| /* |
| * omap_vout_vrfb.c |
| * |
| * Copyright (C) 2010 Texas Instruments. |
| * |
| * This file is licensed under the terms of the GNU General Public License |
| * version 2. This program is licensed "as is" without any warranty of any |
| * kind, whether express or implied. |
| * |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/platform_device.h> |
| #include <linux/videodev2.h> |
| |
| #include <media/videobuf-dma-contig.h> |
| #include <media/v4l2-device.h> |
| |
| #include <linux/omap-dma.h> |
| #include <video/omapvrfb.h> |
| |
| #include "omap_voutdef.h" |
| #include "omap_voutlib.h" |
| |
| #define OMAP_DMA_NO_DEVICE 0 |
| |
| /* |
| * Function for allocating video buffers |
| */ |
| static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout, |
| unsigned int *count, int startindex) |
| { |
| int i, j; |
| |
| for (i = 0; i < *count; i++) { |
| if (!vout->smsshado_virt_addr[i]) { |
| vout->smsshado_virt_addr[i] = |
| omap_vout_alloc_buffer(vout->smsshado_size, |
| &vout->smsshado_phy_addr[i]); |
| } |
| if (!vout->smsshado_virt_addr[i] && startindex != -1) { |
| if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex) |
| break; |
| } |
| if (!vout->smsshado_virt_addr[i]) { |
| for (j = 0; j < i; j++) { |
| omap_vout_free_buffer( |
| vout->smsshado_virt_addr[j], |
| vout->smsshado_size); |
| vout->smsshado_virt_addr[j] = 0; |
| vout->smsshado_phy_addr[j] = 0; |
| } |
| *count = 0; |
| return -ENOMEM; |
| } |
| memset((void *) vout->smsshado_virt_addr[i], 0, |
| vout->smsshado_size); |
| } |
| return 0; |
| } |
| |
| /* |
| * Wakes up the application once the DMA transfer to VRFB space is completed. |
| */ |
| static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data) |
| { |
| struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data; |
| |
| t->tx_status = 1; |
| wake_up_interruptible(&t->wait); |
| } |
| |
| /* |
| * Free VRFB buffers |
| */ |
| void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout) |
| { |
| int j; |
| |
| for (j = 0; j < VRFB_NUM_BUFS; j++) { |
| omap_vout_free_buffer(vout->smsshado_virt_addr[j], |
| vout->smsshado_size); |
| vout->smsshado_virt_addr[j] = 0; |
| vout->smsshado_phy_addr[j] = 0; |
| } |
| } |
| |
| int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num, |
| bool static_vrfb_allocation) |
| { |
| int ret = 0, i, j; |
| struct omap_vout_device *vout; |
| struct video_device *vfd; |
| int image_width, image_height; |
| int vrfb_num_bufs = VRFB_NUM_BUFS; |
| struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev); |
| struct omap2video_device *vid_dev = |
| container_of(v4l2_dev, struct omap2video_device, v4l2_dev); |
| |
| vout = vid_dev->vouts[vid_num]; |
| vfd = vout->vfd; |
| |
| for (i = 0; i < VRFB_NUM_BUFS; i++) { |
| if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) { |
| dev_info(&pdev->dev, ": VRFB allocation failed\n"); |
| for (j = 0; j < i; j++) |
| omap_vrfb_release_ctx(&vout->vrfb_context[j]); |
| ret = -ENOMEM; |
| goto free_buffers; |
| } |
| } |
| |
| /* Calculate VRFB memory size */ |
| /* allocate for worst case size */ |
| image_width = VID_MAX_WIDTH / TILE_SIZE; |
| if (VID_MAX_WIDTH % TILE_SIZE) |
| image_width++; |
| |
| image_width = image_width * TILE_SIZE; |
| image_height = VID_MAX_HEIGHT / TILE_SIZE; |
| |
| if (VID_MAX_HEIGHT % TILE_SIZE) |
| image_height++; |
| |
| image_height = image_height * TILE_SIZE; |
| vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2); |
| |
| /* |
| * Request and Initialize DMA, for DMA based VRFB transfer |
| */ |
| vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE; |
| vout->vrfb_dma_tx.dma_ch = -1; |
| vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED; |
| ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX", |
| omap_vout_vrfb_dma_tx_callback, |
| (void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch); |
| if (ret < 0) { |
| vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED; |
| dev_info(&pdev->dev, ": failed to allocate DMA Channel for" |
| " video%d\n", vfd->minor); |
| } |
| init_waitqueue_head(&vout->vrfb_dma_tx.wait); |
| |
| /* statically allocated the VRFB buffer is done through |
| commands line aruments */ |
| if (static_vrfb_allocation) { |
| if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) { |
| ret = -ENOMEM; |
| goto release_vrfb_ctx; |
| } |
| vout->vrfb_static_allocation = 1; |
| } |
| return 0; |
| |
| release_vrfb_ctx: |
| for (j = 0; j < VRFB_NUM_BUFS; j++) |
| omap_vrfb_release_ctx(&vout->vrfb_context[j]); |
| free_buffers: |
| omap_vout_free_buffers(vout); |
| |
| return ret; |
| } |
| |
| /* |
| * Release the VRFB context once the module exits |
| */ |
| void omap_vout_release_vrfb(struct omap_vout_device *vout) |
| { |
| int i; |
| |
| for (i = 0; i < VRFB_NUM_BUFS; i++) |
| omap_vrfb_release_ctx(&vout->vrfb_context[i]); |
| |
| if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) { |
| vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED; |
| omap_free_dma(vout->vrfb_dma_tx.dma_ch); |
| } |
| } |
| |
| /* |
| * Allocate the buffers for the VRFB space. Data is copied from V4L2 |
| * buffers to the VRFB buffers using the DMA engine. |
| */ |
| int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout, |
| unsigned int *count, unsigned int startindex) |
| { |
| int i; |
| bool yuv_mode; |
| |
| if (!is_rotation_enabled(vout)) |
| return 0; |
| |
| /* If rotation is enabled, allocate memory for VRFB space also */ |
| *count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count; |
| |
| /* Allocate the VRFB buffers only if the buffers are not |
| * allocated during init time. |
| */ |
| if (!vout->vrfb_static_allocation) |
| if (omap_vout_allocate_vrfb_buffers(vout, count, startindex)) |
| return -ENOMEM; |
| |
| if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 || |
| vout->dss_mode == OMAP_DSS_COLOR_UYVY) |
| yuv_mode = true; |
| else |
| yuv_mode = false; |
| |
| for (i = 0; i < *count; i++) |
| omap_vrfb_setup(&vout->vrfb_context[i], |
| vout->smsshado_phy_addr[i], vout->pix.width, |
| vout->pix.height, vout->bpp, yuv_mode); |
| |
| return 0; |
| } |
| |
| int omap_vout_prepare_vrfb(struct omap_vout_device *vout, |
| struct videobuf_buffer *vb) |
| { |
| dma_addr_t dmabuf; |
| struct vid_vrfb_dma *tx; |
| enum dss_rotation rotation; |
| u32 dest_frame_index = 0, src_element_index = 0; |
| u32 dest_element_index = 0, src_frame_index = 0; |
| u32 elem_count = 0, frame_count = 0, pixsize = 2; |
| |
| if (!is_rotation_enabled(vout)) |
| return 0; |
| |
| dmabuf = vout->buf_phy_addr[vb->i]; |
| /* If rotation is enabled, copy input buffer into VRFB |
| * memory space using DMA. We are copying input buffer |
| * into VRFB memory space of desired angle and DSS will |
| * read image VRFB memory for 0 degree angle |
| */ |
| pixsize = vout->bpp * vout->vrfb_bpp; |
| /* |
| * DMA transfer in double index mode |
| */ |
| |
| /* Frame index */ |
| dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) - |
| (vout->pix.width * vout->bpp)) + 1; |
| |
| /* Source and destination parameters */ |
| src_element_index = 0; |
| src_frame_index = 0; |
| dest_element_index = 1; |
| /* Number of elements per frame */ |
| elem_count = vout->pix.width * vout->bpp; |
| frame_count = vout->pix.height; |
| tx = &vout->vrfb_dma_tx; |
| tx->tx_status = 0; |
| omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32, |
| (elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT, |
| tx->dev_id, 0x0); |
| /* src_port required only for OMAP1 */ |
| omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, |
| dmabuf, src_element_index, src_frame_index); |
| /*set dma source burst mode for VRFB */ |
| omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16); |
| rotation = calc_rotation(vout); |
| |
| /* dest_port required only for OMAP1 */ |
| omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX, |
| vout->vrfb_context[vb->i].paddr[0], dest_element_index, |
| dest_frame_index); |
| /*set dma dest burst mode for VRFB */ |
| omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16); |
| omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0); |
| |
| omap_start_dma(tx->dma_ch); |
| wait_event_interruptible_timeout(tx->wait, tx->tx_status == 1, |
| VRFB_TX_TIMEOUT); |
| |
| if (tx->tx_status == 0) { |
| omap_stop_dma(tx->dma_ch); |
| return -EINVAL; |
| } |
| /* Store buffers physical address into an array. Addresses |
| * from this array will be used to configure DSS */ |
| vout->queued_buf_addr[vb->i] = (u8 *) |
| vout->vrfb_context[vb->i].paddr[rotation]; |
| return 0; |
| } |
| |
| /* |
| * Calculate the buffer offsets from which the streaming should |
| * start. This offset calculation is mainly required because of |
| * the VRFB 32 pixels alignment with rotation. |
| */ |
| void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout) |
| { |
| enum dss_rotation rotation; |
| bool mirroring = vout->mirror; |
| struct v4l2_rect *crop = &vout->crop; |
| struct v4l2_pix_format *pix = &vout->pix; |
| int *cropped_offset = &vout->cropped_offset; |
| int vr_ps = 1, ps = 2, temp_ps = 2; |
| int offset = 0, ctop = 0, cleft = 0, line_length = 0; |
| |
| rotation = calc_rotation(vout); |
| |
| if (V4L2_PIX_FMT_YUYV == pix->pixelformat || |
| V4L2_PIX_FMT_UYVY == pix->pixelformat) { |
| if (is_rotation_enabled(vout)) { |
| /* |
| * ps - Actual pixel size for YUYV/UYVY for |
| * VRFB/Mirroring is 4 bytes |
| * vr_ps - Virtually pixel size for YUYV/UYVY is |
| * 2 bytes |
| */ |
| ps = 4; |
| vr_ps = 2; |
| } else { |
| ps = 2; /* otherwise the pixel size is 2 byte */ |
| } |
| } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) { |
| ps = 4; |
| } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) { |
| ps = 3; |
| } |
| vout->ps = ps; |
| vout->vr_ps = vr_ps; |
| |
| if (is_rotation_enabled(vout)) { |
| line_length = MAX_PIXELS_PER_LINE; |
| ctop = (pix->height - crop->height) - crop->top; |
| cleft = (pix->width - crop->width) - crop->left; |
| } else { |
| line_length = pix->width; |
| } |
| vout->line_length = line_length; |
| switch (rotation) { |
| case dss_rotation_90_degree: |
| offset = vout->vrfb_context[0].yoffset * |
| vout->vrfb_context[0].bytespp; |
| temp_ps = ps / vr_ps; |
| if (mirroring == 0) { |
| *cropped_offset = offset + line_length * |
| temp_ps * cleft + crop->top * temp_ps; |
| } else { |
| *cropped_offset = offset + line_length * temp_ps * |
| cleft + crop->top * temp_ps + (line_length * |
| ((crop->width / (vr_ps)) - 1) * ps); |
| } |
| break; |
| case dss_rotation_180_degree: |
| offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset * |
| vout->vrfb_context[0].bytespp) + |
| (vout->vrfb_context[0].xoffset * |
| vout->vrfb_context[0].bytespp)); |
| if (mirroring == 0) { |
| *cropped_offset = offset + (line_length * ps * ctop) + |
| (cleft / vr_ps) * ps; |
| |
| } else { |
| *cropped_offset = offset + (line_length * ps * ctop) + |
| (cleft / vr_ps) * ps + (line_length * |
| (crop->height - 1) * ps); |
| } |
| break; |
| case dss_rotation_270_degree: |
| offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset * |
| vout->vrfb_context[0].bytespp; |
| temp_ps = ps / vr_ps; |
| if (mirroring == 0) { |
| *cropped_offset = offset + line_length * |
| temp_ps * crop->left + ctop * ps; |
| } else { |
| *cropped_offset = offset + line_length * |
| temp_ps * crop->left + ctop * ps + |
| (line_length * ((crop->width / vr_ps) - 1) * |
| ps); |
| } |
| break; |
| case dss_rotation_0_degree: |
| if (mirroring == 0) { |
| *cropped_offset = (line_length * ps) * |
| crop->top + (crop->left / vr_ps) * ps; |
| } else { |
| *cropped_offset = (line_length * ps) * |
| crop->top + (crop->left / vr_ps) * ps + |
| (line_length * (crop->height - 1) * ps); |
| } |
| break; |
| default: |
| *cropped_offset = (line_length * ps * crop->top) / |
| vr_ps + (crop->left * ps) / vr_ps + |
| ((crop->width / vr_ps) - 1) * ps; |
| break; |
| } |
| } |