blob: 32bf79e6a320ff2b04722b8a17d9cd7b38088303 [file] [log] [blame]
/*
* Atheros AR9170 driver
*
* mac80211 interaction code
*
* Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
* Copyright 2009, Christian Lamparter <chunkeey@web.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, see
* http://www.gnu.org/licenses/.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* Copyright (c) 2007-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <net/mac80211.h>
#include "ar9170.h"
#include "hw.h"
#include "cmd.h"
static int modparam_nohwcrypt;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
#define RATE(_bitrate, _hw_rate, _txpidx, _flags) { \
.bitrate = (_bitrate), \
.flags = (_flags), \
.hw_value = (_hw_rate) | (_txpidx) << 4, \
}
static struct ieee80211_rate __ar9170_ratetable[] = {
RATE(10, 0, 0, 0),
RATE(20, 1, 1, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(55, 2, 2, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(110, 3, 3, IEEE80211_RATE_SHORT_PREAMBLE),
RATE(60, 0xb, 0, 0),
RATE(90, 0xf, 0, 0),
RATE(120, 0xa, 0, 0),
RATE(180, 0xe, 0, 0),
RATE(240, 0x9, 0, 0),
RATE(360, 0xd, 1, 0),
RATE(480, 0x8, 2, 0),
RATE(540, 0xc, 3, 0),
};
#undef RATE
#define ar9170_g_ratetable (__ar9170_ratetable + 0)
#define ar9170_g_ratetable_size 12
#define ar9170_a_ratetable (__ar9170_ratetable + 4)
#define ar9170_a_ratetable_size 8
/*
* NB: The hw_value is used as an index into the ar9170_phy_freq_params
* array in phy.c so that we don't have to do frequency lookups!
*/
#define CHAN(_freq, _idx) { \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 18, /* XXX */ \
}
static struct ieee80211_channel ar9170_2ghz_chantable[] = {
CHAN(2412, 0),
CHAN(2417, 1),
CHAN(2422, 2),
CHAN(2427, 3),
CHAN(2432, 4),
CHAN(2437, 5),
CHAN(2442, 6),
CHAN(2447, 7),
CHAN(2452, 8),
CHAN(2457, 9),
CHAN(2462, 10),
CHAN(2467, 11),
CHAN(2472, 12),
CHAN(2484, 13),
};
static struct ieee80211_channel ar9170_5ghz_chantable[] = {
CHAN(4920, 14),
CHAN(4940, 15),
CHAN(4960, 16),
CHAN(4980, 17),
CHAN(5040, 18),
CHAN(5060, 19),
CHAN(5080, 20),
CHAN(5180, 21),
CHAN(5200, 22),
CHAN(5220, 23),
CHAN(5240, 24),
CHAN(5260, 25),
CHAN(5280, 26),
CHAN(5300, 27),
CHAN(5320, 28),
CHAN(5500, 29),
CHAN(5520, 30),
CHAN(5540, 31),
CHAN(5560, 32),
CHAN(5580, 33),
CHAN(5600, 34),
CHAN(5620, 35),
CHAN(5640, 36),
CHAN(5660, 37),
CHAN(5680, 38),
CHAN(5700, 39),
CHAN(5745, 40),
CHAN(5765, 41),
CHAN(5785, 42),
CHAN(5805, 43),
CHAN(5825, 44),
CHAN(5170, 45),
CHAN(5190, 46),
CHAN(5210, 47),
CHAN(5230, 48),
};
#undef CHAN
#define AR9170_HT_CAP \
{ \
.ht_supported = true, \
.cap = IEEE80211_HT_CAP_MAX_AMSDU | \
IEEE80211_HT_CAP_SUP_WIDTH_20_40 | \
IEEE80211_HT_CAP_SGI_40 | \
IEEE80211_HT_CAP_GRN_FLD | \
IEEE80211_HT_CAP_DSSSCCK40 | \
IEEE80211_HT_CAP_SM_PS, \
.ampdu_factor = 3, \
.ampdu_density = 6, \
.mcs = { \
.rx_mask = { 0xff, 0xff, 0, 0, 0x1, 0, 0, 0, 0, 0, }, \
.rx_highest = cpu_to_le16(300), \
.tx_params = IEEE80211_HT_MCS_TX_DEFINED, \
}, \
}
static struct ieee80211_supported_band ar9170_band_2GHz = {
.channels = ar9170_2ghz_chantable,
.n_channels = ARRAY_SIZE(ar9170_2ghz_chantable),
.bitrates = ar9170_g_ratetable,
.n_bitrates = ar9170_g_ratetable_size,
.ht_cap = AR9170_HT_CAP,
};
static struct ieee80211_supported_band ar9170_band_5GHz = {
.channels = ar9170_5ghz_chantable,
.n_channels = ARRAY_SIZE(ar9170_5ghz_chantable),
.bitrates = ar9170_a_ratetable,
.n_bitrates = ar9170_a_ratetable_size,
.ht_cap = AR9170_HT_CAP,
};
static void ar9170_tx(struct ar9170 *ar);
static inline u16 ar9170_get_seq_h(struct ieee80211_hdr *hdr)
{
return le16_to_cpu(hdr->seq_ctrl) >> 4;
}
static inline u16 ar9170_get_seq(struct sk_buff *skb)
{
struct ar9170_tx_control *txc = (void *) skb->data;
return ar9170_get_seq_h((void *) txc->frame_data);
}
#ifdef AR9170_QUEUE_DEBUG
static void ar9170_print_txheader(struct ar9170 *ar, struct sk_buff *skb)
{
struct ar9170_tx_control *txc = (void *) skb->data;
struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);
struct ar9170_tx_info *arinfo = (void *) txinfo->rate_driver_data;
struct ieee80211_hdr *hdr = (void *) txc->frame_data;
wiphy_debug(ar->hw->wiphy,
"=> FRAME [skb:%p, q:%d, DA:[%pM] s:%d "
"mac_ctrl:%04x, phy_ctrl:%08x, timeout:[%d ms]]\n",
skb, skb_get_queue_mapping(skb),
ieee80211_get_DA(hdr), ar9170_get_seq_h(hdr),
le16_to_cpu(txc->mac_control), le32_to_cpu(txc->phy_control),
jiffies_to_msecs(arinfo->timeout - jiffies));
}
static void __ar9170_dump_txqueue(struct ar9170 *ar,
struct sk_buff_head *queue)
{
struct sk_buff *skb;
int i = 0;
printk(KERN_DEBUG "---[ cut here ]---\n");
wiphy_debug(ar->hw->wiphy, "%d entries in queue.\n",
skb_queue_len(queue));
skb_queue_walk(queue, skb) {
printk(KERN_DEBUG "index:%d =>\n", i++);
ar9170_print_txheader(ar, skb);
}
if (i != skb_queue_len(queue))
printk(KERN_DEBUG "WARNING: queue frame counter "
"mismatch %d != %d\n", skb_queue_len(queue), i);
printk(KERN_DEBUG "---[ end ]---\n");
}
#endif /* AR9170_QUEUE_DEBUG */
#ifdef AR9170_QUEUE_DEBUG
static void ar9170_dump_txqueue(struct ar9170 *ar,
struct sk_buff_head *queue)
{
unsigned long flags;
spin_lock_irqsave(&queue->lock, flags);
__ar9170_dump_txqueue(ar, queue);
spin_unlock_irqrestore(&queue->lock, flags);
}
#endif /* AR9170_QUEUE_DEBUG */
#ifdef AR9170_QUEUE_STOP_DEBUG
static void __ar9170_dump_txstats(struct ar9170 *ar)
{
int i;
wiphy_debug(ar->hw->wiphy, "QoS queue stats\n");
for (i = 0; i < __AR9170_NUM_TXQ; i++)
wiphy_debug(ar->hw->wiphy,
"queue:%d limit:%d len:%d waitack:%d stopped:%d\n",
i, ar->tx_stats[i].limit, ar->tx_stats[i].len,
skb_queue_len(&ar->tx_status[i]),
ieee80211_queue_stopped(ar->hw, i));
}
#endif /* AR9170_QUEUE_STOP_DEBUG */
/* caller must guarantee exclusive access for _bin_ queue. */
static void ar9170_recycle_expired(struct ar9170 *ar,
struct sk_buff_head *queue,
struct sk_buff_head *bin)
{
struct sk_buff *skb, *old = NULL;
unsigned long flags;
spin_lock_irqsave(&queue->lock, flags);
while ((skb = skb_peek(queue))) {
struct ieee80211_tx_info *txinfo;
struct ar9170_tx_info *arinfo;
txinfo = IEEE80211_SKB_CB(skb);
arinfo = (void *) txinfo->rate_driver_data;
if (time_is_before_jiffies(arinfo->timeout)) {
#ifdef AR9170_QUEUE_DEBUG
wiphy_debug(ar->hw->wiphy,
"[%ld > %ld] frame expired => recycle\n",
jiffies, arinfo->timeout);
ar9170_print_txheader(ar, skb);
#endif /* AR9170_QUEUE_DEBUG */
__skb_unlink(skb, queue);
__skb_queue_tail(bin, skb);
} else {
break;
}
if (unlikely(old == skb)) {
/* bail out - queue is shot. */
WARN_ON(1);
break;
}
old = skb;
}
spin_unlock_irqrestore(&queue->lock, flags);
}
static void ar9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
u16 tx_status)
{
struct ieee80211_tx_info *txinfo;
unsigned int retries = 0;
txinfo = IEEE80211_SKB_CB(skb);
ieee80211_tx_info_clear_status(txinfo);
switch (tx_status) {
case AR9170_TX_STATUS_RETRY:
retries = 2;
case AR9170_TX_STATUS_COMPLETE:
txinfo->flags |= IEEE80211_TX_STAT_ACK;
break;
case AR9170_TX_STATUS_FAILED:
retries = ar->hw->conf.long_frame_max_tx_count;
break;
default:
wiphy_err(ar->hw->wiphy,
"invalid tx_status response (%x)\n", tx_status);
break;
}
txinfo->status.rates[0].count = retries + 1;
skb_pull(skb, sizeof(struct ar9170_tx_control));
ieee80211_tx_status_irqsafe(ar->hw, skb);
}
void ar9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ar9170_tx_info *arinfo = (void *) info->rate_driver_data;
unsigned int queue = skb_get_queue_mapping(skb);
unsigned long flags;
spin_lock_irqsave(&ar->tx_stats_lock, flags);
ar->tx_stats[queue].len--;
if (ar->tx_stats[queue].len < AR9170_NUM_TX_LIMIT_SOFT) {
#ifdef AR9170_QUEUE_STOP_DEBUG
wiphy_debug(ar->hw->wiphy, "wake queue %d\n", queue);
__ar9170_dump_txstats(ar);
#endif /* AR9170_QUEUE_STOP_DEBUG */
ieee80211_wake_queue(ar->hw, queue);
}
spin_unlock_irqrestore(&ar->tx_stats_lock, flags);
if (info->flags & IEEE80211_TX_CTL_NO_ACK) {
ar9170_tx_status(ar, skb, AR9170_TX_STATUS_FAILED);
} else {
arinfo->timeout = jiffies +
msecs_to_jiffies(AR9170_TX_TIMEOUT);
skb_queue_tail(&ar->tx_status[queue], skb);
}
if (!ar->tx_stats[queue].len &&
!skb_queue_empty(&ar->tx_pending[queue])) {
ar9170_tx(ar);
}
}
static struct sk_buff *ar9170_get_queued_skb(struct ar9170 *ar,
const u8 *mac,
struct sk_buff_head *queue,
const u32 rate)
{
unsigned long flags;
struct sk_buff *skb;
/*
* Unfortunately, the firmware does not tell to which (queued) frame
* this transmission status report belongs to.
*
* So we have to make risky guesses - with the scarce information
* the firmware provided (-> destination MAC, and phy_control) -
* and hope that we picked the right one...
*/
spin_lock_irqsave(&queue->lock, flags);
skb_queue_walk(queue, skb) {
struct ar9170_tx_control *txc = (void *) skb->data;
struct ieee80211_hdr *hdr = (void *) txc->frame_data;
u32 r;
if (mac && compare_ether_addr(ieee80211_get_DA(hdr), mac)) {
#ifdef AR9170_QUEUE_DEBUG
wiphy_debug(ar->hw->wiphy,
"skip frame => DA %pM != %pM\n",
mac, ieee80211_get_DA(hdr));
ar9170_print_txheader(ar, skb);
#endif /* AR9170_QUEUE_DEBUG */
continue;
}
r = (le32_to_cpu(txc->phy_control) & AR9170_TX_PHY_MCS_MASK) >>
AR9170_TX_PHY_MCS_SHIFT;
if ((rate != AR9170_TX_INVALID_RATE) && (r != rate)) {
#ifdef AR9170_QUEUE_DEBUG
wiphy_debug(ar->hw->wiphy,
"skip frame => rate %d != %d\n", rate, r);
ar9170_print_txheader(ar, skb);
#endif /* AR9170_QUEUE_DEBUG */
continue;
}
__skb_unlink(skb, queue);
spin_unlock_irqrestore(&queue->lock, flags);
return skb;
}
#ifdef AR9170_QUEUE_DEBUG
wiphy_err(ar->hw->wiphy,
"ESS:[%pM] does not have any outstanding frames in queue.\n",
mac);
__ar9170_dump_txqueue(ar, queue);
#endif /* AR9170_QUEUE_DEBUG */
spin_unlock_irqrestore(&queue->lock, flags);
return NULL;
}
/*
* This worker tries to keeps an maintain tx_status queues.
* So we can guarantee that incoming tx_status reports are
* actually for a pending frame.
*/
static void ar9170_tx_janitor(struct work_struct *work)
{
struct ar9170 *ar = container_of(work, struct ar9170,
tx_janitor.work);
struct sk_buff_head waste;
unsigned int i;
bool resched = false;
if (unlikely(!IS_STARTED(ar)))
return ;
skb_queue_head_init(&waste);
for (i = 0; i < __AR9170_NUM_TXQ; i++) {
#ifdef AR9170_QUEUE_DEBUG
wiphy_debug(ar->hw->wiphy, "garbage collector scans queue:%d\n",
i);
ar9170_dump_txqueue(ar, &ar->tx_pending[i]);
ar9170_dump_txqueue(ar, &ar->tx_status[i]);
#endif /* AR9170_QUEUE_DEBUG */
ar9170_recycle_expired(ar, &ar->tx_status[i], &waste);
ar9170_recycle_expired(ar, &ar->tx_pending[i], &waste);
skb_queue_purge(&waste);
if (!skb_queue_empty(&ar->tx_status[i]) ||
!skb_queue_empty(&ar->tx_pending[i]))
resched = true;
}
if (!resched)
return;
ieee80211_queue_delayed_work(ar->hw,
&ar->tx_janitor,
msecs_to_jiffies(AR9170_JANITOR_DELAY));
}
void ar9170_handle_command_response(struct ar9170 *ar, void *buf, u32 len)
{
struct ar9170_cmd_response *cmd = (void *) buf;
if ((cmd->type & 0xc0) != 0xc0) {
ar->callback_cmd(ar, len, buf);
return;
}
/* hardware event handlers */
switch (cmd->type) {
case 0xc1: {
/*
* TX status notification:
* bytes: 0c c1 XX YY M1 M2 M3 M4 M5 M6 R4 R3 R2 R1 S2 S1
*
* XX always 81
* YY always 00
* M1-M6 is the MAC address
* R1-R4 is the transmit rate
* S1-S2 is the transmit status
*/
struct sk_buff *skb;
u32 phy = le32_to_cpu(cmd->tx_status.rate);
u32 q = (phy & AR9170_TX_PHY_QOS_MASK) >>
AR9170_TX_PHY_QOS_SHIFT;
#ifdef AR9170_QUEUE_DEBUG
wiphy_debug(ar->hw->wiphy,
"recv tx_status for %pm, p:%08x, q:%d\n",
cmd->tx_status.dst, phy, q);
#endif /* AR9170_QUEUE_DEBUG */
skb = ar9170_get_queued_skb(ar, cmd->tx_status.dst,
&ar->tx_status[q],
AR9170_TX_INVALID_RATE);
if (unlikely(!skb))
return ;
ar9170_tx_status(ar, skb, le16_to_cpu(cmd->tx_status.status));
break;
}
case 0xc0:
/*
* pre-TBTT event
*/
if (ar->vif && ar->vif->type == NL80211_IFTYPE_AP)
ieee80211_queue_work(ar->hw, &ar->beacon_work);
break;
case 0xc2:
/*
* (IBSS) beacon send notification
* bytes: 04 c2 XX YY B4 B3 B2 B1
*
* XX always 80
* YY always 00
* B1-B4 "should" be the number of send out beacons.
*/
break;
case 0xc3:
/* End of Atim Window */
break;
case 0xc4:
/* BlockACK bitmap */
break;
case 0xc5:
/* BlockACK events */
break;
case 0xc6:
/* Watchdog Interrupt */
break;
case 0xc9:
/* retransmission issue / SIFS/EIFS collision ?! */
break;
/* firmware debug */
case 0xca:
printk(KERN_DEBUG "ar9170 FW: %.*s\n", len - 4,
(char *)buf + 4);
break;
case 0xcb:
len -= 4;
switch (len) {
case 1:
printk(KERN_DEBUG "ar9170 FW: u8: %#.2x\n",
*((char *)buf + 4));
break;
case 2:
printk(KERN_DEBUG "ar9170 FW: u8: %#.4x\n",
le16_to_cpup((__le16 *)((char *)buf + 4)));
break;
case 4:
printk(KERN_DEBUG "ar9170 FW: u8: %#.8x\n",
le32_to_cpup((__le32 *)((char *)buf + 4)));
break;
case 8:
printk(KERN_DEBUG "ar9170 FW: u8: %#.16lx\n",
(unsigned long)le64_to_cpup(
(__le64 *)((char *)buf + 4)));
break;
}
break;
case 0xcc:
print_hex_dump_bytes("ar9170 FW:", DUMP_PREFIX_NONE,
(char *)buf + 4, len - 4);
break;
default:
pr_info("received unhandled event %x\n", cmd->type);
print_hex_dump_bytes("dump:", DUMP_PREFIX_NONE, buf, len);
break;
}
}
static void ar9170_rx_reset_rx_mpdu(struct ar9170 *ar)
{
memset(&ar->rx_mpdu.plcp, 0, sizeof(struct ar9170_rx_head));
ar->rx_mpdu.has_plcp = false;
}
int ar9170_nag_limiter(struct ar9170 *ar)
{
bool print_message;
/*
* we expect all sorts of errors in promiscuous mode.
* don't bother with it, it's OK!
*/
if (ar->sniffer_enabled)
return false;
/*
* only go for frequent errors! The hardware tends to
* do some stupid thing once in a while under load, in
* noisy environments or just for fun!
*/
if (time_before(jiffies, ar->bad_hw_nagger) && net_ratelimit())
print_message = true;
else
print_message = false;
/* reset threshold for "once in a while" */
ar->bad_hw_nagger = jiffies + HZ / 4;
return print_message;
}
static int ar9170_rx_mac_status(struct ar9170 *ar,
struct ar9170_rx_head *head,
struct ar9170_rx_macstatus *mac,
struct ieee80211_rx_status *status)
{
u8 error, decrypt;
BUILD_BUG_ON(sizeof(struct ar9170_rx_head) != 12);
BUILD_BUG_ON(sizeof(struct ar9170_rx_macstatus) != 4);
error = mac->error;
if (error & AR9170_RX_ERROR_MMIC) {
status->flag |= RX_FLAG_MMIC_ERROR;
error &= ~AR9170_RX_ERROR_MMIC;
}
if (error & AR9170_RX_ERROR_PLCP) {
status->flag |= RX_FLAG_FAILED_PLCP_CRC;
error &= ~AR9170_RX_ERROR_PLCP;
if (!(ar->filter_state & FIF_PLCPFAIL))
return -EINVAL;
}
if (error & AR9170_RX_ERROR_FCS) {
status->flag |= RX_FLAG_FAILED_FCS_CRC;
error &= ~AR9170_RX_ERROR_FCS;
if (!(ar->filter_state & FIF_FCSFAIL))
return -EINVAL;
}
decrypt = ar9170_get_decrypt_type(mac);
if (!(decrypt & AR9170_RX_ENC_SOFTWARE) &&
decrypt != AR9170_ENC_ALG_NONE)
status->flag |= RX_FLAG_DECRYPTED;
/* ignore wrong RA errors */
error &= ~AR9170_RX_ERROR_WRONG_RA;
if (error & AR9170_RX_ERROR_DECRYPT) {
error &= ~AR9170_RX_ERROR_DECRYPT;
/*
* Rx decryption is done in place,
* the original data is lost anyway.
*/
return -EINVAL;
}
/* drop any other error frames */
if (unlikely(error)) {
/* TODO: update netdevice's RX dropped/errors statistics */
if (ar9170_nag_limiter(ar))
wiphy_debug(ar->hw->wiphy,
"received frame with suspicious error code (%#x).\n",
error);
return -EINVAL;
}
status->band = ar->channel->band;
status->freq = ar->channel->center_freq;
switch (mac->status & AR9170_RX_STATUS_MODULATION_MASK) {
case AR9170_RX_STATUS_MODULATION_CCK:
if (mac->status & AR9170_RX_STATUS_SHORT_PREAMBLE)
status->flag |= RX_FLAG_SHORTPRE;
switch (head->plcp[0]) {
case 0x0a:
status->rate_idx = 0;
break;
case 0x14:
status->rate_idx = 1;
break;
case 0x37:
status->rate_idx = 2;
break;
case 0x6e:
status->rate_idx = 3;
break;
default:
if (ar9170_nag_limiter(ar))
wiphy_err(ar->hw->wiphy,
"invalid plcp cck rate (%x).\n",
head->plcp[0]);
return -EINVAL;
}
break;
case AR9170_RX_STATUS_MODULATION_DUPOFDM:
case AR9170_RX_STATUS_MODULATION_OFDM:
switch (head->plcp[0] & 0xf) {
case 0xb:
status->rate_idx = 0;
break;
case 0xf:
status->rate_idx = 1;
break;
case 0xa:
status->rate_idx = 2;
break;
case 0xe:
status->rate_idx = 3;
break;
case 0x9:
status->rate_idx = 4;
break;
case 0xd:
status->rate_idx = 5;
break;
case 0x8:
status->rate_idx = 6;
break;
case 0xc:
status->rate_idx = 7;
break;
default:
if (ar9170_nag_limiter(ar))
wiphy_err(ar->hw->wiphy,
"invalid plcp ofdm rate (%x).\n",
head->plcp[0]);
return -EINVAL;
}
if (status->band == IEEE80211_BAND_2GHZ)
status->rate_idx += 4;
break;
case AR9170_RX_STATUS_MODULATION_HT:
if (head->plcp[3] & 0x80)
status->flag |= RX_FLAG_40MHZ;
if (head->plcp[6] & 0x80)
status->flag |= RX_FLAG_SHORT_GI;
status->rate_idx = clamp(0, 75, head->plcp[6] & 0x7f);
status->flag |= RX_FLAG_HT;
break;
default:
if (ar9170_nag_limiter(ar))
wiphy_err(ar->hw->wiphy, "invalid modulation\n");
return -EINVAL;
}
return 0;
}
static void ar9170_rx_phy_status(struct ar9170 *ar,
struct ar9170_rx_phystatus *phy,
struct ieee80211_rx_status *status)
{
int i;
BUILD_BUG_ON(sizeof(struct ar9170_rx_phystatus) != 20);
for (i = 0; i < 3; i++)
if (phy->rssi[i] != 0x80)
status->antenna |= BIT(i);
/* post-process RSSI */
for (i = 0; i < 7; i++)
if (phy->rssi[i] & 0x80)
phy->rssi[i] = ((phy->rssi[i] & 0x7f) + 1) & 0x7f;
/* TODO: we could do something with phy_errors */
status->signal = ar->noise[0] + phy->rssi_combined;
}
static struct sk_buff *ar9170_rx_copy_data(u8 *buf, int len)
{
struct sk_buff *skb;
int reserved = 0;
struct ieee80211_hdr *hdr = (void *) buf;
if (ieee80211_is_data_qos(hdr->frame_control)) {
u8 *qc = ieee80211_get_qos_ctl(hdr);
reserved += NET_IP_ALIGN;
if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
reserved += NET_IP_ALIGN;
}
if (ieee80211_has_a4(hdr->frame_control))
reserved += NET_IP_ALIGN;
reserved = 32 + (reserved & NET_IP_ALIGN);
skb = dev_alloc_skb(len + reserved);
if (likely(skb)) {
skb_reserve(skb, reserved);
memcpy(skb_put(skb, len), buf, len);
}
return skb;
}
/*
* If the frame alignment is right (or the kernel has
* CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS), and there
* is only a single MPDU in the USB frame, then we could
* submit to mac80211 the SKB directly. However, since
* there may be multiple packets in one SKB in stream
* mode, and we need to observe the proper ordering,
* this is non-trivial.
*/
static void ar9170_handle_mpdu(struct ar9170 *ar, u8 *buf, int len)
{
struct ar9170_rx_head *head;
struct ar9170_rx_macstatus *mac;
struct ar9170_rx_phystatus *phy = NULL;
struct ieee80211_rx_status status;
struct sk_buff *skb;
int mpdu_len;
if (unlikely(!IS_STARTED(ar) || len < (sizeof(*mac))))
return ;
/* Received MPDU */
mpdu_len = len - sizeof(*mac);
mac = (void *)(buf + mpdu_len);
if (unlikely(mac->error & AR9170_RX_ERROR_FATAL)) {
/* this frame is too damaged and can't be used - drop it */
return ;
}
switch (mac->status & AR9170_RX_STATUS_MPDU_MASK) {
case AR9170_RX_STATUS_MPDU_FIRST:
/* first mpdu packet has the plcp header */
if (likely(mpdu_len >= sizeof(struct ar9170_rx_head))) {
head = (void *) buf;
memcpy(&ar->rx_mpdu.plcp, (void *) buf,
sizeof(struct ar9170_rx_head));
mpdu_len -= sizeof(struct ar9170_rx_head);
buf += sizeof(struct ar9170_rx_head);
ar->rx_mpdu.has_plcp = true;
} else {
if (ar9170_nag_limiter(ar))
wiphy_err(ar->hw->wiphy,
"plcp info is clipped.\n");
return ;
}
break;
case AR9170_RX_STATUS_MPDU_LAST:
/* last mpdu has a extra tail with phy status information */
if (likely(mpdu_len >= sizeof(struct ar9170_rx_phystatus))) {
mpdu_len -= sizeof(struct ar9170_rx_phystatus);
phy = (void *)(buf + mpdu_len);
} else {
if (ar9170_nag_limiter(ar))
wiphy_err(ar->hw->wiphy,
"frame tail is clipped.\n");
return ;
}
case AR9170_RX_STATUS_MPDU_MIDDLE:
/* middle mpdus are just data */
if (unlikely(!ar->rx_mpdu.has_plcp)) {
if (!ar9170_nag_limiter(ar))
return ;
wiphy_err(ar->hw->wiphy,
"rx stream did not start with a first_mpdu frame tag.\n");
return ;
}
head = &ar->rx_mpdu.plcp;
break;
case AR9170_RX_STATUS_MPDU_SINGLE:
/* single mpdu - has plcp (head) and phy status (tail) */
head = (void *) buf;
mpdu_len -= sizeof(struct ar9170_rx_head);
mpdu_len -= sizeof(struct ar9170_rx_phystatus);
buf += sizeof(struct ar9170_rx_head);
phy = (void *)(buf + mpdu_len);
break;
default:
BUG_ON(1);
break;
}
if (unlikely(mpdu_len < FCS_LEN))
return ;
memset(&status, 0, sizeof(status));
if (unlikely(ar9170_rx_mac_status(ar, head, mac, &status)))
return ;
if (phy)
ar9170_rx_phy_status(ar, phy, &status);
skb = ar9170_rx_copy_data(buf, mpdu_len);
if (likely(skb)) {
memcpy(IEEE80211_SKB_RXCB(skb), &status, sizeof(status));
ieee80211_rx_irqsafe(ar->hw, skb);
}
}
void ar9170_rx(struct ar9170 *ar, struct sk_buff *skb)
{
unsigned int i, tlen, resplen, wlen = 0, clen = 0;
u8 *tbuf, *respbuf;
tbuf = skb->data;
tlen = skb->len;
while (tlen >= 4) {
clen = tbuf[1] << 8 | tbuf[0];
wlen = ALIGN(clen, 4);
/* check if this is stream has a valid tag.*/
if (tbuf[2] != 0 || tbuf[3] != 0x4e) {
/*
* TODO: handle the highly unlikely event that the
* corrupted stream has the TAG at the right position.
*/
/* check if the frame can be repaired. */
if (!ar->rx_failover_missing) {
/* this is no "short read". */
if (ar9170_nag_limiter(ar)) {
wiphy_err(ar->hw->wiphy,
"missing tag!\n");
goto err_telluser;
} else
goto err_silent;
}
if (ar->rx_failover_missing > tlen) {
if (ar9170_nag_limiter(ar)) {
wiphy_err(ar->hw->wiphy,
"possible multi stream corruption!\n");
goto err_telluser;
} else
goto err_silent;
}
memcpy(skb_put(ar->rx_failover, tlen), tbuf, tlen);
ar->rx_failover_missing -= tlen;
if (ar->rx_failover_missing <= 0) {
/*
* nested ar9170_rx call!
* termination is guranteed, even when the
* combined frame also have a element with
* a bad tag.
*/
ar->rx_failover_missing = 0;
ar9170_rx(ar, ar->rx_failover);
skb_reset_tail_pointer(ar->rx_failover);
skb_trim(ar->rx_failover, 0);
}
return ;
}
/* check if stream is clipped */
if (wlen > tlen - 4) {
if (ar->rx_failover_missing) {
/* TODO: handle double stream corruption. */
if (ar9170_nag_limiter(ar)) {
wiphy_err(ar->hw->wiphy,
"double rx stream corruption!\n");
goto err_telluser;
} else
goto err_silent;
}
/*
* save incomplete data set.
* the firmware will resend the missing bits when
* the rx - descriptor comes round again.
*/
memcpy(skb_put(ar->rx_failover, tlen), tbuf, tlen);
ar->rx_failover_missing = clen - tlen;
return ;
}
resplen = clen;
respbuf = tbuf + 4;
tbuf += wlen + 4;
tlen -= wlen + 4;
i = 0;
/* weird thing, but this is the same in the original driver */
while (resplen > 2 && i < 12 &&
respbuf[0] == 0xff && respbuf[1] == 0xff) {
i += 2;
resplen -= 2;
respbuf += 2;
}
if (resplen < 4)
continue;
/* found the 6 * 0xffff marker? */
if (i == 12)
ar9170_handle_command_response(ar, respbuf, resplen);
else
ar9170_handle_mpdu(ar, respbuf, clen);
}
if (tlen) {
if (net_ratelimit())
wiphy_err(ar->hw->wiphy,
"%d bytes of unprocessed data left in rx stream!\n",
tlen);
goto err_telluser;
}
return ;
err_telluser:
wiphy_err(ar->hw->wiphy,
"damaged RX stream data [want:%d, data:%d, rx:%d, pending:%d ]\n",
clen, wlen, tlen, ar->rx_failover_missing);
if (ar->rx_failover_missing)
print_hex_dump_bytes("rxbuf:", DUMP_PREFIX_OFFSET,
ar->rx_failover->data,
ar->rx_failover->len);
print_hex_dump_bytes("stream:", DUMP_PREFIX_OFFSET,
skb->data, skb->len);
wiphy_err(ar->hw->wiphy,
"If you see this message frequently, please check your hardware and cables.\n");
err_silent:
if (ar->rx_failover_missing) {
skb_reset_tail_pointer(ar->rx_failover);
skb_trim(ar->rx_failover, 0);
ar->rx_failover_missing = 0;
}
}
#define AR9170_FILL_QUEUE(queue, ai_fs, cwmin, cwmax, _txop) \
do { \
queue.aifs = ai_fs; \
queue.cw_min = cwmin; \
queue.cw_max = cwmax; \
queue.txop = _txop; \
} while (0)
static int ar9170_op_start(struct ieee80211_hw *hw)
{
struct ar9170 *ar = hw->priv;
int err, i;
mutex_lock(&ar->mutex);
/* reinitialize queues statistics */
memset(&ar->tx_stats, 0, sizeof(ar->tx_stats));
for (i = 0; i < __AR9170_NUM_TXQ; i++)
ar->tx_stats[i].limit = AR9170_TXQ_DEPTH;
/* reset QoS defaults */
AR9170_FILL_QUEUE(ar->edcf[0], 3, 15, 1023, 0); /* BEST EFFORT*/
AR9170_FILL_QUEUE(ar->edcf[1], 7, 15, 1023, 0); /* BACKGROUND */
AR9170_FILL_QUEUE(ar->edcf[2], 2, 7, 15, 94); /* VIDEO */
AR9170_FILL_QUEUE(ar->edcf[3], 2, 3, 7, 47); /* VOICE */
AR9170_FILL_QUEUE(ar->edcf[4], 2, 3, 7, 0); /* SPECIAL */
/* set sane AMPDU defaults */
ar->global_ampdu_density = 6;
ar->global_ampdu_factor = 3;
ar->bad_hw_nagger = jiffies;
err = ar->open(ar);
if (err)
goto out;
err = ar9170_init_mac(ar);
if (err)
goto out;
err = ar9170_set_qos(ar);
if (err)
goto out;
err = ar9170_init_phy(ar, IEEE80211_BAND_2GHZ);
if (err)
goto out;
err = ar9170_init_rf(ar);
if (err)
goto out;
/* start DMA */
err = ar9170_write_reg(ar, 0x1c3d30, 0x100);
if (err)
goto out;
ar->state = AR9170_STARTED;
out:
mutex_unlock(&ar->mutex);
return err;
}
static void ar9170_op_stop(struct ieee80211_hw *hw)
{
struct ar9170 *ar = hw->priv;
unsigned int i;
if (IS_STARTED(ar))
ar->state = AR9170_IDLE;
cancel_delayed_work_sync(&ar->tx_janitor);
#ifdef CONFIG_AR9170_LEDS
cancel_delayed_work_sync(&ar->led_work);
#endif
cancel_work_sync(&ar->beacon_work);
mutex_lock(&ar->mutex);
if (IS_ACCEPTING_CMD(ar)) {
ar9170_set_leds_state(ar, 0);
/* stop DMA */
ar9170_write_reg(ar, 0x1c3d30, 0);
ar->stop(ar);
}
for (i = 0; i < __AR9170_NUM_TXQ; i++) {
skb_queue_purge(&ar->tx_pending[i]);
skb_queue_purge(&ar->tx_status[i]);
}
mutex_unlock(&ar->mutex);
}
static int ar9170_tx_prepare(struct ar9170 *ar, struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
struct ar9170_tx_control *txc;
struct ieee80211_tx_info *info;
struct ieee80211_tx_rate *txrate;
struct ar9170_tx_info *arinfo;
unsigned int queue = skb_get_queue_mapping(skb);
u16 keytype = 0;
u16 len, icv = 0;
BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
hdr = (void *)skb->data;
info = IEEE80211_SKB_CB(skb);
len = skb->len;
txc = (void *)skb_push(skb, sizeof(*txc));
if (info->control.hw_key) {
icv = info->control.hw_key->icv_len;
switch (info->control.hw_key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
case WLAN_CIPHER_SUITE_TKIP:
keytype = AR9170_TX_MAC_ENCR_RC4;
break;
case WLAN_CIPHER_SUITE_CCMP:
keytype = AR9170_TX_MAC_ENCR_AES;
break;
default:
WARN_ON(1);
goto err_out;
}
}
/* Length */
txc->length = cpu_to_le16(len + icv + 4);
txc->mac_control = cpu_to_le16(AR9170_TX_MAC_HW_DURATION |
AR9170_TX_MAC_BACKOFF);
txc->mac_control |= cpu_to_le16(ar9170_qos_hwmap[queue] <<
AR9170_TX_MAC_QOS_SHIFT);
txc->mac_control |= cpu_to_le16(keytype);
txc->phy_control = cpu_to_le32(0);
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
txc->mac_control |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
txrate = &info->control.rates[0];
if (txrate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
txc->mac_control |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);
else if (txrate->flags & IEEE80211_TX_RC_USE_RTS_CTS)
txc->mac_control |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
arinfo = (void *)info->rate_driver_data;
arinfo->timeout = jiffies + msecs_to_jiffies(AR9170_QUEUE_TIMEOUT);
if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
(is_valid_ether_addr(ieee80211_get_DA(hdr)))) {
/*
* WARNING:
* Putting the QoS queue bits into an unexplored territory is
* certainly not elegant.
*
* In my defense: This idea provides a reasonable way to
* smuggle valuable information to the tx_status callback.
* Also, the idea behind this bit-abuse came straight from
* the original driver code.
*/
txc->phy_control |=
cpu_to_le32(queue << AR9170_TX_PHY_QOS_SHIFT);
txc->mac_control |= cpu_to_le16(AR9170_TX_MAC_RATE_PROBE);
}
return 0;
err_out:
skb_pull(skb, sizeof(*txc));
return -EINVAL;
}
static void ar9170_tx_prepare_phy(struct ar9170 *ar, struct sk_buff *skb)
{
struct ar9170_tx_control *txc;
struct ieee80211_tx_info *info;
struct ieee80211_rate *rate = NULL;
struct ieee80211_tx_rate *txrate;
u32 power, chains;
txc = (void *) skb->data;
info = IEEE80211_SKB_CB(skb);
txrate = &info->control.rates[0];
if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
txc->phy_control |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
txc->phy_control |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
txc->phy_control |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ);
/* this works because 40 MHz is 2 and dup is 3 */
if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
txc->phy_control |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP);
if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
txc->phy_control |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI);
if (txrate->flags & IEEE80211_TX_RC_MCS) {
u32 r = txrate->idx;
u8 *txpower;
/* heavy clip control */
txc->phy_control |= cpu_to_le32((r & 0x7) << 7);
r <<= AR9170_TX_PHY_MCS_SHIFT;
BUG_ON(r & ~AR9170_TX_PHY_MCS_MASK);
txc->phy_control |= cpu_to_le32(r & AR9170_TX_PHY_MCS_MASK);
txc->phy_control |= cpu_to_le32(AR9170_TX_PHY_MOD_HT);
if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
if (info->band == IEEE80211_BAND_5GHZ)
txpower = ar->power_5G_ht40;
else
txpower = ar->power_2G_ht40;
} else {
if (info->band == IEEE80211_BAND_5GHZ)
txpower = ar->power_5G_ht20;
else
txpower = ar->power_2G_ht20;
}
power = txpower[(txrate->idx) & 7];
} else {
u8 *txpower;
u32 mod;
u32 phyrate;
u8 idx = txrate->idx;
if (info->band != IEEE80211_BAND_2GHZ) {
idx += 4;
txpower = ar->power_5G_leg;
mod = AR9170_TX_PHY_MOD_OFDM;
} else {
if (idx < 4) {
txpower = ar->power_2G_cck;
mod = AR9170_TX_PHY_MOD_CCK;
} else {
mod = AR9170_TX_PHY_MOD_OFDM;
txpower = ar->power_2G_ofdm;
}
}
rate = &__ar9170_ratetable[idx];
phyrate = rate->hw_value & 0xF;
power = txpower[(rate->hw_value & 0x30) >> 4];
phyrate <<= AR9170_TX_PHY_MCS_SHIFT;
txc->phy_control |= cpu_to_le32(mod);
txc->phy_control |= cpu_to_le32(phyrate);
}
power <<= AR9170_TX_PHY_TX_PWR_SHIFT;
power &= AR9170_TX_PHY_TX_PWR_MASK;
txc->phy_control |= cpu_to_le32(power);
/* set TX chains */
if (ar->eeprom.tx_mask == 1) {
chains = AR9170_TX_PHY_TXCHAIN_1;
} else {
chains = AR9170_TX_PHY_TXCHAIN_2;
/* >= 36M legacy OFDM - use only one chain */
if (rate && rate->bitrate >= 360)
chains = AR9170_TX_PHY_TXCHAIN_1;
}
txc->phy_control |= cpu_to_le32(chains << AR9170_TX_PHY_TXCHAIN_SHIFT);
}
static void ar9170_tx(struct ar9170 *ar)
{
struct sk_buff *skb;
unsigned long flags;
struct ieee80211_tx_info *info;
struct ar9170_tx_info *arinfo;
unsigned int i, frames, frames_failed, remaining_space;
int err;
bool schedule_garbagecollector = false;
BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
if (unlikely(!IS_STARTED(ar)))
return ;
remaining_space = AR9170_TX_MAX_PENDING;
for (i = 0; i < __AR9170_NUM_TXQ; i++) {
spin_lock_irqsave(&ar->tx_stats_lock, flags);
frames = min(ar->tx_stats[i].limit - ar->tx_stats[i].len,
skb_queue_len(&ar->tx_pending[i]));
if (remaining_space < frames) {
#ifdef AR9170_QUEUE_DEBUG
wiphy_debug(ar->hw->wiphy,
"tx quota reached queue:%d, "
"remaining slots:%d, needed:%d\n",
i, remaining_space, frames);
#endif /* AR9170_QUEUE_DEBUG */
frames = remaining_space;
}
ar->tx_stats[i].len += frames;
ar->tx_stats[i].count += frames;
if (ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
#ifdef AR9170_QUEUE_DEBUG
wiphy_debug(ar->hw->wiphy, "queue %d full\n", i);
wiphy_debug(ar->hw->wiphy, "stuck frames: ===>\n");
ar9170_dump_txqueue(ar, &ar->tx_pending[i]);
ar9170_dump_txqueue(ar, &ar->tx_status[i]);
#endif /* AR9170_QUEUE_DEBUG */
#ifdef AR9170_QUEUE_STOP_DEBUG
wiphy_debug(ar->hw->wiphy, "stop queue %d\n", i);
__ar9170_dump_txstats(ar);
#endif /* AR9170_QUEUE_STOP_DEBUG */
ieee80211_stop_queue(ar->hw, i);
}
spin_unlock_irqrestore(&ar->tx_stats_lock, flags);
if (!frames)
continue;
frames_failed = 0;
while (frames) {
skb = skb_dequeue(&ar->tx_pending[i]);
if (unlikely(!skb)) {
frames_failed += frames;
frames = 0;
break;
}
info = IEEE80211_SKB_CB(skb);
arinfo = (void *) info->rate_driver_data;
/* TODO: cancel stuck frames */
arinfo->timeout = jiffies +
msecs_to_jiffies(AR9170_TX_TIMEOUT);
#ifdef AR9170_QUEUE_DEBUG
wiphy_debug(ar->hw->wiphy, "send frame q:%d =>\n", i);
ar9170_print_txheader(ar, skb);
#endif /* AR9170_QUEUE_DEBUG */
err = ar->tx(ar, skb);
if (unlikely(err)) {
frames_failed++;
dev_kfree_skb_any(skb);
} else {
remaining_space--;
schedule_garbagecollector = true;
}
frames--;
}
#ifdef AR9170_QUEUE_DEBUG
wiphy_debug(ar->hw->wiphy,
"ar9170_tx report for queue %d\n", i);
wiphy_debug(ar->hw->wiphy,
"unprocessed pending frames left:\n");
ar9170_dump_txqueue(ar, &ar->tx_pending[i]);
#endif /* AR9170_QUEUE_DEBUG */
if (unlikely(frames_failed)) {
#ifdef AR9170_QUEUE_DEBUG
wiphy_debug(ar->hw->wiphy,
"frames failed %d =>\n", frames_failed);
#endif /* AR9170_QUEUE_DEBUG */
spin_lock_irqsave(&ar->tx_stats_lock, flags);
ar->tx_stats[i].len -= frames_failed;
ar->tx_stats[i].count -= frames_failed;
#ifdef AR9170_QUEUE_STOP_DEBUG
wiphy_debug(ar->hw->wiphy, "wake queue %d\n", i);
__ar9170_dump_txstats(ar);
#endif /* AR9170_QUEUE_STOP_DEBUG */
ieee80211_wake_queue(ar->hw, i);
spin_unlock_irqrestore(&ar->tx_stats_lock, flags);
}
}
if (!schedule_garbagecollector)
return;
ieee80211_queue_delayed_work(ar->hw,
&ar->tx_janitor,
msecs_to_jiffies(AR9170_JANITOR_DELAY));
}
int ar9170_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct ar9170 *ar = hw->priv;
struct ieee80211_tx_info *info;
unsigned int queue;
if (unlikely(!IS_STARTED(ar)))
goto err_free;
if (unlikely(ar9170_tx_prepare(ar, skb)))
goto err_free;
queue = skb_get_queue_mapping(skb);
info = IEEE80211_SKB_CB(skb);
ar9170_tx_prepare_phy(ar, skb);
skb_queue_tail(&ar->tx_pending[queue], skb);
ar9170_tx(ar);
return NETDEV_TX_OK;
err_free:
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static int ar9170_op_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ar9170 *ar = hw->priv;
struct ath_common *common = &ar->common;
int err = 0;
mutex_lock(&ar->mutex);
if (ar->vif) {
err = -EBUSY;
goto unlock;
}
ar->vif = vif;
memcpy(common->macaddr, vif->addr, ETH_ALEN);
if (modparam_nohwcrypt || (ar->vif->type != NL80211_IFTYPE_STATION)) {
ar->rx_software_decryption = true;
ar->disable_offload = true;
}
ar->cur_filter = 0;
err = ar9170_update_frame_filter(ar, AR9170_MAC_REG_FTF_DEFAULTS);
if (err)
goto unlock;
err = ar9170_set_operating_mode(ar);
unlock:
mutex_unlock(&ar->mutex);
return err;
}
static void ar9170_op_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ar9170 *ar = hw->priv;
mutex_lock(&ar->mutex);
ar->vif = NULL;
ar9170_update_frame_filter(ar, 0);
ar9170_set_beacon_timers(ar);
dev_kfree_skb(ar->beacon);
ar->beacon = NULL;
ar->sniffer_enabled = false;
ar->rx_software_decryption = false;
ar9170_set_operating_mode(ar);
mutex_unlock(&ar->mutex);
}
static int ar9170_op_config(struct ieee80211_hw *hw, u32 changed)
{
struct ar9170 *ar = hw->priv;
int err = 0;
mutex_lock(&ar->mutex);
if (changed & IEEE80211_CONF_CHANGE_LISTEN_INTERVAL) {
/* TODO */
err = 0;
}
if (changed & IEEE80211_CONF_CHANGE_PS) {
/* TODO */
err = 0;
}
if (changed & IEEE80211_CONF_CHANGE_POWER) {
/* TODO */
err = 0;
}
if (changed & IEEE80211_CONF_CHANGE_RETRY_LIMITS) {
/*
* is it long_frame_max_tx_count or short_frame_max_tx_count?
*/
err = ar9170_set_hwretry_limit(ar,
ar->hw->conf.long_frame_max_tx_count);
if (err)
goto out;
}
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
/* adjust slot time for 5 GHz */
err = ar9170_set_slot_time(ar);
if (err)
goto out;
err = ar9170_set_dyn_sifs_ack(ar);
if (err)
goto out;
err = ar9170_set_channel(ar, hw->conf.channel,
AR9170_RFI_NONE,
nl80211_to_ar9170(hw->conf.channel_type));
if (err)
goto out;
}
out:
mutex_unlock(&ar->mutex);
return err;
}
static u64 ar9170_op_prepare_multicast(struct ieee80211_hw *hw,
struct netdev_hw_addr_list *mc_list)
{
u64 mchash;
struct netdev_hw_addr *ha;
/* always get broadcast frames */
mchash = 1ULL << (0xff >> 2);
netdev_hw_addr_list_for_each(ha, mc_list)
mchash |= 1ULL << (ha->addr[5] >> 2);
return mchash;
}
static void ar9170_op_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *new_flags,
u64 multicast)
{
struct ar9170 *ar = hw->priv;
if (unlikely(!IS_ACCEPTING_CMD(ar)))
return ;
mutex_lock(&ar->mutex);
/* mask supported flags */
*new_flags &= FIF_ALLMULTI | FIF_CONTROL | FIF_BCN_PRBRESP_PROMISC |
FIF_PROMISC_IN_BSS | FIF_FCSFAIL | FIF_PLCPFAIL;
ar->filter_state = *new_flags;
/*
* We can support more by setting the sniffer bit and
* then checking the error flags, later.
*/
if (changed_flags & FIF_ALLMULTI && *new_flags & FIF_ALLMULTI)
multicast = ~0ULL;
if (multicast != ar->cur_mc_hash)
ar9170_update_multicast(ar, multicast);
if (changed_flags & FIF_CONTROL) {
u32 filter = AR9170_MAC_REG_FTF_PSPOLL |
AR9170_MAC_REG_FTF_RTS |
AR9170_MAC_REG_FTF_CTS |
AR9170_MAC_REG_FTF_ACK |
AR9170_MAC_REG_FTF_CFE |
AR9170_MAC_REG_FTF_CFE_ACK;
if (*new_flags & FIF_CONTROL)
filter |= ar->cur_filter;
else
filter &= (~ar->cur_filter);
ar9170_update_frame_filter(ar, filter);
}
if (changed_flags & FIF_PROMISC_IN_BSS) {
ar->sniffer_enabled = ((*new_flags) & FIF_PROMISC_IN_BSS) != 0;
ar9170_set_operating_mode(ar);
}
mutex_unlock(&ar->mutex);
}
static void ar9170_op_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf,
u32 changed)
{
struct ar9170 *ar = hw->priv;
struct ath_common *common = &ar->common;
int err = 0;
mutex_lock(&ar->mutex);
if (changed & BSS_CHANGED_BSSID) {
memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
err = ar9170_set_operating_mode(ar);
if (err)
goto out;
}
if (changed & BSS_CHANGED_BEACON_ENABLED)
ar->enable_beacon = bss_conf->enable_beacon;
if (changed & BSS_CHANGED_BEACON) {
err = ar9170_update_beacon(ar);
if (err)
goto out;
}
if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON |
BSS_CHANGED_BEACON_INT)) {
err = ar9170_set_beacon_timers(ar);
if (err)
goto out;
}
if (changed & BSS_CHANGED_ASSOC) {
#ifndef CONFIG_AR9170_LEDS
/* enable assoc LED. */
err = ar9170_set_leds_state(ar, bss_conf->assoc ? 2 : 0);
#endif /* CONFIG_AR9170_LEDS */
}
if (changed & BSS_CHANGED_HT) {
/* TODO */
err = 0;
}
if (changed & BSS_CHANGED_ERP_SLOT) {
err = ar9170_set_slot_time(ar);
if (err)
goto out;
}
if (changed & BSS_CHANGED_BASIC_RATES) {
err = ar9170_set_basic_rates(ar);
if (err)
goto out;
}
out:
mutex_unlock(&ar->mutex);
}
static u64 ar9170_op_get_tsf(struct ieee80211_hw *hw)
{
struct ar9170 *ar = hw->priv;
int err;
u64 tsf;
#define NR 3
static const u32 addr[NR] = { AR9170_MAC_REG_TSF_H,
AR9170_MAC_REG_TSF_L,
AR9170_MAC_REG_TSF_H };
u32 val[NR];
int loops = 0;
mutex_lock(&ar->mutex);
while (loops++ < 10) {
err = ar9170_read_mreg(ar, NR, addr, val);
if (err || val[0] == val[2])
break;
}
mutex_unlock(&ar->mutex);
if (WARN_ON(err))
return 0;
tsf = val[0];
tsf = (tsf << 32) | val[1];
return tsf;
#undef NR
}
static int ar9170_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ar9170 *ar = hw->priv;
int err = 0, i;
u8 ktype;
if ((!ar->vif) || (ar->disable_offload))
return -EOPNOTSUPP;
switch (key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
ktype = AR9170_ENC_ALG_WEP64;
break;
case WLAN_CIPHER_SUITE_WEP104:
ktype = AR9170_ENC_ALG_WEP128;
break;
case WLAN_CIPHER_SUITE_TKIP:
ktype = AR9170_ENC_ALG_TKIP;
break;
case WLAN_CIPHER_SUITE_CCMP:
ktype = AR9170_ENC_ALG_AESCCMP;
break;
default:
return -EOPNOTSUPP;
}
mutex_lock(&ar->mutex);
if (cmd == SET_KEY) {
if (unlikely(!IS_STARTED(ar))) {
err = -EOPNOTSUPP;
goto out;
}
/* group keys need all-zeroes address */
if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
sta = NULL;
if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) {
for (i = 0; i < 64; i++)
if (!(ar->usedkeys & BIT(i)))
break;
if (i == 64) {
ar->rx_software_decryption = true;
ar9170_set_operating_mode(ar);
err = -ENOSPC;
goto out;
}
} else {
i = 64 + key->keyidx;
}
key->hw_key_idx = i;
err = ar9170_upload_key(ar, i, sta ? sta->addr : NULL, ktype, 0,
key->key, min_t(u8, 16, key->keylen));
if (err)
goto out;
if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
err = ar9170_upload_key(ar, i, sta ? sta->addr : NULL,
ktype, 1, key->key + 16, 16);
if (err)
goto out;
/*
* hardware is not capable generating the MMIC
* for fragmented frames!
*/
key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
}
if (i < 64)
ar->usedkeys |= BIT(i);
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
} else {
if (unlikely(!IS_STARTED(ar))) {
/* The device is gone... together with the key ;-) */
err = 0;
goto out;
}
err = ar9170_disable_key(ar, key->hw_key_idx);
if (err)
goto out;
if (key->hw_key_idx < 64) {
ar->usedkeys &= ~BIT(key->hw_key_idx);
} else {
err = ar9170_upload_key(ar, key->hw_key_idx, NULL,
AR9170_ENC_ALG_NONE, 0,
NULL, 0);
if (err)
goto out;
if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
err = ar9170_upload_key(ar, key->hw_key_idx,
NULL,
AR9170_ENC_ALG_NONE, 1,
NULL, 0);
if (err)
goto out;
}
}
}
ar9170_regwrite_begin(ar);
ar9170_regwrite(AR9170_MAC_REG_ROLL_CALL_TBL_L, ar->usedkeys);
ar9170_regwrite(AR9170_MAC_REG_ROLL_CALL_TBL_H, ar->usedkeys >> 32);
ar9170_regwrite_finish();
err = ar9170_regwrite_result();
out:
mutex_unlock(&ar->mutex);
return err;
}
static int ar9170_get_stats(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats)
{
struct ar9170 *ar = hw->priv;
u32 val;
int err;
mutex_lock(&ar->mutex);
err = ar9170_read_reg(ar, AR9170_MAC_REG_TX_RETRY, &val);
ar->stats.dot11ACKFailureCount += val;
memcpy(stats, &ar->stats, sizeof(*stats));
mutex_unlock(&ar->mutex);
return 0;
}
static int ar9170_get_survey(struct ieee80211_hw *hw, int idx,
struct survey_info *survey)
{
struct ar9170 *ar = hw->priv;
struct ieee80211_conf *conf = &hw->conf;
if (idx != 0)
return -ENOENT;
/* TODO: update noise value, e.g. call ar9170_set_channel */
survey->channel = conf->channel;
survey->filled = SURVEY_INFO_NOISE_DBM;
survey->noise = ar->noise[0];
return 0;
}
static int ar9170_conf_tx(struct ieee80211_hw *hw, u16 queue,
const struct ieee80211_tx_queue_params *param)
{
struct ar9170 *ar = hw->priv;
int ret;
mutex_lock(&ar->mutex);
if (queue < __AR9170_NUM_TXQ) {
memcpy(&ar->edcf[ar9170_qos_hwmap[queue]],
param, sizeof(*param));
ret = ar9170_set_qos(ar);
} else {
ret = -EINVAL;
}
mutex_unlock(&ar->mutex);
return ret;
}
static int ar9170_ampdu_action(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum ieee80211_ampdu_mlme_action action,
struct ieee80211_sta *sta, u16 tid, u16 *ssn)
{
switch (action) {
case IEEE80211_AMPDU_RX_START:
case IEEE80211_AMPDU_RX_STOP:
/* Handled by firmware */
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static const struct ieee80211_ops ar9170_ops = {
.start = ar9170_op_start,
.stop = ar9170_op_stop,
.tx = ar9170_op_tx,
.add_interface = ar9170_op_add_interface,
.remove_interface = ar9170_op_remove_interface,
.config = ar9170_op_config,
.prepare_multicast = ar9170_op_prepare_multicast,
.configure_filter = ar9170_op_configure_filter,
.conf_tx = ar9170_conf_tx,
.bss_info_changed = ar9170_op_bss_info_changed,
.get_tsf = ar9170_op_get_tsf,
.set_key = ar9170_set_key,
.get_stats = ar9170_get_stats,
.get_survey = ar9170_get_survey,
.ampdu_action = ar9170_ampdu_action,
};
void *ar9170_alloc(size_t priv_size)
{
struct ieee80211_hw *hw;
struct ar9170 *ar;
struct sk_buff *skb;
int i;
/*
* this buffer is used for rx stream reconstruction.
* Under heavy load this device (or the transport layer?)
* tends to split the streams into separate rx descriptors.
*/
skb = __dev_alloc_skb(AR9170_RX_STREAM_MAX_SIZE, GFP_KERNEL);
if (!skb)
goto err_nomem;
hw = ieee80211_alloc_hw(priv_size, &ar9170_ops);
if (!hw)
goto err_nomem;
ar = hw->priv;
ar->hw = hw;
ar->rx_failover = skb;
mutex_init(&ar->mutex);
spin_lock_init(&ar->cmdlock);
spin_lock_init(&ar->tx_stats_lock);
for (i = 0; i < __AR9170_NUM_TXQ; i++) {
skb_queue_head_init(&ar->tx_status[i]);
skb_queue_head_init(&ar->tx_pending[i]);
}
ar9170_rx_reset_rx_mpdu(ar);
INIT_WORK(&ar->beacon_work, ar9170_new_beacon);
INIT_DELAYED_WORK(&ar->tx_janitor, ar9170_tx_janitor);
/* all hw supports 2.4 GHz, so set channel to 1 by default */
ar->channel = &ar9170_2ghz_chantable[0];
/* first part of wiphy init */
ar->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_WDS) |
BIT(NL80211_IFTYPE_ADHOC);
ar->hw->flags |= IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_SIGNAL_DBM;
ar->hw->queues = __AR9170_NUM_TXQ;
ar->hw->extra_tx_headroom = 8;
ar->hw->max_rates = 1;
ar->hw->max_rate_tries = 3;
for (i = 0; i < ARRAY_SIZE(ar->noise); i++)
ar->noise[i] = -95; /* ATH_DEFAULT_NOISE_FLOOR */
return ar;
err_nomem:
kfree_skb(skb);
return ERR_PTR(-ENOMEM);
}
static int ar9170_read_eeprom(struct ar9170 *ar)
{
#define RW 8 /* number of words to read at once */
#define RB (sizeof(u32) * RW)
struct ath_regulatory *regulatory = &ar->common.regulatory;
u8 *eeprom = (void *)&ar->eeprom;
u8 *addr = ar->eeprom.mac_address;
__le32 offsets[RW];
unsigned int rx_streams, tx_streams, tx_params = 0;
int i, j, err, bands = 0;
BUILD_BUG_ON(sizeof(ar->eeprom) & 3);
BUILD_BUG_ON(RB > AR9170_MAX_CMD_LEN - 4);
#ifndef __CHECKER__
/* don't want to handle trailing remains */
BUILD_BUG_ON(sizeof(ar->eeprom) % RB);
#endif
for (i = 0; i < sizeof(ar->eeprom)/RB; i++) {
for (j = 0; j < RW; j++)
offsets[j] = cpu_to_le32(AR9170_EEPROM_START +
RB * i + 4 * j);
err = ar->exec_cmd(ar, AR9170_CMD_RREG,
RB, (u8 *) &offsets,
RB, eeprom + RB * i);
if (err)
return err;
}
#undef RW
#undef RB
if (ar->eeprom.length == cpu_to_le16(0xFFFF))
return -ENODATA;
if (ar->eeprom.operating_flags & AR9170_OPFLAG_2GHZ) {
ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &ar9170_band_2GHz;
bands++;
}
if (ar->eeprom.operating_flags & AR9170_OPFLAG_5GHZ) {
ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &ar9170_band_5GHz;
bands++;
}
rx_streams = hweight8(ar->eeprom.rx_mask);
tx_streams = hweight8(ar->eeprom.tx_mask);
if (rx_streams != tx_streams)
tx_params = IEEE80211_HT_MCS_TX_RX_DIFF;
if (tx_streams >= 1 && tx_streams <= IEEE80211_HT_MCS_TX_MAX_STREAMS)
tx_params = (tx_streams - 1) <<
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
ar9170_band_2GHz.ht_cap.mcs.tx_params |= tx_params;
ar9170_band_5GHz.ht_cap.mcs.tx_params |= tx_params;
/*
* I measured this, a bandswitch takes roughly
* 135 ms and a frequency switch about 80.
*
* FIXME: measure these values again once EEPROM settings
* are used, that will influence them!
*/
if (bands == 2)
ar->hw->channel_change_time = 135 * 1000;
else
ar->hw->channel_change_time = 80 * 1000;
regulatory->current_rd = le16_to_cpu(ar->eeprom.reg_domain[0]);
regulatory->current_rd_ext = le16_to_cpu(ar->eeprom.reg_domain[1]);
/* second part of wiphy init */
SET_IEEE80211_PERM_ADDR(ar->hw, addr);
return bands ? 0 : -EINVAL;
}
static int ar9170_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ar9170 *ar = hw->priv;
return ath_reg_notifier_apply(wiphy, request, &ar->common.regulatory);
}
int ar9170_register(struct ar9170 *ar, struct device *pdev)
{
struct ath_regulatory *regulatory = &ar->common.regulatory;
int err;
/* try to read EEPROM, init MAC addr */
err = ar9170_read_eeprom(ar);
if (err)
goto err_out;
err = ath_regd_init(regulatory, ar->hw->wiphy,
ar9170_reg_notifier);
if (err)
goto err_out;
err = ieee80211_register_hw(ar->hw);
if (err)
goto err_out;
if (!ath_is_world_regd(regulatory))
regulatory_hint(ar->hw->wiphy, regulatory->alpha2);
err = ar9170_init_leds(ar);
if (err)
goto err_unreg;
#ifdef CONFIG_AR9170_LEDS
err = ar9170_register_leds(ar);
if (err)
goto err_unreg;
#endif /* CONFIG_AR9170_LEDS */
dev_info(pdev, "Atheros AR9170 is registered as '%s'\n",
wiphy_name(ar->hw->wiphy));
ar->registered = true;
return 0;
err_unreg:
ieee80211_unregister_hw(ar->hw);
err_out:
return err;
}
void ar9170_unregister(struct ar9170 *ar)
{
if (ar->registered) {
#ifdef CONFIG_AR9170_LEDS
ar9170_unregister_leds(ar);
#endif /* CONFIG_AR9170_LEDS */
ieee80211_unregister_hw(ar->hw);
}
kfree_skb(ar->rx_failover);
mutex_destroy(&ar->mutex);
}