, |
| "linux,crashkernel-base", NULL); |
| if (lprop) |
| crashk_res.start = *lprop; |
| |
| lprop = (u64 *)of_get_flat_dt_prop(node, |
| "linux,crashkernel-size", NULL); |
| if (lprop) |
| crashk_res.end = crashk_res.start + *lprop - 1; |
| #endif |
| |
| early_init_dt_check_for_initrd(node); |
| |
| /* Retreive command line */ |
| p = of_get_flat_dt_prop(node, "bootargs", &l); |
| if (p != NULL && l > 0) |
| strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE)); |
| |
| #ifdef CONFIG_CMDLINE |
| #ifndef CONFIG_CMDLINE_FORCE |
| if (p == NULL || l == 0 || (l == 1 && (*p) == 0)) |
| #endif |
| strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE); |
| #endif /* CONFIG_CMDLINE */ |
| |
| pr_debug("Command line is: %s\n", cmd_line); |
| |
| /* break now */ |
| return 1; |
| } |
| |
| static int __init early_init_dt_scan_root(unsigned long node, |
| const char *uname, int depth, void *data) |
| { |
| u32 *prop; |
| |
| if (depth != 0) |
| return 0; |
| |
| prop = of_get_flat_dt_prop(node, "#size-cells", NULL); |
| dt_root_size_cells = (prop == NULL) ? 1 : *prop; |
| pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells); |
| |
| prop = of_get_flat_dt_prop(node, "#address-cells", NULL); |
| dt_root_addr_cells = (prop == NULL) ? 2 : *prop; |
| pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells); |
| |
| /* break now */ |
| return 1; |
| } |
| |
| static u64 __init dt_mem_next_cell(int s, cell_t **cellp) |
| { |
| cell_t *p = *cellp; |
| |
| *cellp = p + s; |
| return of_read_number(p, s); |
| } |
| |
| static int __init early_init_dt_scan_memory(unsigned long node, |
| const char *uname, int depth, void *data) |
| { |
| char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| cell_t *reg, *endp; |
| unsigned long l; |
| |
| /* Look for the ibm,dynamic-reconfiguration-memory node */ |
| /* if (depth == 1 && |
| strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) |
| return early_init_dt_scan_drconf_memory(node); |
| */ |
| /* We are scanning "memory" nodes only */ |
| if (type == NULL) { |
| /* |
| * The longtrail doesn't have a device_type on the |
| * /memory node, so look for the node called /memory@0. |
| */ |
| if (depth != 1 || strcmp(uname, "memory@0") != 0) |
| return 0; |
| } else if (strcmp(type, "memory") != 0) |
| return 0; |
| |
| reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l); |
| if (reg == NULL) |
| reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l); |
| if (reg == NULL) |
| return 0; |
| |
| endp = reg + (l / sizeof(cell_t)); |
| |
| pr_debug("memory scan node %s, reg size %ld, data: %x %x %x %x,\n", |
| uname, l, reg[0], reg[1], reg[2], reg[3]); |
| |
| while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { |
| u64 base, size; |
| |
| base = dt_mem_next_cell(dt_root_addr_cells, ®); |
| size = dt_mem_next_cell(dt_root_size_cells, ®); |
| |
| if (size == 0) |
| continue; |
| pr_debug(" - %llx , %llx\n", (unsigned long long)base, |
| (unsigned long long)size); |
| |
| lmb_add(base, size); |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_PHYP_DUMP |
| /** |
| * phyp_dump_calculate_reserve_size() - reserve variable boot area 5% or arg |
| * |
| * Function to find the largest size we need to reserve |
| * during early boot process. |
| * |
| * It either looks for boot param and returns that OR |
| * returns larger of 256 or 5% rounded down to multiples of 256MB. |
| * |
| */ |
| static inline unsigned long phyp_dump_calculate_reserve_size(void) |
| { |
| unsigned long tmp; |
| |
| if (phyp_dump_info->reserve_bootvar) |
| return phyp_dump_info->reserve_bootvar; |
| |
| /* divide by 20 to get 5% of value */ |
| tmp = lmb_end_of_DRAM(); |
| do_div(tmp, 20); |
| |
| /* round it down in multiples of 256 */ |
| tmp = tmp & ~0x0FFFFFFFUL; |
| |
| return (tmp > PHYP_DUMP_RMR_END ? tmp : PHYP_DUMP_RMR_END); |
| } |
| |
| /** |
| * phyp_dump_reserve_mem() - reserve all not-yet-dumped mmemory |
| * |
| * This routine may reserve memory regions in the kernel only |
| * if the system is supported and a dump was taken in last |
| * boot instance or if the hardware is supported and the |
| * scratch area needs to be setup. In other instances it returns |
| * without reserving anything. The memory in case of dump being |
| * active is freed when the dump is collected (by userland tools). |
| */ |
| static void __init phyp_dump_reserve_mem(void) |
| { |
| unsigned long base, size; |
| unsigned long variable_reserve_size; |
| |
| if (!phyp_dump_info->phyp_dump_configured) { |
| printk(KERN_ERR "Phyp-dump not supported on this hardware\n"); |
| return; |
| } |
| |
| if (!phyp_dump_info->phyp_dump_at_boot) { |
| printk(KERN_INFO "Phyp-dump disabled at boot time\n"); |
| return; |
| } |
| |
| variable_reserve_size = phyp_dump_calculate_reserve_size(); |
| |
| if (phyp_dump_info->phyp_dump_is_active) { |
| /* Reserve *everything* above RMR.Area freed by userland tools*/ |
| base = variable_reserve_size; |
| size = lmb_end_of_DRAM() - base; |
| |
| /* XXX crashed_ram_end is wrong, since it may be beyond |
| * the memory_limit, it will need to be adjusted. */ |
| lmb_reserve(base, size); |
| |
| phyp_dump_info->init_reserve_start = base; |
| phyp_dump_info->init_reserve_size = size; |
| } else { |
| size = phyp_dump_info->cpu_state_size + |
| phyp_dump_info->hpte_region_size + |
| variable_reserve_size; |
| base = lmb_end_of_DRAM() - size; |
| lmb_reserve(base, size); |
| phyp_dump_info->init_reserve_start = base; |
| phyp_dump_info->init_reserve_size = size; |
| } |
| } |
| #else |
| static inline void __init phyp_dump_reserve_mem(void) {} |
| #endif /* CONFIG_PHYP_DUMP && CONFIG_PPC_RTAS */ |
| |
| #ifdef CONFIG_EARLY_PRINTK |
| /* MS this is Microblaze specifig function */ |
| static int __init early_init_dt_scan_serial(unsigned long node, |
| const char *uname, int depth, void *data) |
| { |
| unsigned long l; |
| char *p; |
| int *addr; |
| |
| pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname); |
| |
| /* find all serial nodes */ |
| if (strncmp(uname, "serial", 6) != 0) |
| return 0; |
| |
| early_init_dt_check_for_initrd(node); |
| |
| /* find compatible node with uartlite */ |
| p = of_get_flat_dt_prop(node, "compatible", &l); |
| if ((strncmp(p, "xlnx,xps-uartlite", 17) != 0) && |
| (strncmp(p, "xlnx,opb-uartlite", 17) != 0)) |
| return 0; |
| |
| addr = of_get_flat_dt_prop(node, "reg", &l); |
| return *addr; /* return address */ |
| } |
| |
| /* this function is looking for early uartlite console - Microblaze specific */ |
| int __init early_uartlite_console(void) |
| { |
| return of_scan_flat_dt(early_init_dt_scan_serial, NULL); |
| } |
| #endif |
| |
| void __init early_init_devtree(void *params) |
| { |
| pr_debug(" -> early_init_devtree(%p)\n", params); |
| |
| /* Setup flat device-tree pointer */ |
| initial_boot_params = params; |
| |
| #ifdef CONFIG_PHYP_DUMP |
| /* scan tree to see if dump occured during last boot */ |
| of_scan_flat_dt(early_init_dt_scan_phyp_dump, NULL); |
| #endif |
| |
| /* Retrieve various informations from the /chosen node of the |
| * device-tree, including the platform type, initrd location and |
| * size, TCE reserve, and more ... |
| */ |
| of_scan_flat_dt(early_init_dt_scan_chosen, NULL); |
| |
| /* Scan memory nodes and rebuild LMBs */ |
| lmb_init(); |
| of_scan_flat_dt(early_init_dt_scan_root, NULL); |
| of_scan_flat_dt(early_init_dt_scan_memory, NULL); |
| |
| /* Save command line for /proc/cmdline and then parse parameters */ |
| strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE); |
| parse_early_param(); |
| |
| lmb_analyze(); |
| |
| pr_debug("Phys. mem: %lx\n", (unsigned long) lmb_phys_mem_size()); |
| |
| pr_debug("Scanning CPUs ...\n"); |
| |
| /* Retreive CPU related informations from the flat tree |
| * (altivec support, boot CPU ID, ...) |
| */ |
| of_scan_flat_dt(early_init_dt_scan_cpus, NULL); |
| |
| pr_debug(" <- early_init_devtree()\n"); |
| } |
| |
| /** |
| * Indicates whether the root node has a given value in its |
| * compatible property. |
| */ |
| int machine_is_compatible(const char *compat) |
| { |
| struct device_node *root; |
| int rc = 0; |
| |
| root = of_find_node_by_path("/"); |
| if (root) { |
| rc = of_device_is_compatible(root, compat); |
| of_node_put(root); |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL(machine_is_compatible); |
| |
| /******* |
| * |
| * New implementation of the OF "find" APIs, return a refcounted |
| * object, call of_node_put() when done. The device tree and list |
| * are protected by a rw_lock. |
| * |
| * Note that property management will need some locking as well, |
| * this isn't dealt with yet. |
| * |
| *******/ |
| |
| /** |
| * of_find_node_by_phandle - Find a node given a phandle |
| * @handle: phandle of the node to find |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_phandle(phandle handle) |
| { |
| struct device_node *np; |
| |
| read_lock(&devtree_lock); |
| for (np = allnodes; np != NULL; np = np->allnext) |
| if (np->linux_phandle == handle) |
| break; |
| of_node_get(np); |
| read_unlock(&devtree_lock); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_by_phandle); |
| |
| /** |
| * of_node_get - Increment refcount of a node |
| * @node: Node to inc refcount, NULL is supported to |
| * simplify writing of callers |
| * |
| * Returns node. |
| */ |
| struct device_node *of_node_get(struct device_node *node) |
| { |
| if (node) |
| kref_get(&node->kref); |
| return node; |
| } |
| EXPORT_SYMBOL(of_node_get); |
| |
| static inline struct device_node *kref_to_device_node(struct kref *kref) |
| { |
| return container_of(kref, struct device_node, kref); |
| } |
| |
| /** |
| * of_node_release - release a dynamically allocated node |
| * @kref: kref element of the node to be released |
| * |
| * In of_node_put() this function is passed to kref_put() |
| * as the destructor. |
| */ |
| static void of_node_release(struct kref *kref) |
| { |
| struct device_node *node = kref_to_device_node(kref); |
| struct property *prop = node->properties; |
| |
| /* We should never be releasing nodes that haven't been detached. */ |
| if (!of_node_check_flag(node, OF_DETACHED)) { |
| printk(KERN_INFO "WARNING: Bad of_node_put() on %s\n", |
| node->full_name); |
| dump_stack(); |
| kref_init(&node->kref); |
| return; |
| } |
| |
| if (!of_node_check_flag(node, OF_DYNAMIC)) |
| return; |
| |
| while (prop) { |
| struct property *next = prop->next; |
| kfree(prop->name); |
| kfree(prop->value); |
| kfree(prop); |
| prop = next; |
| |
| if (!prop) { |
| prop = node->deadprops; |
| node->deadprops = NULL; |
| } |
| } |
| kfree(node->full_name); |
| kfree(node->data); |
| kfree(node); |
| } |
| |
| /** |
| * of_node_put - Decrement refcount of a node |
| * @node: Node to dec refcount, NULL is supported to |
| * simplify writing of callers |
| * |
| */ |
| void of_node_put(struct device_node *node) |
| { |
| if (node) |
| kref_put(&node->kref, of_node_release); |
| } |
| EXPORT_SYMBOL(of_node_put); |
| |
| /* |
| * Plug a device node into the tree and global list. |
| */ |
| void of_attach_node(struct device_node *np) |
| { |
| unsigned long flags; |
| |
| write_lock_irqsave(&devtree_lock, flags); |
| np->sibling = np->parent->child; |
| np->allnext = allnodes; |
| np->parent->child = np; |
| allnodes = np; |
| write_unlock_irqrestore(&devtree_lock, flags); |
| } |
| |
| /* |
| * "Unplug" a node from the device tree. The caller must hold |
| * a reference to the node. The memory associated with the node |
| * is not freed until its refcount goes to zero. |
| */ |
| void of_detach_node(struct device_node *np) |
| { |
| struct device_node *parent; |
| unsigned long flags; |
| |
| write_lock_irqsave(&devtree_lock, flags); |
| |
| parent = np->parent; |
| if (!parent) |
| goto out_unlock; |
| |
| if (allnodes == np) |
| allnodes = np->allnext; |
| else { |
| struct device_node *prev; |
| for (prev = allnodes; |
| prev->allnext != np; |
| prev = prev->allnext) |
| ; |
| prev->allnext = np->allnext; |
| } |
| |
| if (parent->child == np) |
| parent->child = np->sibling; |
| else { |
| struct device_node *prevsib; |
| for (prevsib = np->parent->child; |
| prevsib->sibling != np; |
| prevsib = prevsib->sibling) |
| ; |
| prevsib->sibling = np->sibling; |
| } |
| |
| of_node_set_flag(np, OF_DETACHED); |
| |
| out_unlock: |
| write_unlock_irqrestore(&devtree_lock, flags); |
| } |
| |
| /* |
| * Add a property to a node |
| */ |
| int prom_add_property(struct device_node *np, struct property *prop) |
| { |
| struct property **next; |
| unsigned long flags; |
| |
| prop->next = NULL; |
| write_lock_irqsave(&devtree_lock, flags); |
| next = &np->properties; |
| while (*next) { |
| if (strcmp(prop->name, (*next)->name) == 0) { |
| /* duplicate ! don't insert it */ |
| write_unlock_irqrestore(&devtree_lock, flags); |
| return -1; |
| } |
| next = &(*next)->next; |
| } |
| *next = prop; |
| write_unlock_irqrestore(&devtree_lock, flags); |
| |
| #ifdef CONFIG_PROC_DEVICETREE |
| /* try to add to proc as well if it was initialized */ |
| if (np->pde) |
| proc_device_tree_add_prop(np->pde, prop); |
| #endif /* CONFIG_PROC_DEVICETREE */ |
| |
| return 0; |
| } |
| |
| /* |
| * Remove a property from a node. Note that we don't actually |
| * remove it, since we have given out who-knows-how-many pointers |
| * to the data using get-property. Instead we just move the property |
| * to the "dead properties" list, so it won't be found any more. |
| */ |
| int prom_remove_property(struct device_node *np, struct property *prop) |
| { |
| struct property **next; |
| unsigned long flags; |
| int found = 0; |
| |
| write_lock_irqsave(&devtree_lock, flags); |
| next = &np->properties; |
| while (*next) { |
| if (*next == prop) { |
| /* found the node */ |
| *next = prop->next; |
| prop->next = np->deadprops; |
| np->deadprops = prop; |
| found = 1; |
| break; |
| } |
| next = &(*next)->next; |
| } |
| write_unlock_irqrestore(&devtree_lock, flags); |
| |
| if (!found) |
| return -ENODEV; |
| |
| #ifdef CONFIG_PROC_DEVICETREE |
| /* try to remove the proc node as well */ |
| if (np->pde) |
| proc_device_tree_remove_prop(np->pde, prop); |
| #endif /* CONFIG_PROC_DEVICETREE */ |
| |
| return 0; |
| } |
| |
| /* |
| * Update a property in a node. Note that we don't actually |
| * remove it, since we have given out who-knows-how-many pointers |
| * to the data using get-property. Instead we just move the property |
| * to the "dead properties" list, and add the new property to the |
| * property list |
| */ |
| int prom_update_property(struct device_node *np, |
| struct property *newprop, |
| struct property *oldprop) |
| { |
| struct property **next; |
| unsigned long flags; |
| int found = 0; |
| |
| write_lock_irqsave(&devtree_lock, flags); |
| next = &np->properties; |
| while (*next) { |
| if (*next == oldprop) { |
| /* found the node */ |
| newprop->next = oldprop->next; |
| *next = newprop; |
| oldprop->next = np->deadprops; |
| np->deadprops = oldprop; |
| found = 1; |
| break; |
| } |
| next = &(*next)->next; |
| } |
| write_unlock_irqrestore(&devtree_lock, flags); |
| |
| if (!found) |
| return -ENODEV; |
| |
| #ifdef CONFIG_PROC_DEVICETREE |
| /* try to add to proc as well if it was initialized */ |
| if (np->pde) |
| proc_device_tree_update_prop(np->pde, newprop, oldprop); |
| #endif /* CONFIG_PROC_DEVICETREE */ |
| |
| return 0; |
| } |
| |
| #if defined(CONFIG_DEBUG_FS) && defined(DEBUG) |
| static struct debugfs_blob_wrapper flat_dt_blob; |
| |
| static int __init export_flat_device_tree(void) |
| { |
| struct dentry *d; |
| |
| flat_dt_blob.data = initial_boot_params; |
| flat_dt_blob.size = initial_boot_params->totalsize; |
| |
| d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR, |
| of_debugfs_root, &flat_dt_blob); |
| if (!d) |
| return 1; |
| |
| return 0; |
| } |
| device_initcall(export_flat_device_tree); |
| #endif |